当前位置: 首页 > news >正文

【深度学习目标检测】五、基于深度学习的安全帽识别(python,目标检测)

深度学习目标检测方法则是利用深度神经网络模型进行目标检测,主要有以下几种:

R-CNN系列:包括R-CNN、Fast R-CNN、Faster R-CNN等,通过候选区域法生成候选目标区域,然后使用卷积神经网络提取特征,并通过分类器对每个候选区域进行分类。
SSD:Single Shot MultiBox Detector,通过在特征图上利用不同大小和形状的卷积核进行目标检测,同时预测目标的类别和位置。
YOLO:You Only Look Once,将目标检测问题转化为回归问题,通过将图像分割成网格单元,并预测每个单元中是否存在目标以及目标的位置和类别。
RetinaNet:通过引入Focal Loss解决目标检测中类别不平衡问题,提高了小目标的检测效果。

YOLOv8是一种用于对象检测的深度学习模型,它是YOLO系列模型的最新版本。本文介绍了基于Yolov8的任务的安全帽检测模型,包括训练过程和数据准备过程,同时提供了推理的代码。对准备计算机视觉相关的毕业设计的同学有着一定的帮助。

效果如下图(带了安全帽的类别是helmet,没带安全帽的head):

示例2:

一、yolov8安装

yolov8官方文档:主页 - Ultralytics YOLOv8 文档

安装部分参考:官方安装教程

二、数据集准备

本次使用的数据集是安全帽检测数据集,其包含的示例图片如下:

原数据集的格式为voc格式,来自aistudio平台,使用yolov8训练需要将voc格式转换为yolov8训练的格式,本文提供转换好的数据集连接:训练和验证图片、数据标签。

其中训练数据4000条,验证数据1000条,请将所有数据按照以下目录放置:

|-images|--|-train|--|-val|-labels|--|-train|--|-val

三、模型训练

1、数据集配置文件

在ultralytics/ultralytics/cfg/datasets目录下添加anquanmao.yaml,添加以下内容(path修改为自己的路径):

# Ultralytics YOLO 🚀, AGPL-3.0 license
# COCO 2017 dataset http://cocodataset.org by Microsoft
# Example usage: yolo train data=coco.yaml
# parent
# ├── ultralytics
# └── datasets
#     └── coco  ← downloads here (20.1 GB)# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: datasets/helmet/HelmetDetection-yolov8  #改成你的数据集路径,建议使用绝对路径
train: images/train 
val: images/val  
test: images/val # Classes
names:# 0: normal0: helmet1: head2: person

2、修改模型配置文件

在ultralytics/ultralytics/cfg/models/v8目录下添加yolov8n_helmet.yaml,添加以下内容:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 3  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPss: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPsm: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPsl: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2- [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 1, SPPF, [1024, 5]]  # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]]  # cat backbone P4- [-1, 3, C2f, [512]]  # 12- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]]  # cat backbone P3- [-1, 3, C2f, [256]]  # 15 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]]  # cat head P4- [-1, 3, C2f, [512]]  # 18 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]]  # cat head P5- [-1, 3, C2f, [1024]]  # 21 (P5/32-large)- [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)

3、训练模型

使用如下命令训练模型,相关路径更改为自己的路径,建议绝对路径:

yolo detect train project=deploy name=yolov8_helmet exist_ok=False optimizer=auto val=True amp=True epochs=100  imgsz=640 model=ultralytics/ultralytics/cfg/models/v8/yolov8_helmet.yaml  data=ultralytics/ultralytics/cfg/datasets/anquanmao.yaml

4、验证模型

使用如下命令验证模型,相关路径根据需要修改:

yolo detect val imgsz=640 model=deploy/yolov8_helmet/weights/best.pt data=ultralytics/ultralytics/cfg/datasets/anquanmao.yaml

精度如下:

四、推理

训练好了模型,可以使用如下代码实现推理,将权重放到同级目录:

from PIL import Image
from ultralytics import YOLO# 加载预训练的YOLOv8n模型
model = YOLO('best.pt')# 在'bus.jpg'上运行推理
image_path = 'hard_hat_workers1.png'
results = model(image_path)  # 结果列表# 展示结果
for r in results:im_array = r.plot()  # 绘制包含预测结果的BGR numpy数组im = Image.fromarray(im_array[..., ::-1])  # RGB PIL图像im.show()  # 显示图像im.save('results.jpg')  # 保存图像

五、相关资料下载

您可以在推理代码下载本文训练好的权重和推理代码。

相关文章:

【深度学习目标检测】五、基于深度学习的安全帽识别(python,目标检测)

深度学习目标检测方法则是利用深度神经网络模型进行目标检测,主要有以下几种: R-CNN系列:包括R-CNN、Fast R-CNN、Faster R-CNN等,通过候选区域法生成候选目标区域,然后使用卷积神经网络提取特征,并通过分类…...

