当前位置: 首页 > news >正文

代码随想录算法训练营第十六天| 104. 二叉树的最大深度、111. 二叉树的最小深度、222. 完全二叉树的节点个数

代码随想录算法训练营第十六天| 104. 二叉树的最大深度、111. 二叉树的最小深度、222. 完全二叉树的节点个数

题目

104.二叉树的最大深度

给定一个二叉树 root ,返回其最大深度。

二叉树的 最大深度 是指从根节点到最远叶子节点的最长路径上的节点数。

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
from collections import deque
class Solution:def maxDepth(self, root: Optional[TreeNode]) -> int:if not root:return 0q_ = deque()q_.append(root)sum_ = 0while q_:sum_ += 1level_ = []for _ in range(len(q_)):node = q_.popleft()level_.append(node)if node.left:q_.append(node.left)if node.right:q_.append(node.right)return sum_

题目

111.二叉树的最小深度

给定一个二叉树,找出其最小深度。

最小深度是从根节点到最近叶子节点的最短路径上的节点数量。

**说明:**叶子节点是指没有子节点的节点。

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
from collections import deque
class Solution:def minDepth(self, root: Optional[TreeNode]) -> int:if not root:return 0q_ = deque()q_.append(root)dept_ = 0while q_:dept_ += 1level_ = []for _ in range(len(q_)):node = q_.popleft()if node.left:q_.append(node.left)if node.right:q_.append(node.right)if not node.left and not node.right:return dept_return dept_

题目

222.完全二叉树的节点个数

给你一棵 完全二叉树 的根节点 root ,求出该树的节点个数。

完全二叉树 的定义如下:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置。若最底层为第 h 层,则该层包含 1~ 2h 个节点。

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
from collections import deque
class Solution:def countNodes(self, root: Optional[TreeNode]) -> int:# 递归# if not root:#     return 0# return self.countNodes(root.left) + self.countNodes(root.right) + 1# 非递归if not root:return 0;res = 0q_ = deque()q_.append(root)while q_:for _ in range(len(q_)):node = q_.popleft()res += 1if node.left:q_.append(node.left)if node.right:q_.append(node.right)return res

相关文章:

代码随想录算法训练营第十六天| 104. 二叉树的最大深度、111. 二叉树的最小深度、222. 完全二叉树的节点个数

代码随想录算法训练营第十六天| 104. 二叉树的最大深度、111. 二叉树的最小深度、222. 完全二叉树的节点个数 题目 104.二叉树的最大深度 给定一个二叉树 root ,返回其最大深度。 二叉树的 最大深度 是指从根节点到最远叶子节点的最长路径上的节点数。 # Defin…...

字符串——OJ题

📘北尘_:个人主页 🌎个人专栏:《Linux操作系统》《经典算法试题 》《C》 《数据结构与算法》 ☀️走在路上,不忘来时的初心 文章目录 一、字符串相加1、题目讲解2、思路讲解3、代码实现 二、仅仅反转字母1、题目讲解2、思路讲解3…...

Linux---cp和mv命令选项

1. cp命令选项 命令选项说明-i交互式提示-r递归拷贝目录及其内容-v显示拷贝后的路径描述-a保留文件的原有权限 cp -i命令选项效果图: cp -r命令选项效果图: cp -v命令选项效果图: cp -a命令选项效果图: -a选项说明: -a 选项还支持拷贝文件夹并且文件夹中的文件权限不丢失 …...

LVS负载均衡器(nat模式)+nginx(七层反向代理)+tomcat(多实例),实现负载均衡和动静分离

目录 前言 一、配置nfs共享存储 二、配置2个nginx节点服务的网页页面 节点1:192.168.20.10 步骤一:修改网关指向调度器的内网ip地址 步骤二:将nfs共享的目录进行挂载,并修改nginx的配置文件中location的root指向挂载点 步骤三&#xff…...

