当前位置: 首页 > news >正文

机器学习-KL散度的直观理解+代码

KL散度

直观理解:KL散度是一种衡量两个分布之间匹配程度的方法。通常在概率和统计中,我们会用更简单的近似分布来代替观察到的数据或复杂的分布,KL散度帮我们衡量在选择近似值时损失了多少信息。

在信息论或概率论中,KL散度(Kullback–Leibler divergence),又称为相对熵(relative entropy),是一种描述两个概率分布PQ差异的一种方法。它是非对称的,这意味着D(P||Q)≠D(Q||P)。特别的,在信息论中,D(P||Q)表示当用概率分布Q来拟合真实分布P时,产生的信息损耗,其中Q表示真实分布,Q表示P的拟合分布。

对一个离散随机变量或连续随机变量的两个概率分布P和Q来说KL散度的定义分别如下所示

$D(P||Q) = ∑ i ∈ X P ( i ) ∗ [ l o g ( P ( i ) Q ( i ) ) ] \sum_{i\in{X}}P(i) * [log(\frac {P(i)}{Q(i)})] iXP(i)[log(Q(i)P(i))]
$D(P||Q) = ∫ x P ( x ) ∗ [ l o g ( P ( i ) Q ( i ) ) ] d x \int_{x}P(x) * [log(\frac {P(i)}{Q(i)})]dx xP(x)[log(Q(i)P(i))]dx

但似乎还是有点难以理解为什么KL散度就可以衡量两个分布之间的匹配程度了,下面举例说明。

举例探索

假设我们是一组正在广袤无垠的太空中进行研究的科学家。我们发现了一些太空蠕虫,这些太空蠕虫的牙齿数量各不相同,在收集和许多样本后,我们得出了蠕虫牙齿数量的经验概率分布,用数组表示true_data=[0.02, 0.03, 0.05, 0.14, 0.16, 0.15, 0.12, 0.08, 0.1, 0.08, 0.07]。现在我们需要将这些信息发回地球。但从太空向地球发送信息的成本很高,所以我们需要用尽量少的数据表达这些信息。我们有个好方法:我们不发送单个数值,而是绘制一张图表。这样就将数据转化为分布。
可视化如下:

true_data=[0.02, 0.03, 0.05, 0.14, 0.16, 0.15, 0.12, 0.08, 0.1, 0.08, 0.07]
assert sum(true_data)==1.0pylab.bar(np.arange(len(true_data)), true_data)
pylab.xlabel('Different Teeth Bins', fontsize=18)
pylab.title('Probability Distribution of Space Worm Teenth', fontsize=18)
pylab.ylabel("probability", fontsize=18)
pylab.xticks(np.arange(len(true_data)))
pylab.show()

在这里插入图片描述

简化尝试:均匀分布(Uniform distribution)

这些数据很好,但是我们想更加简化这些数据,第一个选择是均匀分布。上面的概率数据转化为均匀分布。一共11个样本,所以每一个牙齿数量的概率都是1/11

def get_unif_probability(n):return 1.0/nunif_data = [get_unif_probability(11) for _ in range(11)]
width=0.3pylab.bar(np.arange(len(true_data)),true_data,width=width,label='True')
pylab.bar(np.arange(len(true_data))+width,unif_data,width=width,label='Uniform')
pylab.xlabel('Different Teeth Bins',fontsize=18)
pylab.title('Probability Distribution of Space Worm Teeth',fontsize=18)
pylab.ylabel('Probability',fontsize=18)
pylab.xticks(np.arange(len(true_data)))
pylab.legend()
pylab.show()

在这里插入图片描述

简化尝试:二项分布(binomial distribution)