芒果RT-DETR改进实验:深度集成版目标检测 RT-DETR 热力图来了!支持自定义数据集训练出来的模型

💡该教程为改进RT-DETR指南,属于《芒果书》📚系列,包含大量的原创改进方式🚀 💡🚀🚀🚀内含改进源代码 按步骤操作运行改进后的代码即可💡更方便的统计更多实验数据,方便写作 芒果RT-DETR改进实验:深度集成版目标检测 RT-DETR 热力图来了!支持自定义数据集…...

c语言实验八

实验1:在主函数中输入num个字符串,写一个函数,从传入的num个字符串中找出最长的一个字符串,并通过形参指针max传回该串地址,在主函数中输出。(注意:用****作为结束输入的标志。) #i…...

ArcGIS Pro SDK文件选择对话框

文件保存对话框 // 获取默认数据库var gdbPath Project.Current.DefaultGeodatabasePath;//设置文件的保存路径SaveItemDialog saveLayerFileDialog new SaveItemDialog(){Title "Save Layer File",OverwritePrompt true,//获取或设置当同名文件已存在时是否出现…...

ACT、NAT、NATPT和EASY-IP

目录 一、ACL 1.ACL 2.ACL的两种应用匹配机制 3.ACL的基本类型 4.ACL命令操作 5.ACL实验: 4.ACL的应用原则: 5.匹配原则: 二、NAT 1.NAT的原理及作用: 2.NAT分类 3.NAT配置 三、EASY-ip实验 四、NATPT 五、通配符 …...

HTML实现每天单词积累

注册页面 <!DOCTYPE html> <html> <head><meta charset"UTF-8"><title>注册</title><style>body {font-family: Arial, sans-serif;background-color: #f5f5f5;}form {max-width: 500px;margin: 50px auto;padding: 40px…...

【ECMAScript笔记二】运算符分类,流程控制(顺序结构、分支结构、循环结构)

文章目录 4 运算符4.1 算术运算符4.2 递增和递减运算符4.3 比较运算符4.4 逻辑运算符4.5 赋值运算符4.6 运算优先级 5 流程控制5.1 顺序结构5.2 分支结构5.2.1 if 语句5.2.2 switch 语句 5.3 循环结构5.3.1 for循环5.3.2 while循环5.3.3 do while循环5.3.4 continue和break 5.4…...

ShenYu网关注册中心之Zookeeper注册原理

文章目录 1、客户端注册流程1.1、读取配置1.1.1、用于注册的 ZookeeperClientRegisterRepository1.1.2、用于扫描构建 元数据 和 URI 的 SpringMvcClientEventListener 1.2、扫描注解&#xff0c;注册元数据和URI1.2.1、构建URI并写入Disruptor1.2.2、构建元数据并写入Disrupto…...

高级C#技术(二)

前言 本章为高级C#技术的第二节也是最后一节。前一节在下面这个链接 高级C#技术https://blog.csdn.net/qq_71897293/article/details/134930989?spm1001.2014.3001.5501 匿名类型 匿名类型如其名&#xff0c;匿名的没有指定变量的具体类型。 举个例子&#xff1a; 1 创建…...

【性能测试】基础知识篇-压力模型

常见压力模式 并发模式&#xff08;即虚拟用户模式&#xff09;和RPS模式&#xff08;即Requests Per Second&#xff0c;每秒请求数&#xff0c;吞吐量模式&#xff09;。 本文介绍这两种压力模式的区别&#xff0c;以便根据自身业务场景选择更合适的压力模式。 并发模式 …...

springboot-redis设置定时触发任务详解

最近研究了一下“redis定时触发”&#xff0c;网上查了查资料&#xff0c;这里记录一下。 从Redis 2.8.0开始&#xff0c;Redis加入了发布/订阅模式以及键空间消息提醒&#xff08;keyspace notification&#xff09;功能。键空间消息提醒提供了允许客户端通过订阅指定信道获取…...

Video anomaly detection with spatio-temporal dissociation 论文阅读

Video anomaly detection with spatio-temporal dissociation 摘要1.介绍2.相关工作3. Methods3.1. Overview3.2. Spatial autoencoder3.3. Motion autoencoder3.4. Variance attention module3.5. Clustering3.6. The training objective function 4. Experiments5. Conclusio…...

svn 安装

安装系统 ubuntu 22 安装命令&#xff1a; sudo apt-get install subversion 创建第一个工程&#xff1a; 创建版本库、项目 1、先创建svn根目录文件夹 sudo mkdir /home/svn 2、创建项目的目录文件夹 sudo mkdir /home/svn/demo_0 svnadmin create /home/svn/demo_0 配置&a…...

slurm 23.11.0集群 debian 11.5 安装

slurm 23.11.0集群 debian 11.5 安装 用途 Slurm(Simple Linux Utility for Resource Management&#xff0c; http://slurm.schedmd.com/ )是开源的、具有容错性和高度可扩展的Linux集群超级计算系统资源管理和作业调度系统。超级计算系统可利用Slurm对资源和作业进行管理&a…...

ffmpeg可以做什么

用途 FFmpeg是一个功能强大的多媒体处理工具&#xff0c;可以处理音频和视频文件。它是一个开源项目&#xff0c;可在各种操作系统上运行&#xff0c;包括Linux、Windows和Mac OS X等。以下是FFmpeg可以做的一些主要任务&#xff1a; 转换媒体格式&#xff1a;可将一个媒体格式…...

