用Flask搭建简单的web模型部署服务
目录结构如下:
分类模型web部署
classification.py
import os
import cv2
import numpy as np
import onnxruntime
from flask import Flask, render_template, request, jsonifyapp = Flask(__name__)onnx_session = onnxruntime.InferenceSession("mobilenet_v2.onnx", providers=['CPUExecutionProvider'])input_name = []
for node in onnx_session.get_inputs():input_name.append(node.name)output_name = []
for node in onnx_session.get_outputs():output_name.append(node.name)def allowed_file(filename):return '.' in filename and filename.rsplit('.', 1)[1] in set(['bmp', 'jpg', 'JPG', 'png', 'PNG'])def preprocess(image):if image.shape[0] < image.shape[1]: #h<wimage = cv2.resize(image, (int(256*image.shape[1]/image.shape[0]), 256))else:image = cv2.resize(image, (256, int(256*image.shape[0]/image.shape[1])))crop_size = min(image.shape[0], image.shape[1])left = int((image.shape[1]-crop_size)/2)top = int((image.shape[0]-crop_size)/2)image_crop = image[top:top+crop_size, left:left+crop_size]image_crop = cv2.resize(image_crop, (224,224))image_crop = image_crop[:,:,::-1].transpose(2,0,1).astype(np.float32) #BGR2RGB和HWC2CHWimage_crop[0,:] = (image_crop[0,:] - 123.675) / 58.395 image_crop[1,:] = (image_crop[1,:] - 116.28) / 57.12image_crop[2,:] = (image_crop[2,:] - 103.53) / 57.375return np.expand_dims(image_crop, axis=0) @app.route('/classification', methods=['POST', 'GET']) # 添加路由
def classification():if request.method == 'POST':f = request.files['file']if not (f and allowed_file(f.filename)):return jsonify({"error": 1001, "msg": "only support image formats: .bmp .png .PNG .jpg .JPG"})basepath = os.path.dirname(__file__) # 当前文件所在路径upload_path = os.path.join(basepath, 'static/images/temp.jpg') # 注意:没有的文件夹一定要先创建,不然会提示没有该路径f.save(upload_path)image = cv2.imread(upload_path) tensor = preprocess(image)inputs = {}for name in input_name:inputs[name] = tensor outputs = onnx_session.run(None, inputs)[0]label = np.argmax(outputs)score = np.exp(outputs[0][label]) / np.sum(np.exp(outputs), axis=1)return render_template('classification.html', label=label, score=score[0])return render_template('upload.html')if __name__ == '__main__':app.run(host='0.0.0.0', port=8000, debug=True)
classification.html
<!DOCTYPE html>
<html lang="en">
<head><meta charset="UTF-8">
</head>
<body><h1>请上传本地图片</h1><form action="" enctype='multipart/form-data' method='POST'><input type="file" name="file" style="margin-top:20px;"/><input type="submit" value="上传" class="button-new" style="margin-top:15px;"/></form><h2>图片类别为:{{label}} 置信度为:{{score}} </h2><img src="{{ url_for('static', filename= './images/temp.jpg') }}" alt="你的图片被外星人劫持了~~"/>
</body>
</html>
运行程序,在浏览器输入http://127.0.0.1:8000/classification,效果展示:
检测模型web部署
detection.py
import os
import cv2
import numpy as np
import onnxruntime
from flask import Flask, render_template, request, jsonifyapp = Flask(__name__)class_names = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light','fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow','elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee','skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard','tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple','sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch','potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone','microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear','hair drier', 'toothbrush'] #coco80类别
input_shape = (640, 640)
score_threshold = 0.2
nms_threshold = 0.5
confidence_threshold = 0.2 onnx_session = onnxruntime.InferenceSession("yolov5n.onnx", providers=['CPUExecutionProvider'])input_name = []
for node in onnx_session.get_inputs():input_name.append(node.name)output_name = []