显然我们的数据不是均匀分布的,现在尝试另一种二项分布对数据进行建模。我们需要计算二项分布的概率参数p,本例中n=10,E(X)=5.7,由E(X)=np得到p=0.57。则对于每一类牙齿个数的概率可以使用以下公式计算:
P ( X = i ) = C n k p k ( 1 − p ) ( n − k ) P(X=i)=C_n^kp^k(1-p)^{(n-k)} P(X=i)=Cnkpk(1p)(nk) i=(1,2,…)

def get_bino_probability(mean,k,n):return (factorial(n)/(factorial(k)*factorial(n-k)))*(mean**k)*((1.0-mean)**(n-k))def get_bino_success(true_data,n):return np.sum(np.array(true_data)*np.arange(len(true_data)))/10.0n_trials = 10
succ = get_bino_success(true_data,n_trials)
print('Success probability: ',succ)bino_data = [get_bino_probability(succ,k,n_trials) for k in range(11)]width=0.3pylab.bar(np.arange(len(true_data)),true_data,width=width,label='True')
pylab.bar(np.arange(len(true_data))+width,bino_data,width=width,label='Binomial')
pylab.xlabel('Different Teeth Bins',fontsize=18)
pylab.title('Probability Distribution of Space Worm Teeth',fontsize=18)
pylab.ylabel('Probability',fontsize=18)
pylab.xticks(np.arange(len(true_data)))
pylab.legend()
pylab.show()

在这里插入图片描述

汇总分析

现在我们使用了两个分布去近似我们原始的概率分布,将它们绘制在同一个图中进行比较,如下图所示:

pylab.bar(np.arange(len(true_data))-width,true_data,width=width,label='True')
pylab.bar(np.arange(len(true_data)),unif_data,width=width,label='Uniform')
pylab.bar(np.arange(len(true_data))+width,bino_data,width=width,label='Binomial')
pylab.xlabel('Different Teeth Bins',fontsize=18)
pylab.title('Probability Distribution of Space Worm Teeth',fontsize=18)
pylab.ylabel('Probability',fontsize=18)
pylab.xticks(np.arange(len(true_data)))
pylab.legend()
pylab.show()

在这里插入图片描述可以看到这两个分布都没有很好的近似我们的原始数据,但是我们需要衡量一下哪个更好。
我们最开始关注的就是如何使发送的信息最少,两个方法都减少了参数量,我们可以看哪个携带了更多的信息,这就是KL散度的作用。

KL起源于信息论,信息论的主要目标是量化数据中有多少信息。某个信息 x i x_i xi出现的不确定的大小定义为 x i x_i xi所携带的信息量,用 I ( x i ) I(x_i) I(xi)表示, I ( x i ) I(x_i) I(xi)与信息 x i x_i xi出现的概率 p ( x i ) p(x_i) p(xi)之间的关系为:
I ( x i ) = l o g 1 p ( x i ) = − l o g p ( x i ) I(x_i) = log\frac{1}{p(x_i)} = -logp(x_i) I(xi)=logp(xi)1=logp(xi)
信息论中最重要的指标称为,通常表示为H。概率分布的熵的定义时:
H = − ∑ i = 1 N p ( x i ) l o g p ( x i ) H = - \sum_{i=1}^Np(x_i)logp(x_i) H=i=1Np(xi)logp(xi)

如果我们在计算中使用2为底的对数,我们可以将熵解释为“编码所需的最小比特数”。在这种情况下,信息是指根据我们的经验分布给出的每个牙齿计数观察。根据我们观察到的数据,我们的概率分布的熵为3.12比特。比特数告诉我们,在平均情况下,我们需要多少比特来编码我们在单个情况下观察到的牙齿数量的下限

但是,熵并不能告诉我们最佳的编码方案,以帮助我们实现这种压缩。最优编码是一个非常有趣的话题,但对于理解KL散度并不是必要的。熵的关键是,仅仅知道我们需要的比特数的理论下限,我们有一种方法来准确量化数据中包含的信息量。 现在我们可以量化这一点,我们想要量化的是当我们用参数化的近似替代我们观察到的分布时丢失了多少信息。

