当前位置: 首页 > news >正文

AR眼镜_AR智能眼镜整机硬件方案定制

  AR眼镜的主要模块包括显示、光学模组、传感器和摄像头、主板、音频和网络连接等。其中,光学显示、主板处理器是决定AR眼镜成本的关键,光机占整体AR眼镜成本43%、处理器占整体成本31%。

  AR眼镜的主板设计难点在于尺寸要足够小且要处理好散热问题。主板上的芯片处理器是AR眼镜的计算核心。一种常用的处理器是联发科的MTK8788八核处理器,它采用4核A73+4核A53构架,主频为2.0GHz,制程工艺为12nm。该处理器搭配Android 11操作系统,整合了ARM MALI-T72 MP3图形处理器,运行频率为800MHz。此外,主板还内置了2.4G及5G双模WIFI模块、蓝牙通讯模块和多种传感器(如触控、光线、距离、陀螺仪等),以支持触摸、手势、头部运动和语音控制等多种交互方式。为了防止眩晕,AR眼镜要求图像刷新率达到90Hz,这对处理器的运算速度要求很高。

AR眼镜PCB设计

  AR眼镜主板方案参数

  CPU:MTK8788 12nm 八核 4x ARM Cortex-A73 2.0GHz + 4x ARM Cortex-A53 2.0GHz处理器

  GPU:ARM Mali-G72 MP3 @ 800MHz

  内存:4GB+64GB

  操作系统:Android 11.0

  网络连接:4G全网通

  蓝牙:Bluetooth 4.2

  WIFI:2.4GHz/5GHz双频段 支持802.11 a/b/g/n/ac, 支持AP热点

  Canera:5MP IR + 13MP摄像头,支持1080P/30fps视频录像,动态对焦、人脸识别,0CR识别

  GPS:支持GPS/北斗卫星定位

  天线:MAIN天线、DRX天线、GNSS天线、WIFI/BT天线接口

  外围接口

  支持一路TypeC接口,接口不外露,可做为充电口和数据传输接口

  AR光学方案

  AR眼镜光学系统由光感元件组成,其中包括透镜和微型显示屏(光机),透镜目前以光波导为主流技术方案,光机方面 Micro LED 因为性能优异,未来有望成为主流。

  光波导原理:将微显示器光束利用光栅耦入到波导片中,光束进行全反射传播后,再将光束经光栅耦出波导片传至人眼。

  体积:小

  镜片厚度<3mm

  视场角FOV:25°-90°

  透光度:80°-95°

  光学效果:0.3%-15%

  图像质量:图像呈现明暗条纹状

  技术优势:

  1.真正解决体积和视场角的矛盾,大大减薄厚度和重量,趋于日常眼镜;

  2.视场角大;

  3.分辨率高;

  4.眼动范围广,能适配不同脸型用户;

  5.透光度高

  技术劣势:

  光学效率低

  在AR眼镜的光学方案中,光波导显示具有突出的性能,但由于制造方面的限制,其价格相对较高。因此,一种常见的显示方案是采用双目全彩索尼Micro OLED屏幕,其分辨率为1920*1200,非常适合目前主流的AR眼镜显示方案。离轴光学和棱镜作为早期方案,由于笨重和小视场角的限制,已经退出历史舞台。虽然离轴光学和棱镜的结构设计和成像原理相对简单,容易量产和制造,但离轴光学较厚重,而轻薄眼镜则会伴随着超小视场角和较差的成像效果,无法满足沉浸性和交互感的要求。

  AR眼镜的主板处理器和光学显示模块是关键的组成部分。处理器的性能指标对于AR眼镜的运算速度至关重要,而Micro OLED屏幕是一种常见且适合现有技术的显示方案。随着技术的不断进步,未来还可能出现更先进的光学和处理器设计,为AR眼镜带来更好的性能和用户体验。

相关文章:

AR眼镜_AR智能眼镜整机硬件方案定制

AR眼镜的主要模块包括显示、光学模组、传感器和摄像头、主板、音频和网络连接等。其中&#xff0c;光学显示、主板处理器是决定AR眼镜成本的关键&#xff0c;光机占整体AR眼镜成本43%、处理器占整体成本31%。 AR眼镜的主板设计难点在于尺寸要足够小且要处理好散热问题。主板上的…...

2. 皇后的控制力

题目描述&#xff1a; 我们对八皇后问题进行扩展。 国际象棋中的皇后非常神勇&#xff0c;一个皇后可以控制横、竖、斜线等4个方向&#xff08;或者说是8个方向&#xff09;&#xff0c;只要有棋子落入她的势力范围&#xff0c;则必死无疑&#xff0c;所以对方的每个棋子都要…...