【深度学习】TensorFlow深度模型构建:训练一元线性回归模型

文章目录 1. 生成拟合数据集2. 构建线性回归模型数据流图3. 在Session中运行已构建的数据流图4. 输出拟合的线性回归模型5. TensorBoard神经网络数据流图可视化6. 完整代码 本文讲解: 以一元线性回归模型为例, 介绍如何使用TensorFlow 搭建模型 并通过会…...

智能插座是什么

智能插座 电工电气百科 文章目录 智能插座前言一、智能插座是什么二、智能插座的类别三、智能插座的原理总结 前言 智能插座的应用广泛,可以用于智能家居系统中的电器控制,也可以应用在办公室、商业场所和工业控制中,方便快捷地实现电器的远…...

5G工业网关视频传输应用

随着科技的不断进步,5G网络技术已经成为了当前最热门的话题之一。而其中一个引人注目的领域就是5G视频传输和5G工业网关应用。在传统网络通信中,由于带宽和延迟的限制,视频传输常常受到限制,而工业网关应用也存在着链路不稳定、数…...

Axure电商产品移动端交互原型,移动端高保真Axure原型图(RP源文件手机app界面UI设计模板)

本作品是一套 Axure8 高保真移动端电商APP产品原型模板,包含了用户中心、会员成长、优惠券、积分、互动社区、运营推广、内容推荐、商品展示、订单流程、订单管理、售后及服务等完整的电商体系功能架构和业务流程。 本模板由一百三十多个界面上千个交互元件及事件组…...

【k8s】使用Finalizers控制k8s资源删除

文章目录 词汇表基本删除操作Finalizers是什么?Owner References又是什么?强制删除命名空间参考 你有没有在使用k8s过程中遇到过这种情况: 通过kubectl delete指令删除一些资源时,一直处于Terminating状态。 这是为什么呢? 本文将…...

vscode

文章目录 变量引用Multi-selections(multi-cursor)Column (box) selection在正则表达式替换中改变大小写tasks.jsonlaunch.json vscode工作空间下有一个.vscode文件夹,该文件夹下放置了vscode的配置文件,主要有: settings.json : vscode的设置…...

Jrebel 在 Idea 2023.3中无法以 debug 的模式启动问题

Jrebel 在 Idea 2023.3中无法以 debug 的模式启动问题 Idea 在升级了2023.3以后,Jrebel 无法以 debug 的模式启动,找了半天,最后在插件主页的评论区找到了解决方案 特此记录一下...

【C++】模版初阶(初识模版)

目录 一、引言 二、函数模版 (一)函数模版的原理 (二)函数模版的实例化 1.隐式实例化 2.显式实例化 (三)模板参数的匹配原则 三、类模版 类模版的实例化 一、引言 我们在练习题目的时候总会遇到需…...

智能优化算法应用:基于差分进化算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于差分进化算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于差分进化算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.差分进化算法4.实验参数设定5.算法结果6.…...

10 种隐藏元素的 CSS 技术

10 种隐藏元素的 CSS 技术 在 Web 开发中,在许多情况下我们可能希望操纵网站上某些元素的可见性。本文将考虑各种用例,探讨使用 CSS 隐藏元素的十种不同方法。 隐藏元素的具体行为可能会根据我们的需要而有所不同。我们可能需要为隐藏元素保留空间的方…...

SQL Server数据库使用T-SQL语句简单填充

文章目录 操作步骤:1.新建数据库起名RGB2.新建表起名rgb3.添加三个列名4.点击新建查询5.填入以下T-SQL语句,点击执行(F5)6.刷新之后,查看数据 操作环境: win10 Microsoft SQL Server Management Studio 20…...

逻辑回归代价函数

逻辑回归的代价函数通常使用交叉熵损失来定义。这种损失函数非常适合于二元分类问题。 本篇来推导一下逻辑回归的代价函数。 首先,我们在之前了解了逻辑回归的定义:逻辑回归模型是一种用于二元分类的模型,其预测值是一个介于0和1之间的概率…...