使用KL散度测量丢失的信息

Kullback-Leibler散度只是对我们的熵公式的略微修改。不仅仅是有我们的概率分布p,还有上近似分布q。然后,我们查看每个log值的差异:
$D(p||q) = ∑ i ∈ X p ( i ) ∗ [ l o g ( p ( i ) q ( i ) ) ] \sum_{i\in{X}}p(i) * [log(\frac {p(i)}{q(i)})] iXp(i)[log(q(i)p(i))]
利用KL散度,我们可以精确地计算出当我们近似一个分布与另一个分布时损失了多少信息。让我们回到我们的数据,看看结果如何。

比较我们的近似分布
def get_klpq_div(p_probs, q_probs):kl_div = 0.0for pi, qi in zip(p_probs, q_probs):kl_div += pi*np.log(pi/qi)return kl_divdef get_klqp_div(p_probs, q_probs):kl_div = 0.0for pi, qi in zip(p_probs, q_probs):kl_div += qi*np.log(qi/pi)print('KL(True||Uniform): ',get_klpq_div(true_data,unif_data))
print('KL(True||Binomial): ',get_klpq_div(true_data,bino_data))

在这里插入图片描述
从计算的KL结果来看,使用二项分布损失的信息大于使用均匀分布损失的信息,所以我们最后如果从中选择一个,还是会选择均匀分布。

参考文章:
Kullback-Leibler(KL)散度介绍
KL散度代码地址

相关文章:

机器学习-KL散度的直观理解+代码

KL散度 直观理解:KL散度是一种衡量两个分布之间匹配程度的方法。通常在概率和统计中,我们会用更简单的近似分布来代替观察到的数据或复杂的分布,KL散度帮我们衡量在选择近似值时损失了多少信息。 在信息论或概率论中,KL散度&#…...

【教程】制作 iOS 推送证书

​ 目录 证书类型 MAC Key Store 消息推送控制台 制作证书 创建苹果 App ID 使用appuploder制作 .p12文件 创建证书 如需向 iOS 设备推送数据,您首先需要在消息推送控制台上配置 iOS 推送证书。iOS 推送证书用于推送通知,本文将介绍消息推送服务支…...

ToolLLM model 以及LangChain AutoGPT Xagent在调用外部工具Tools的表现对比浅析

文章主要谈及主流ToolLLM 以及高口碑Agent 在调用Tools上的一些对比,框架先上,内容会不断丰富与更新。 第一部分,ToolLLM model 先来说主打Function Call 的大模型们 OpenAI GPT 宇宙第一LLM,它的functionCall都知道&#xff0…...

【MySQL学习之基础篇】约束

文章目录 1. 概述2. 基础约束3. 外键约束3.1. 介绍3.2. 外键的添加3.3. 外键删除和更新行为 1. 概述 概念: 约束是作用于表中字段上的规则,用于限制存储在表中的数据。     目的: 保证数据库中数据的正确、有效性和完整性。 分类&#x…...

【DataSophon】大数据管理平台DataSophon-1.2.1基本使用

🦄 个人主页——🎐开着拖拉机回家_Linux,大数据运维-CSDN博客 🎐✨🍁 🪁🍁🪁🍁🪁🍁🪁🍁 🪁🍁🪁&am…...

基于redisson实现发布订阅(多服务间用避坑)

前言 今天要分享的是基于Redisson实现信息发布与订阅(以前分享过直接基于redis的实现),如果你是在多服务间基于redisson做信息传递,并且有服务压根就收不到信息,那你一定要看完。 今天其实重点是避坑&#xff0…...

Java 源码、反码、补码 位运算

文章目录 1. 源码、反码、补码1.1 原码1.2 反码1.3 补码1.4 byte的最大值1.5 byte的最小值 2. 位运算2.1 & 与2.2 | 或2.3 ~ 非2.4 ^ 异或2.5 << 左移 &#xff08;没有无符号左移&#xff09;2.6 >> 右移 &#xff08;有符号右移&#xff09;2.7 >>>…...