for node in onnx_session.get_outputs():output_name.append(node.name)def allowed_file(filename):return '.' in filename and filename.rsplit('.', 1)[1] in set(['bmp', 'jpg', 'JPG', 'png', 'PNG'])def nms(boxes, scores, score_threshold, nms_threshold):x1 = boxes[:, 0]y1 = boxes[:, 1]x2 = boxes[:, 2]y2 = boxes[:, 3]areas = (y2 - y1 + 1) * (x2 - x1 + 1)keep = []index = scores.argsort()[::-1] while index.size > 0:i = index[0]keep.append(i)x11 = np.maximum(x1[i], x1[index[1:]]) y11 = np.maximum(y1[i], y1[index[1:]])x22 = np.minimum(x2[i], x2[index[1:]])y22 = np.minimum(y2[i], y2[index[1:]])w = np.maximum(0, x22 - x11 + 1) h = np.maximum(0, y22 - y11 + 1) overlaps = w * hious = overlaps / (areas[i] + areas[index[1:]] - overlaps)idx = np.where(ious <= nms_threshold)[0]index = index[idx + 1]return keepdef xywh2xyxy(x):y = np.copy(x)y[:, 0] = x[:, 0] - x[:, 2] / 2y[:, 1] = x[:, 1] - x[:, 3] / 2y[:, 2] = x[:, 0] + x[:, 2] / 2y[:, 3] = x[:, 1] + x[:, 3] / 2return ydef filter_box(outputs): #过滤掉无用的框 outputs = np.squeeze(outputs)outputs = outputs[outputs[..., 4] > confidence_threshold]classes_scores = outputs[..., 5:]boxes = []scores = []class_ids = []for i in range(len(classes_scores)):class_id = np.argmax(classes_scores[i])outputs[i][4] *= classes_scores[i][class_id]outputs[i][5] = class_idif outputs[i][4] > score_threshold:boxes.append(outputs[i][:6])scores.append(outputs[i][4])class_ids.append(outputs[i][5])if len(boxes) == 0 :return boxes = np.array(boxes)boxes = xywh2xyxy(boxes)scores = np.array(scores)indices = nms(boxes, scores, score_threshold, nms_threshold) output = boxes[indices]return outputdef letterbox(im, new_shape=(416, 416), color=(114, 114, 114)):# Resize and pad image while meeting stride-multiple constraintsshape = im.shape[:2] # current shape [height, width]# Scale ratio (new / old)r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])# Compute paddingnew_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) dw, dh = (new_shape[1] - new_unpad[0])/2, (new_shape[0] - new_unpad[1])/2 # wh padding top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))left, right = int(round(dw - 0.1)), int(round(dw + 0.1))if shape[::-1] != new_unpad: # resizeim = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add borderreturn imdef scale_boxes(boxes, shape): # Rescale boxes (xyxy) from input_shape to shapegain = min(input_shape[0] / shape[0], input_shape[1] / shape[1]) # gain = old / newpad = (input_shape[1] - shape[1] * gain) / 2, (input_shape[0] - shape[0] * gain) / 2 # wh paddingboxes[..., [0, 2]] -= pad[0] # x paddingboxes[..., [1, 3]] -= pad[1] # y paddingboxes[..., :4] /= gainboxes[..., [0, 2]] = boxes[..., [0, 2]].clip(0, shape[1]) # x1, x2boxes[..., [1, 3]] = boxes[..., [1, 3]].clip(0, shape[0]) # y1, y2return boxesdef draw(image, box_data):box_data = scale_boxes(box_data, image.shape)boxes = box_data[...,:4].astype(np.int32) scores = box_data[...,4]classes = box_data[...,5].astype(np.int32)for box, score, cl in zip(boxes, scores, classes):top, left, right, bottom = boxcv2.rectangle(image, (top, left), (right, bottom), (255, 0, 0), 1)cv2.putText(image, '{0} {1:.2f}'.format(class_names[cl], score), (top, left), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 1)def preprocess(img):input = letterbox(img, input_shape)input = input[:, :, ::-1].transpose(2, 0, 1).astype(dtype=np.float32)input = input / 255.0input = np.expand_dims(input, axis=0)return input@app.route('/detection', methods=['POST', 'GET']) # 添加路由
def detection():if request.method == 'POST':f = request.files['file']if not (f and allowed_file(f.filename)):return jsonify({"error": 1001, "msg": "only support image formats: .bmp .png .PNG .jpg .JPG"})basepath = os.path.dirname(__file__) # 当前文件所在路径upload_path = os.path.join(basepath, 'static/images/temp.jpg') # 注意:没有的文件夹一定要先创建,不然会提示没有该路径f.save(upload_path)image = cv2.imread(upload_path) tensor = preprocess(image)inputs = {}for name in input_name:inputs[name] = tensor outputs = onnx_session.run(None, inputs)[0]boxes = filter_box(outputs)if boxes is not None:draw(image, boxes)cv2.imwrite(os.path.join(basepath, 'static/images/temp.jpg'), image)return render_template('detection.html')return render_template('upload.html')if __name__ == '__main__':app.run(host='0.0.0.0', port=8000, debug=True)
detection.html
<!DOCTYPE html>
<html lang="en">
<head><meta charset="UTF-8">
</head>
<body><h1>请上传本地图片</h1><form action="" enctype='multipart/form-data' method='POST'><input type="file" name="file" style="margin-top:20px;"/><input type="submit" value="上传" class="button-new" style="margin-top:15px;"/></form><img src="{{ url_for('static', filename= './images/temp.jpg') }}" alt="你的图片被外星人劫持了~~"/>
</body>
</html>
运行程序,在浏览器输入http://127.0.0.1:8000/detection,效果展示:
相关文章:

用Flask搭建简单的web模型部署服务
目录结构如下: 分类模型web部署 classification.py import os import cv2 import numpy as np import onnxruntime from flask import Flask, render_template, request, jsonifyapp Flask(__name__)onnx_session onnxruntime.InferenceSession("mobilen…...
PCL 点云匹配 3 之 (非线性迭代点云匹配)lM-ICP
一、IM迭代法 PCL IterativeClosestPointNonLinear 非线性L-M迭代法-CSDN博客 Matlab 非线性迭代法(3)阻尼牛顿法 L-M-CSDN博客 MATLAB实现最小二乘法_matlab最小二乘法-CSDN博客...

【C语言】SCU安全项目2-BufBomb
目录 关键代码解读: getxs() getbuf() test() 核心思路 具体操作1 具体操作2 前段时间忙于强网杯、英语4级和一些其他支线,有点摸不清头绪了,特别是qwb只有一个输出,太过坐牢,决定这个安全项目做完后就继续投身…...

C++第一讲之初入C++
注:本文是对于学完C语言再学C同学的讲解,主要补充C与C语言不同之处,如果你没学过C语言,不建议观看本文。 一.C简介 我们都知道C语言是过程性语言(强调的是实现过程),即对计算机语言要处理的两…...

如何实现公网访问本地内网搭建的WBO白板远程协作办公【内网穿透】
最近,我发现了一个超级强大的人工智能学习网站。它以通俗易懂的方式呈现复杂的概念,而且内容风趣幽默。我觉得它对大家可能会有所帮助,所以我在此分享。点击这里跳转到网站。 文章目录 前言1. 部署WBO白板2. 本地访问WBO白板3. Linux 安装cp…...

js知识点1:防抖节流
js知识点1:防抖节流 防抖节流 防抖节流,本质上是优化高频率执行代码的一种手段 定义: 防抖: n 秒后再执行该事件,若在 n 秒内被重复触发,则重新计时 节流: n 秒内只运行一次,若在 n 秒内重复触发࿰…...

虚拟机下Ubuntu上网设置
文章目录 一、虚拟机上网的两种方式1.1 NAT模式(Network Address Translation)1.2 桥接模式(Bridge Mode)1.3 简介 二、实际配置2.1 NAT模式配置2.2 桥接模式配置 之前跟着博客配了好几个也没用,后来自己慢慢模式实践测…...

Unity3d C#利用Editor编辑器拓展实现配置UI背景样式一键设置UI背景样式功能(含源码)
前言 在开发UI滚动列表的时候,经常会有每项的背景图不统一的情况,会间隔重复的情况居多。这种情况下,手动去设置间隔一行的背景图或者颜色是比较麻烦的。在此背景下,笔者尝试写个小工具,在搭建UI时配置一下循环背景的…...
【微服务】服务间调用
当我们的应用从一个大单体拆分成多个微服务之后,服务间调用有多少种方式?服务间调用如果出现超时,如果避免雪崩,即如何做限流熔断机制,原理是什么? 服务间调用方式 OpenFeign 使用Feign进行服务间调用,我们会在启动类加@EnableFeignClients启用。 package org.sprin…...
一句话分清C/C++声明和定义
定义告诉编译器在在哪个位置存储变量,声明没有 声明:告诉编译器,变量类型和名字 定义:告诉编译器变量存储的位置。 举例子 int i; // 这是声明定义。声明:告诉编译器变量类型int,变量名字i, // 定义&…...
《哥德尔证明》阅读笔记——初等命题逻辑的一致性证明过程
前言 前两节主要阐述了公理系统的发展历史,一致性问题的提出,以及希尔伯特的洞见,本节将给出哥德尔证明所需的最后一次具体背景阐述,包含两个问题:一是罗素所著的《数学原理》是为何而写?二是从数学原理中…...

迪文屏开发保姆级教程—弹出键盘录入ASCII字符
本篇文章主要介绍了在DGBUS平台上使用文本录入键盘录入ASCII字符,数字和字母的教程。 文本录入键盘支持录入ASCII字符,数字和字母。 官方开发指南PDF:(不方便下载的私聊我发给你) https://download.csdn.net/download…...
Java,处理字符串的案例()
场景 为了得到一个都是英雄名字的字符数组,需要对如下字符串进行处理 疾风剑豪,影流之主,封魔剑魂,暗裔剑魔,无极剑圣,无双剑姬,武器大师,德邦总管,蛮族之王࿰…...
微信小程序更新机制
1/同步更新 1、定期检查更新时; 2、长期未使用,首次进入会同步更新,但在弱网或者下载新版本失败的情况下,还会使用旧版本。 2/异步更新: 启动时异步更新 3/开发者手动触发更新 在启动时异步更新的情况下,…...

