代码随想录算法训练营第十六天| 104. 二叉树的最大深度、111. 二叉树的最小深度、222. 完全二叉树的节点个数
代码随想录算法训练营第十六天| 104. 二叉树的最大深度、111. 二叉树的最小深度、222. 完全二叉树的节点个数
题目
104.二叉树的最大深度
给定一个二叉树 root
,返回其最大深度。
二叉树的 最大深度 是指从根节点到最远叶子节点的最长路径上的节点数。
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
from collections import deque
class Solution:def maxDepth(self, root: Optional[TreeNode]) -> int:if not root:return 0q_ = deque()q_.append(root)sum_ = 0while q_:sum_ += 1level_ = []for _ in range(len(q_)):node = q_.popleft()level_.append(node)if node.left:q_.append(node.left)if node.right:q_.append(node.right)return sum_
题目
111.二叉树的最小深度
给定一个二叉树,找出其最小深度。
最小深度是从根节点到最近叶子节点的最短路径上的节点数量。
**说明:**叶子节点是指没有子节点的节点。
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
from collections import deque
class Solution:def minDepth(self, root: Optional[TreeNode]) -> int:if not root:return 0q_ = deque()q_.append(root)dept_ = 0while q_:dept_ += 1level_ = []for _ in range(len(q_)):node = q_.popleft()if node.left:q_.append(node.left)if node.right:q_.append(node.right)if not node.left and not node.right:return dept_return dept_
题目
222.完全二叉树的节点个数
给你一棵 完全二叉树 的根节点 root
,求出该树的节点个数。
完全二叉树 的定义如下:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置。若最底层为第 h
层,则该层包含 1~ 2h
个节点。
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
from collections import deque
class Solution:def countNodes(self, root: Optional[TreeNode]) -> int:# 递归# if not root:# return 0# return self.countNodes(root.left) + self.countNodes(root.right) + 1# 非递归if not root:return 0;res = 0q_ = deque()q_.append(root)while q_:for _ in range(len(q_)):node = q_.popleft()res += 1if node.left:q_.append(node.left)if node.right:q_.append(node.right)return res
相关文章:
代码随想录算法训练营第十六天| 104. 二叉树的最大深度、111. 二叉树的最小深度、222. 完全二叉树的节点个数
代码随想录算法训练营第十六天| 104. 二叉树的最大深度、111. 二叉树的最小深度、222. 完全二叉树的节点个数 题目 104.二叉树的最大深度 给定一个二叉树 root ,返回其最大深度。 二叉树的 最大深度 是指从根节点到最远叶子节点的最长路径上的节点数。 # Defin…...
字符串——OJ题
📘北尘_:个人主页 🌎个人专栏:《Linux操作系统》《经典算法试题 》《C》 《数据结构与算法》 ☀️走在路上,不忘来时的初心 文章目录 一、字符串相加1、题目讲解2、思路讲解3、代码实现 二、仅仅反转字母1、题目讲解2、思路讲解3…...
Linux---cp和mv命令选项
1. cp命令选项 命令选项说明-i交互式提示-r递归拷贝目录及其内容-v显示拷贝后的路径描述-a保留文件的原有权限 cp -i命令选项效果图: cp -r命令选项效果图: cp -v命令选项效果图: cp -a命令选项效果图: -a选项说明: -a 选项还支持拷贝文件夹并且文件夹中的文件权限不丢失 …...
LVS负载均衡器(nat模式)+nginx(七层反向代理)+tomcat(多实例),实现负载均衡和动静分离
目录 前言 一、配置nfs共享存储 二、配置2个nginx节点服务的网页页面 节点1:192.168.20.10 步骤一:修改网关指向调度器的内网ip地址 步骤二:将nfs共享的目录进行挂载,并修改nginx的配置文件中location的root指向挂载点 步骤三ÿ…...
【深度学习】TensorFlow深度模型构建:训练一元线性回归模型
文章目录 1. 生成拟合数据集2. 构建线性回归模型数据流图3. 在Session中运行已构建的数据流图4. 输出拟合的线性回归模型5. TensorBoard神经网络数据流图可视化6. 完整代码 本文讲解: 以一元线性回归模型为例, 介绍如何使用TensorFlow 搭建模型 并通过会…...
智能插座是什么
智能插座 电工电气百科 文章目录 智能插座前言一、智能插座是什么二、智能插座的类别三、智能插座的原理总结 前言 智能插座的应用广泛,可以用于智能家居系统中的电器控制,也可以应用在办公室、商业场所和工业控制中,方便快捷地实现电器的远…...
5G工业网关视频传输应用
随着科技的不断进步,5G网络技术已经成为了当前最热门的话题之一。而其中一个引人注目的领域就是5G视频传输和5G工业网关应用。在传统网络通信中,由于带宽和延迟的限制,视频传输常常受到限制,而工业网关应用也存在着链路不稳定、数…...