时序分解 | Matlab实现NGO-ICEEMDAN基于北方苍鹰算法优化ICEEMDAN时间序列信号分解

时序分解 | Matlab实现NGO-ICEEMDAN基于北方苍鹰算法优化ICEEMDAN时间序列信号分解 目录 时序分解 | Matlab实现NGO-ICEEMDAN基于北方苍鹰算法优化ICEEMDAN时间序列信号分解效果一览基本介绍程序设计参考资料 效果一览 基本介绍 Matlab实现NGO-ICEEMDAN基于北方苍鹰算法优化ICE…...

Linux Conda 安装 Jupyter

在Linux服务器Conda环境上安装Jupyter过程中遇到了无数的报错&#xff0c;特此记录。 目录 步骤一&#xff1a;安装Anaconda3 步骤二&#xff1a;配置Conda源 步骤三&#xff1a;安装Jupyter 安装报错&#xff1a;simplejson.errors.JSONDecodeError 安装报错&#xff1a;…...

金融众筹系统源码:适合创业孵化机构 附带完整的搭建教程

互联网技术的发展&#xff0c;金融众筹作为一种新型的融资方式&#xff0c;逐渐成为创业孵化机构的重要手段。为了满足这一需求&#xff0c;金融众筹系统源码就由此而生&#xff0c;并附带了完整的搭建教程。 以下是部分代码示例&#xff1a; 系统特色功能一览&#xff1a; 1.…...

OpenCV imencode 函数详解与应用示例

OpenCV imencode 函数详解与应用示例 介绍imencode 函数的基本信息示例代码应用场景 介绍 OpenCV是一个强大的计算机视觉库&#xff0c;提供了许多图像处理和分析的工具。imencode函数是其中之一&#xff0c;用于将图像编码为指定格式的字节流。这个函数对于图像的存储、传输和…...

持续集成交付CICD:Jenkins使用CD流水线下载Nexus制品

目录 一、实验 1.Jenkins使用CD流水线下载Nexus制品 一、实验 1.Jenkins使用CD流水线下载Nexus制品 &#xff08;1&#xff09;Jenkins新建CD流水线 &#xff08;2&#xff09;新建视图 &#xff08;3&#xff09;查看视图 &#xff08;4&#xff09;添加字符参数 &#xf…...

【C++】输入输出流 ⑩ ( 文件流 | 文件流打开方式参数 | 文件指针 | 组合打开方式 | 文件打开失败 )

文章目录 一、文件流打开方式参数1、文件流打开方式参数2、文件指针3、组合打开方式4、文件打开失败 一、文件流打开方式参数 1、文件流打开方式参数 文件流打开方式参数 : ios::in : 以只读方式打开文件 ;ios::out : 以只写方式打开文件 , 默认打开方式 , 如果文件已存在则清…...

React中的setState执行机制

我这里今天下雨了&#xff0c;温度一下从昨天的22度降到今天的6度&#xff0c;家里和学校已经下了几天雪了&#xff0c;还是想去玩一下的&#xff0c;哈哈&#xff0c;只能在图片里看到了。 一. setState是什么 它是React组件中用于更新状态的方法。它是类组件中的方法&#x…...

LabVIEW实时建模检测癌细胞的异常

LabVIEW实时建模检测癌细胞的异常 癌症是全球健康的主要挑战之一&#xff0c;每年导致许多人死亡。世界卫生组织指出&#xff0c;不健康的生活方式和日益严重的环境污染是癌症发生的主要原因之一。癌症的发生通常与基因突变有关&#xff0c;这些突变导致细胞失去正常的增长和分…...

Python卡尔曼滤波器OpenCV跟踪和预测物体的轨迹

模拟简单物体二维运动和预测位置 预测数学式 想象一下你正坐在一辆汽车里&#xff0c;在雾中行驶。 你几乎看不到路&#xff0c;但你有一个 GPS 系统可以告诉你你的速度和位置。 问题是&#xff0c;这个 GPS 并不完美&#xff1b; 它有时会产生噪音或不准确的读数。 您如何知…...