南京邮电大学数据库实验二

1. 用create database命令创建电影数据库(MovieDB)。 create database MovieDB; 在创建表之前需调用一下指定的数据库&#xff1a; use MovieDB; 2.在电影数据库中用create table 命令创建如下5个关系模式&#xff1a; 创建movies表&#xff1a; create table Movies( ti…...

数据库 02-03 补充 SQL的子查询(where,from),子查询作为集合来比较some,exists,all(某一个,存在,所有)

子查询&#xff1a; where字句的子查询&#xff1a; 通常用in关键字&#xff1a; 举个例子&#xff1a; in关键字&#xff1a; not in 关键字&#xff1a; in 也可以用于枚举集合&#xff1a; where中可以用子查询来作为集合来筛选元祖。 some&#xff0c;all的运算符号…...

提升英语学习效率,尽在Eudic欧路词典 for Mac

Eudic欧路词典 for Mac是一款专为英语学习者打造的强大工具。无论您是初学者还是高级学习者&#xff0c;这款词典都能满足您的需求。 首先&#xff0c;Eudic欧路词典 for Mac具备丰富的词库&#xff0c;涵盖了各个领域的单词和释义。您可以轻松查询并学习单词的意思、用法和例…...

计算机网络英文总结

物理层 数据链路层 循环冗余校验(Cyclic Redundancy Check) 点对点协议PPP(Point-to-Point Protocol) 链路控制协议(Link Control Protocol) 网络控制协议(Network Control Protocol) 网络层(network layer) IP(Internet Protocol) 网际协议 ARP(Address…...

Spring上下文之注解模块ConfigurationMethod

博主介绍:✌全网粉丝5W+,全栈开发工程师,从事多年软件开发,在大厂呆过。持有软件中级、六级等证书。可提供微服务项目搭建与毕业项目实战,博主也曾写过优秀论文,查重率极低,在这方面有丰富的经验✌ 博主作品:《Java项目案例》主要基于SpringBoot+MyBatis/MyBatis-plus+…...

【深度学习】强化学习(三)强化学习的目标函数

文章目录 一、强化学习问题1、交互的对象2、强化学习的基本要素3、策略&#xff08;Policy&#xff09;4、马尔可夫决策过程5、强化学习的目标函数1. 总回报&#xff08;Return&#xff09;2. 折扣回报&#xff08;Discounted Return&#xff09;a. 折扣率b. 折扣回报的定义 3.…...

Python高级算法——人工神经网络(Artificial Neural Network)

Python中的人工神经网络&#xff08;Artificial Neural Network&#xff09;&#xff1a;深入学习与实践 人工神经网络是一种模拟生物神经网络结构和功能的计算模型&#xff0c;近年来在机器学习和深度学习领域取得了巨大成功。本文将深入讲解Python中的人工神经网络&#xff…...

深入理解JVM设计的精髓与独特之处

这是Java代码的执行过程 从软件工程的视角去深入拆解&#xff0c;无疑极具吸引力&#xff1a;首个阶段仅依赖于源高级语言的细微之处&#xff0c;而第二阶段则仅仅专注于目标机器语言的特质。 不可否认&#xff0c;在这两个编译阶段之间的衔接&#xff08;具体指明中间处理步…...

fastjson序列化与反序列化的忽略

一.场景 做了一个基于springbootfastjson的小应用。A对象与B对象是OneToMany关系。A对象新增时也希望一起传递B的信息到后台进行Many端数据的新增。直接使用A对象来接收前台传递的信息&#xff0c;springboot会帮我们组装好对象。查询A对象时&#xff0c;又不希望其中的List<…...

【TB作品】基于单片机的实验室管理系统,STM32,GM65二维码扫描模块

硬件&#xff1a; &#xff08;1&#xff09;STM32F103C8T6最小板&#xff08;&#xff09; &#xff08;2&#xff09;GM65二维码扫描模块 &#xff08;3&#xff09;DS1302实时时钟模块 &#xff08;4&#xff09;AT24C02 存储设备 &#xff08;5&#xff09;蜂鸣器 &#xf…...