Axure电商产品移动端交互原型,移动端高保真Axure原型图(RP源文件手机app界面UI设计模板)
本作品是一套 Axure8 高保真移动端电商APP产品原型模板,包含了用户中心、会员成长、优惠券、积分、互动社区、运营推广、内容推荐、商品展示、订单流程、订单管理、售后及服务等完整的电商体系功能架构和业务流程。 本模板由一百三十多个界面上千个交互元件及事件组…...
【k8s】使用Finalizers控制k8s资源删除
文章目录 词汇表基本删除操作Finalizers是什么?Owner References又是什么?强制删除命名空间参考 你有没有在使用k8s过程中遇到过这种情况: 通过kubectl delete指令删除一些资源时,一直处于Terminating状态。 这是为什么呢? 本文将…...
vscode
文章目录 变量引用Multi-selections(multi-cursor)Column (box) selection在正则表达式替换中改变大小写tasks.jsonlaunch.json vscode工作空间下有一个.vscode文件夹,该文件夹下放置了vscode的配置文件,主要有: settings.json : vscode的设置…...
Jrebel 在 Idea 2023.3中无法以 debug 的模式启动问题
Jrebel 在 Idea 2023.3中无法以 debug 的模式启动问题 Idea 在升级了2023.3以后,Jrebel 无法以 debug 的模式启动,找了半天,最后在插件主页的评论区找到了解决方案 特此记录一下...
【C++】模版初阶(初识模版)
目录 一、引言 二、函数模版 (一)函数模版的原理 (二)函数模版的实例化 1.隐式实例化 2.显式实例化 (三)模板参数的匹配原则 三、类模版 类模版的实例化 一、引言 我们在练习题目的时候总会遇到需…...
智能优化算法应用:基于差分进化算法3D无线传感器网络(WSN)覆盖优化 - 附代码
智能优化算法应用:基于差分进化算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于差分进化算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.差分进化算法4.实验参数设定5.算法结果6.…...
10 种隐藏元素的 CSS 技术
10 种隐藏元素的 CSS 技术 在 Web 开发中,在许多情况下我们可能希望操纵网站上某些元素的可见性。本文将考虑各种用例,探讨使用 CSS 隐藏元素的十种不同方法。 隐藏元素的具体行为可能会根据我们的需要而有所不同。我们可能需要为隐藏元素保留空间的方…...
SQL Server数据库使用T-SQL语句简单填充
文章目录 操作步骤:1.新建数据库起名RGB2.新建表起名rgb3.添加三个列名4.点击新建查询5.填入以下T-SQL语句,点击执行(F5)6.刷新之后,查看数据 操作环境: win10 Microsoft SQL Server Management Studio 20…...
逻辑回归代价函数
逻辑回归的代价函数通常使用交叉熵损失来定义。这种损失函数非常适合于二元分类问题。 本篇来推导一下逻辑回归的代价函数。 首先,我们在之前了解了逻辑回归的定义:逻辑回归模型是一种用于二元分类的模型,其预测值是一个介于0和1之间的概率…...
芯知识 | WT2003Hx系列高品质语音芯片MP3音频解码IC的特征与应用优势
在嵌入式语音领域,唯创知音WT2003Hx系列高品质语音芯片以其卓越的音频解码性能脱颖而出。本文将深入研究该系列芯片的特色与应用优势,重点关注其支持wav、Mp3格式音频解码、高品质播放等方面。 特色一:支持wav、Mp3格式音频解码 1.多格式兼…...
node.js 启一个前端代理服务
文章目录 前言一、分析技术二、操作步骤2.1、下载依赖2.2、创建一个 serve.js 文件2.3、js 文件中写入以下代码 三、运行: node serve四、结果展示五、总结六、感谢 前言 有时候我们需要做一些基础的页面时,在研发过程中需要代理调用接口避免浏览器跨域…...
弹性搜索引擎Elasticsearch:本地部署与远程访问指南
🌈个人主页:聆风吟 🔥系列专栏:网络奇遇记、Cpolar杂谈 🔖少年有梦不应止于心动,更要付诸行动。 文章目录 📋前言系统环境1. Windows 安装Elasticsearch2. 本地访问Elasticsearch3. Windows 安装…...
微信小程序生成二维码海报并分享
背景:点击图标,生成海报后,点击保存相册,可以保存 生成海报:插件wxa-plugin-canvas,此处使用页面异步生成组件方式,官网地址:wxa-plugin-canvas - npm 二维码:调用后端…...
Windows安装Tesseract OCR与Python中使用pytesseract进行文字识别
文章目录 前言一、下载并安装Tesseract OCR二、配置环境变量三、Python中安装使用pytesseract总结 前言 Tesseract OCR是一个开源OCR(Optical Character Recognition)引擎,用于从图像中提取文本。Pytesseract是Tesseract OCR的Python封装&am…...