芯知识 | WT2003Hx系列高品质语音芯片MP3音频解码IC的特征与应用优势

在嵌入式语音领域,唯创知音WT2003Hx系列高品质语音芯片以其卓越的音频解码性能脱颖而出。本文将深入研究该系列芯片的特色与应用优势,重点关注其支持wav、Mp3格式音频解码、高品质播放等方面。 特色一:支持wav、Mp3格式音频解码 1.多格式兼…...

node.js 启一个前端代理服务

文章目录 前言一、分析技术二、操作步骤2.1、下载依赖2.2、创建一个 serve.js 文件2.3、js 文件中写入以下代码 三、运行: node serve四、结果展示五、总结六、感谢 前言 有时候我们需要做一些基础的页面时,在研发过程中需要代理调用接口避免浏览器跨域…...

弹性搜索引擎Elasticsearch:本地部署与远程访问指南

🌈个人主页:聆风吟 🔥系列专栏:网络奇遇记、Cpolar杂谈 🔖少年有梦不应止于心动,更要付诸行动。 文章目录 📋前言系统环境1. Windows 安装Elasticsearch2. 本地访问Elasticsearch3. Windows 安装…...

微信小程序生成二维码海报并分享

背景:点击图标,生成海报后,点击保存相册,可以保存 生成海报:插件wxa-plugin-canvas,此处使用页面异步生成组件方式,官网地址:wxa-plugin-canvas - npm 二维码:调用后端…...

铭豹扩展坞 USB转网口 突然无法识别解决方法

当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...

内存分配函数malloc kmalloc vmalloc

内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...

【杂谈】-递归进化:人工智能的自我改进与监管挑战

递归进化:人工智能的自我改进与监管挑战 文章目录 递归进化:人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管?3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...

蓝桥杯 2024 15届国赛 A组 儿童节快乐

P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡,轻快的音乐在耳边持续回荡,小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下,六一来了。 今天是六一儿童节,小蓝老师为了让大家在节…...

ETLCloud可能遇到的问题有哪些?常见坑位解析

数据集成平台ETLCloud,主要用于支持数据的抽取(Extract)、转换(Transform)和加载(Load)过程。提供了一个简洁直观的界面,以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...

如何在网页里填写 PDF 表格?

有时候,你可能希望用户能在你的网站上填写 PDF 表单。然而,这件事并不简单,因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件,但原生并不支持编辑或填写它们。更糟的是,如果你想收集表单数据&#xff…...

服务器--宝塔命令

一、宝塔面板安装命令 ⚠️ 必须使用 root 用户 或 sudo 权限执行! sudo su - 1. CentOS 系统: yum install -y wget && wget -O install.sh http://download.bt.cn/install/install_6.0.sh && sh install.sh2. Ubuntu / Debian 系统…...

return this;返回的是谁

一个审批系统的示例来演示责任链模式的实现。假设公司需要处理不同金额的采购申请,不同级别的经理有不同的审批权限: // 抽象处理者:审批者 abstract class Approver {protected Approver successor; // 下一个处理者// 设置下一个处理者pub…...

虚拟电厂发展三大趋势:市场化、技术主导、车网互联

市场化:从政策驱动到多元盈利 政策全面赋能 2025年4月,国家发改委、能源局发布《关于加快推进虚拟电厂发展的指导意见》,首次明确虚拟电厂为“独立市场主体”,提出硬性目标:2027年全国调节能力≥2000万千瓦&#xff0…...

【堆垛策略】设计方法

堆垛策略的设计是积木堆叠系统的核心,直接影响堆叠的稳定性、效率和容错能力。以下是分层次的堆垛策略设计方法,涵盖基础规则、优化算法和容错机制: 1. 基础堆垛规则 (1) 物理稳定性优先 重心原则: 大尺寸/重量积木在下&#xf…...