一种缩小数据之间差距的算法

先上代码&#xff1a; /** * 缩小数据之间的差距&#xff0c;但是大小关系不变的方法* param {Array} features */function minMaxData(data) {for (let i 0; i < data.length; i) {const f data[i];const x f[1];const yf[2];//此处5根据实际情况设置const y2 Math.pow(…...

【Axure RP9】动态面板使用------案例:包括轮播图和多方式登入及左侧菜单栏案例

目录 一 动态面板简介 1.1 动态面板是什么 二 轮播图 2.1 轮播图是什么 2.2 轮播图应用场景 2.3 制作实播图 三 多方式登入 3.1多方式登入是什么 3.3 多方式登入实现 四 左侧菜单栏 4.1左侧菜单栏是什么 4.2 左侧菜单栏实现 一 动态面板简介 1.1 动态面板是什么…...

在接口实现类中,加不加@Override的区别

最近的软件构造实验经常需要设计接口&#xff0c;我们知道Override注解是告诉编译器&#xff0c;下面的方法是重写父类的方法&#xff0c;那么单纯实现接口的方法需不需要加Override呢&#xff1f; 定义一个类实现接口&#xff0c;使用idea时&#xff0c;声明implements之后会…...

优质全套SpringMVC教程

三、SpringMVC 在SSM整合中&#xff0c;MyBatis担任的角色是持久层框架&#xff0c;它能帮我们访问数据库&#xff0c;操作数据库 Spring能利用它的两大核心IOC、AOP整合框架 1、SpringMVC简介 1.1、什么是MVC MVC是一种软件架构的思想&#xff08;不是设计模式-思想就是我们…...

微信小程序---使用npm包安装Vant组件库

在小程序项目中&#xff0c;安装Vant 组件库主要分为如下3步: 注意&#xff1a;如果你的文件中不存在pakage.json&#xff0c;请初始化一下包管理器 npm init -y 1.通过 npm 安装(建议指定版本为1.3.3&#xff09; 通过npm npm i vant/weapp1.3.3 -S --production 通过y…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程&#xff0c;然后使用强化学习的Actor-Critic机制&#xff08;中文译作“知行互动”机制&#xff09;&#xff0c;逐步迭代求解…...

微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】

微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来&#xff0c;Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...

【位运算】消失的两个数字(hard)

消失的两个数字&#xff08;hard&#xff09; 题⽬描述&#xff1a;解法&#xff08;位运算&#xff09;&#xff1a;Java 算法代码&#xff1a;更简便代码 题⽬链接&#xff1a;⾯试题 17.19. 消失的两个数字 题⽬描述&#xff1a; 给定⼀个数组&#xff0c;包含从 1 到 N 所有…...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现录音机应用

1. 项目配置与权限设置 1.1 配置module.json5 {"module": {"requestPermissions": [{"name": "ohos.permission.MICROPHONE","reason": "录音需要麦克风权限"},{"name": "ohos.permission.WRITE…...

Java多线程实现之Thread类深度解析

Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...

基于matlab策略迭代和值迭代法的动态规划

经典的基于策略迭代和值迭代法的动态规划matlab代码&#xff0c;实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...

排序算法总结(C++)

目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指&#xff1a;同样大小的样本 **&#xff08;同样大小的数据&#xff09;**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...

并发编程 - go版

1.并发编程基础概念 进程和线程 A. 进程是程序在操作系统中的一次执行过程&#xff0c;系统进行资源分配和调度的一个独立单位。B. 线程是进程的一个执行实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位。C.一个进程可以创建和撤销多个线程;同一个进程中…...

宇树科技,改名了!

提到国内具身智能和机器人领域的代表企业&#xff0c;那宇树科技&#xff08;Unitree&#xff09;必须名列其榜。 最近&#xff0c;宇树科技的一项新变动消息在业界引发了不少关注和讨论&#xff0c;即&#xff1a; 宇树向其合作伙伴发布了一封公司名称变更函称&#xff0c;因…...

Python 高效图像帧提取与视频编码:实战指南

Python 高效图像帧提取与视频编码:实战指南 在音视频处理领域,图像帧提取与视频编码是基础但极具挑战性的任务。Python 结合强大的第三方库(如 OpenCV、FFmpeg、PyAV),可以高效处理视频流,实现快速帧提取、压缩编码等关键功能。本文将深入介绍如何优化这些流程,提高处理…...