超过 1450 个 pfSense 服务器因错误链而遭受 RCE 攻击

在线暴露的大约 1450 个 pfSense 实例容易受到命令注入和跨站点脚本漏洞的攻击&#xff0c;这些漏洞如果链接起来&#xff0c;可能使攻击者能够在设备上执行远程代码。 pfSense 是一款流行的开源防火墙和路由器软件&#xff0c;允许广泛的定制和部署灵活性。 它是一种经济高效…...

react面试总结2

redux中sages和thunk中间件的区别&#xff0c;优缺点 Redux 中的 redux-saga 和 redux-thunk 都是中间件&#xff0c;用于处理异步操作&#xff0c;但它们有一些区别。 Redux Thunk&#xff1a; 简单易用&#xff1a;redux-thunk 是比较简单直观的中间件&#xff0c;它允许 …...

hive 常见存储格式和应用场景

1.存储格式 textfile、sequencefile、orc、parquet sequencefile很少使用&#xff08;不介绍了&#xff09;&#xff0c;常见的主要就是orc 和 parquet 建表声明语句是&#xff1a;stored as textfile/orc/parquet行存储&#xff1a;同一条数据的不同字段都在相邻位置&#xff…...

PyPDF2库对PDF实现读取的应用

目录 一、PyPDF2 库的使用 1. 文档打开和页面读取 2. 文本提取功能 3. 示例代码...

C++ stack用法详解

stack 栈适配器是一种单端开口的容器&#xff08;如图 1 所示&#xff09;&#xff0c;实际上该容器模拟的就是栈存储结构&#xff0c;即无论是向里存数据还是从中取数据&#xff0c;都只能从这一个开口实现操作。 图 1 stack 适配器示意图 如图 1 所示&#xff0c;stack 适配器…...

QT案例 使用WMI获取win_32类的属性值,包括Win32提供程序类中的属性

最近涉及到读取WINDOWS 系统电脑设备的各种信息&#xff0c;在一些特殊的PE或者简化系统中是没有WMI查询工具的&#xff0c;所以就自己写了个查询大部分WMI属性值的工具&#xff0c;免去了查网站的功夫。涉及到的方法内容就汇总做个总结。 PS:因为工作中软件基本都是我一个人开…...

TCP/UDP 的特点、区别及优缺点

1.TCP协议 传输控制协议&#xff08;TCP&#xff0c;Transmission Control Protocol&#xff09;是一种面向连接的、可靠的、基于字节流的传输层通信协议。TCP协议通过建立连接、数据确认&#xff08;编段号和确认号&#xff09;和数据重传等机制&#xff0c;保证了数据的可靠性…...

使用 Python 使用贝叶斯神经网络从理论到实践

一、说明 在本文中&#xff0c;我们了解了如何构建一个机器学习模型&#xff0c;该模型结合了神经网络的强大功能&#xff0c;并且仍然保持概率方法进行预测。为了做到这一点&#xff0c;我们可以构建所谓的贝叶斯神经网络。 这个想法不是优化神经网络的损失&#xff0…...

接口测试中缓存处理策略

在接口测试中&#xff0c;缓存处理策略是一个关键环节&#xff0c;直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性&#xff0c;避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明&#xff1a; 一、缓存处理的核…...

RocketMQ延迟消息机制

两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数&#xff0c;对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后&#xf…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代&#xff0c;情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现&#xff0c;消费者对内容的“有感”程度&#xff0c;正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)

宇树机器人多姿态起立控制强化学习框架论文解析 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架&#xff08;一&#xff09; 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...

12.找到字符串中所有字母异位词

&#x1f9e0; 题目解析 题目描述&#xff1a; 给定两个字符串 s 和 p&#xff0c;找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义&#xff1a; 若两个字符串包含的字符种类和出现次数完全相同&#xff0c;顺序无所谓&#xff0c;则互为…...

c#开发AI模型对话

AI模型 前面已经介绍了一般AI模型本地部署&#xff0c;直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型&#xff0c;但是目前国内可能使用不多&#xff0c;至少实践例子很少看见。开发训练模型就不介绍了&am…...

高防服务器能够抵御哪些网络攻击呢?

高防服务器作为一种有着高度防御能力的服务器&#xff0c;可以帮助网站应对分布式拒绝服务攻击&#xff0c;有效识别和清理一些恶意的网络流量&#xff0c;为用户提供安全且稳定的网络环境&#xff0c;那么&#xff0c;高防服务器一般都可以抵御哪些网络攻击呢&#xff1f;下面…...

Device Mapper 机制

Device Mapper 机制详解 Device Mapper&#xff08;简称 DM&#xff09;是 Linux 内核中的一套通用块设备映射框架&#xff0c;为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程&#xff0c;并配以详细的…...

A2A JS SDK 完整教程:快速入门指南

目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库&#xff…...

Python Ovito统计金刚石结构数量

大家好,我是小马老师。 本文介绍python ovito方法统计金刚石结构的方法。 Ovito Identify diamond structure命令可以识别和统计金刚石结构,但是无法直接输出结构的变化情况。 本文使用python调用ovito包的方法,可以持续统计各步的金刚石结构,具体代码如下: from ovito…...