LeetCode Hot100 25.K个一组翻转链表

题目&#xff1a; 给你链表的头节点 head &#xff0c;每 k 个节点一组进行翻转&#xff0c;请你返回修改后的链表。 k 是一个正整数&#xff0c;它的值小于或等于链表的长度。如果节点总数不是 k 的整数倍&#xff0c;那么请将最后剩余的节点保持原有顺序。 你不能只是单纯…...

中职网络安全应急响应—Server2228

应急响应 任务环境说明: 服务器场景:Server2228(开放链接) 用户名:root,密码:p@ssw0rd123 1. 找出被黑客修改的系统别名,并将倒数第二个别名作为Flag值提交; 通过用户名和密码登录系统 在 Linux 中,利用 “alias” 命令去查看当前系统中定义的所有别名 flag:ss …...

springboot 获取路径

PostConstructpublic void setup() {try {// jar包所在目录 /Users/mashanshanString path this.getClass().getProtectionDomain().getCodeSource().getLocation().getPath();System.out.println("path:" path); // file:/Users/mashanshan/manual-admin-0.0.1-…...

C#上位机与欧姆龙PLC的通信01----项目背景

最近&#xff0c;【西门庆】作为项目经理负责一个70万的北京项目&#xff0c;需要在工控系统集成软件开发中和欧 姆龙PLC对接&#xff0c;考虑项目现场情况优先想到了采用FinsTCP通讯协议&#xff0c;接下来就是记录如何一步步实现这些通讯过程的&#xff0c;希望给电气工程师&…...

SE考研真题总结(二)

接上条&#xff0c;今天继续更新~ SE考研真题总结&#xff08;一&#xff09;-CSDN博客文章浏览阅读340次&#xff0c;点赞6次&#xff0c;收藏11次。本帖开始分享考研真题中设计【软件工程】的部分&#xff0c;预计会出5期左右&#xff0c;敬请期待~https://blog.csdn.net/js…...

vue中预览pdf的方法

使用vue-pdf 备注&#xff1a;这里只介绍了一页的pdf <div class"animation-box-pdf"><pdf :src"http://xxxx" /> </div>import Pdf from vue-pdf // src可以是文件地址url&#xff0c;也可以是文件流blob&#xff08;将blob转成url&a…...

详谈前端中常用的加/密算法

本文主要详细介绍了在前端开发中常用的加/解密算法&#xff0c;以及前端如何实现。 总的来说&#xff1a;前端加密无论使用哪个加密都一样是有可能性被他人获取到相关的公钥或密钥的&#xff08;比如&#xff1a;拦截请求、查看源代码等&#xff09;&#xff0c;然后进行加密与…...

宣布全面推出适用于 macOS 的 Amazon EC2 M2 Pro Mac 实例

即日起&#xff0c;Amazon Elastic Compute Cloud (Amazon EC2) M2 Pro Mac 实例现已全面推出 (GA)。在为 Apple 平台&#xff08;例如 iOS、macOS、iPadOS、tvOS、watchOS、visionOS 和 Safari&#xff09;构建和测试应用程序时&#xff0c;这些实例的性能比现有的 M1 Mac 实例…...

【记录版】SpringBoot下Filter注册源码解读

SpringBoot TomcatEmbeddedContext Servlet ApplicationFilterChain Filter 背景&#xff1a; 在之前博客中有说明SpringBoot内嵌Web容器后&#xff0c;Filter及Servlet解析与注册流程的变化。将Filter实例封装成FilterRegistrationBean实例并添加到ServletContext后&…...

WPF的WebBrowser控件

在 WPF 中显示网页&#xff0c;你可以使用 WebBrowser 控件来实现。WebBrowser 控件是一个嵌入式的浏览器控件&#xff0c;可以加载和显示网页内容。 以下是在 WPF 中显示网页的示例代码&#xff1a; <Window x:Class"WpfApp.MainWindow"xmlns"http://sche…...