【答案】2023年国赛信息安全管理与评估第三阶段夺旗挑战CTF(网络安全渗透)
【答案】2023年国赛信息安全管理与评估第三阶段夺旗挑战CTF(网络安全渗透) 全国职业院校技能大赛高职组信息安全管理与评估 (赛项) 评分标准 第三阶段 夺旗挑战CTF(网络安全渗透) *竞赛项目赛题* 本文…...
springboot 集成 redis luttuce redisson ,单机 集群模式(根据不同环境读取不同环境的配置)
luttuce 和redisson配置过程中实际上是独立的,他们两个可以同时集成,但是没有直接相关关系,配置相对独立。 所以分为Lettuce 和 Redisson 两套配置 父pom <!-- Spring Data Redis --><dependency><groupId>org.springframe…...
PPT插件-好用的插件-PPT 素材该怎么积累-大珩助手
PPT 素材该怎么积累? 使用大珩助手中的素材库功能,将Word中的,或系统中的文本文件、图片、其他word文档、pdf,所有见到的好素材,一键收纳。 步骤:选中文件,按住鼠标左键拖到素材库界面中&…...
qt 正则表达式简单介绍
正则表达式即一个文本匹配字符串的一种模式,Qt中使用QRegExp类进行模式匹配.主要应用:字符串验证,搜索,替换,分割..... 正则表达式中字符及字符集 c 匹配字符本身,如a匹配a \c 跟在\后面的字符匹配字符本身,但本表中下面指定的这些字符除外。 \a 匹…...
Redis设计与实现之跳跃表
目录 一、跳跃表 1、跳跃表的实现 2、跳跃表的应用 3、跳跃表的时间复杂度是什么? 二、跳跃表有哪些应用场景? 三、跳跃表和其他数据结构(如数组、链表等)相比有什么优点和缺点? 四、Redis的跳跃表支持并发操作吗…...
[每周一更]-(第27期):HTTP压测工具之wrk
[补充完善往期内容] wrk是一款简单的HTTP压测工具,托管在Github上,https://github.com/wg/wrkwrk 的一个很好的特性就是能用很少的线程压出很大的并发量. 原因是它使用了一些操作系统特定的高性能 io 机制, 比如 select, epoll, kqueue 等. 其实它是复用了 redis 的 ae 异步事…...
【FunASR】Paraformer语音识别-中文-通用-16k-离线-large-onnx
模型亮点 模型文件: damo/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorchParaformer-large长音频模型集成VAD、ASR、标点与时间戳功能,可直接对时长为数小时音频进行识别,并输出带标点文字与时间戳: ASR模型…...
C语言中的柔性数组
uint8_t data[0];代码的含义老虎开始对这个数组不太了解,查阅后得知这是个柔性数组。 C语言中的柔性数组(Flexible Array Member)是一种特殊的数组,它被定义在结构体的最后一个元素中,其大小未知,也就是所…...
ca-certificates.crt解析加载到nssdb中
openssl crl2pkcs7 -nocrl -certfile /etc/ssl/certs/ca-certificates.crt | openssl pkcs7 -print_certs -noout -text ca-certificates.crt为操作系统根证书列表。 获取证书以后使用PK11_ImportDERCert将证书导入到nssdb中 base::FilePath cert_path base::FilePath("…...
南和企业做网站/站长综合查询工具
ISIS将网络层又分了两个层: 子网独立子层(subnetwork independent sublayer)(为传输层提供统一服务); 子网依赖子层(subnetwork dependent sublayer)(存取数据链路层提供…...
wordpress页面调用文章列表/如何将网站的关键词排名优化
dmesg 时间戳转换The dmesg results from newer Linux kernels show the timestamps. It seems the time in seconds since the kernel start time.较新的Linux内核的dmesg结果显示了时间戳。 从内核启动时间开始 ,似乎是秒数。 How to convert the dmesg timestam…...
xampp安装网站模板/seo排名资源
数据类型概览 数值类型 整数类型包括 TINYINT、SMALLINT、MEDIUMINT、INT、BIGINT,浮点数类型包括 FLOAT 和 DOUBLE,定点数类型为 DECIMAL。 (tinyint,smallint,mediumint,int,bigint)日期/时间类型 包括 YEAR、TIME、DATE、DATE…...
网站上papi酱做的音频/搜狗站长平台打不开
Web基本笔记~12.引用数据类型 上一期 引用类型的值(对象)是引用类型的一个实例。在JavaScript中,引用类型是一种数据结构,用于将数据和功能组织在一起。它也常被称为类,但这种称呼并不妥当。尽管JavaScript从技术上讲…...
网站制作 青岛/各大网站域名大全
常用的sql语句,sql使用大全我工作中常用到的sql插入查询更新介绍其他的sqlSQL分类基本的sql语句高级查询运算词我工作中常用到的sql 下面是我工作中常用的sql,每次都是修修改改多次使用 插入 insert into 库名.表名 (co,po,date,type,name,tuser)(字段…...
自己创建网站/佛山seo
2019独角兽企业重金招聘Python工程师标准>>> 首先,Javascript里都是对象,需要有一种机制将对象关联起来,这里就有了继承 java中,我们可以用new来生成一个对象的实例,可是js中是没有类的,于是js的…...