CentOS 7 部署 Nacos-2.3.0 (单机版)
CentOS 7 部署 Nacos-2.3.0 (单机版) 1. 下载 Nacos 安装包 历史版本:https://github.com/alibaba/nacos/releases/ 我选的是 2.3.0 版本,https://github.com/alibaba/nacos/releases/download/2.3.0/nacos-server-2.3.0.tar.g…...

Springboot优雅实现对接口返回统一封装
前端在调用后端接口时往往不同的接口返回的数据是不一样的,但是通常我们会与前端约定一个固定的返回格式,通过固定的格式告诉他们什么时候接口是返回成功,什么时候返回失败,返回成功后他们如何拿到接口返回的数据去渲染前端页面。…...

Kafka 安装与部署
目录 Kafka 下载 (1)将 kafka_2.11-2.4.1.tgz 上传至 /opt/software/ (2)解压安装包至 /opt/module/ [huweihadoop101 ~]$ cd /opt/software/ [huweihadoop101 software]$ tar -zxvf kafka_2.11-2.4.1.tgz -C ../module/&#…...
计算 N*4*4 位姿形状的逆变换,在N*3*4位姿后补充 [0,0,0,1]
针对 [N,4,4] shape 的 poses,函数 ComputeInversePoses 返回 相同 shape,但是每个 pose 都是前面的 逆 pose。 针对 [N,3,4] shape 的 poses,函数 AddIdentityToPoses 返回 在每个 [3,4] pose下加上 [0,0,0,1] 后的pose,返回的…...

人工智能可以战胜人类智慧大脑么?
引言 在当今快速发展的科技时代,人工智能的进步日新月异,引发了一场深刻的讨论:能否有一天,人工智能能够超越甚至战胜人类智慧?这个问题涉及到人类认知的广泛领域,牵涉到人类思维的深层次特质以及AI技术在…...

【数据结构和算法】 K 和数对的最大数目
其他系列文章导航 Java基础合集数据结构与算法合集 设计模式合集 多线程合集 分布式合集 ES合集 文章目录 其他系列文章导航 文章目录 前言 一、题目描述 二、题解 2.1 方法一:双指针排序 三、代码 3.1 方法一:双指针排序 3.2 方法二࿱…...
[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?
🧠 智能合约中的数据是如何在区块链中保持一致的? 为什么所有区块链节点都能得出相同结果?合约调用这么复杂,状态真能保持一致吗?本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里…...

网络六边形受到攻击
大家读完觉得有帮助记得关注和点赞!!! 抽象 现代智能交通系统 (ITS) 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 (…...

多模态2025:技术路线“神仙打架”,视频生成冲上云霄
文|魏琳华 编|王一粟 一场大会,聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中,汇集了学界、创业公司和大厂等三方的热门选手,关于多模态的集中讨论达到了前所未有的热度。其中,…...

基于FPGA的PID算法学习———实现PID比例控制算法
基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容:参考网站: PID算法控制 PID即:Proportional(比例)、Integral(积分&…...

关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案
问题描述:iview使用table 中type: "index",分页之后 ,索引还是从1开始,试过绑定后台返回数据的id, 这种方法可行,就是后台返回数据的每个页面id都不完全是按照从1开始的升序,因此百度了下,找到了…...

UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)
UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中,UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化…...
AspectJ 在 Android 中的完整使用指南
一、环境配置(Gradle 7.0 适配) 1. 项目级 build.gradle // 注意:沪江插件已停更,推荐官方兼容方案 buildscript {dependencies {classpath org.aspectj:aspectjtools:1.9.9.1 // AspectJ 工具} } 2. 模块级 build.gradle plu…...
稳定币的深度剖析与展望
一、引言 在当今数字化浪潮席卷全球的时代,加密货币作为一种新兴的金融现象,正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而,加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下,稳定…...
【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论
路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中(图1): mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...
提升移动端网页调试效率:WebDebugX 与常见工具组合实践
在日常移动端开发中,网页调试始终是一个高频但又极具挑战的环节。尤其在面对 iOS 与 Android 的混合技术栈、各种设备差异化行为时,开发者迫切需要一套高效、可靠且跨平台的调试方案。过去,我们或多或少使用过 Chrome DevTools、Remote Debug…...