WX小程序案例(一):弹幕列表

WXML内容 <!--pages/formCase/formCase.wxml--> <!-- <text>pages/formCase/formCase.wxml</text> --> <view class"bk bkimg"><!-- <image src"/static/imgs/ceeb653ely1g9na2k0k6ug206o06oaa8.gif" mode"scal…...

基于ssm医用物理学实验考核系统论文

摘 要 现代经济快节奏发展以及不断完善升级的信息化技术&#xff0c;让传统数据信息的管理升级为软件存储&#xff0c;归纳&#xff0c;集中处理数据信息的管理方式。本医用物理学实验考核系统就是在这样的大环境下诞生&#xff0c;其可以帮助管理者在短时间内处理完毕庞大的数…...

鸿蒙HarmonyOS4.0 入门与实战

一、开发准备: 熟悉鸿蒙官网安装DevEco Studio熟悉鸿蒙官网 HarmonyOS应用开发官网 - 华为HarmonyOS打造全场景新服务 应用设计相关资源: 开发相关资源: 例如开发工具 DevEco Studio 的下载 应用发布: 开发文档:...

论文阅读——GroupViT

GroupViT: Semantic Segmentation Emerges from Text Supervision 一、思想 把Transformer层分为多个组阶段grouping stages&#xff0c;每个stage通过自注意力机制学习一组tokens&#xff0c;然后使用学习到的组tokens通过分组模块Grouping Block融合相似的图片tokens。通过这…...

佛山招收网站设计/360优化大师官方下载

1、关键字(45个)Java的关键字对java的编译器有特殊的意义&#xff0c;他们用来表示一种数据类型&#xff0c;或者表示程序的结构等&#xff0c;关键字不能用作变量名、方法名、类名、包名。2、保留字(14个)保留字是为java预留的关键字&#xff0c;他们虽然现在没有作为关键字&a…...

百怎么做网站/谷歌收录查询工具

[ceph_deploy][ERROR ] RuntimeError: Failed to execute command: ceph-disk-activate –mark-init sysvinit –mount /dev/sdb1 说实话这个问题很二我将OSD单独放到一个分区sdb执行的命令是:ceph-deploy osd prepare network:/dev/sdb1ceph-deploy osd activate network:/dev…...

wordpress菜单底部导航/营销方案策划

最近在实施一个大型BI项目&#xff0c;其中KPI指标数据是按月存放的&#xff0c;但用户要求每天进行一次计算&#xff0c;并替换前一天的计算结果&#xff0c;直到月末不再更新为止。项目初期Oracle数据库一直性能稳定&#xff0c;但最近两周性能突然大幅下降。经检查&#xff…...

网站开发能用react吗/怎么自己做网站推广

软件安装&#xff1a;装机软件必备包SQL是Structured Query Language(结构化查询语言)的缩写。SQL是专为数据库而建立的操作命令集&#xff0c;是一种功能齐全的数据库语言。在使用它时&#xff0c;只需要发出“做什么”的命令&#xff0c;“怎么做”是不用使用者考虑的。SQL功…...

企业网络营销网站/百度网址安全检测

趋势一&#xff1a;数据的资源化何为资源化&#xff0c;是指大数据成为企业和社会关注的重要战略资源&#xff0c;并已成为大家争相抢夺的新焦点。因而&#xff0c;企业必须要提前制定大数据营销战略计划&#xff0c;抢占市场先机。趋势二&#xff1a;与云计算的深度结合大数据…...

wordpress未登录跳转/网站批量收录

get参数的获取get参数字典flask.request.args获取字典中键的值flask.request.args.get(键)获取字典中键的值&#xff0c;得到一个列表flask.request.args.getlist(键)post参数的获取获取参数字典flask.request.form获取字典中键的值flask.request.form.get(键)请求方式flask.re…...