t-SNE高维数据可视化实例
t-SNE:高维数据分布可视化
实例1:自动生成一个S形状的三维曲线
实例1结果:

实例1完整代码:
import matplotlib.pyplot as plt
from sklearn import manifold, datasets
"""对S型曲线数据的降维和可视化"""x, color = datasets.make_s_curve(n_samples=1000, random_state=0) # 生成一个S形状的三维曲线,以及相应的颜色数据,数据点的数量为1000个,随机数种子是0,color是[1000,1]的一维数据,对应每个点的颜色
n_neighbors = 10
n_components = 2 #n_neighbors和n_components分别表示t-SNE算法中的近邻数和降维后的维度数fig = plt.figure(figsize=(15, 15)) #图像的宽和高
plt.suptitle("Dimensionality Reduction and Visualization of S-Curve Data ", fontsize=14) #自定义图像名称# 绘制S型曲线的3D图像
ax = fig.add_subplot(211, projection='3d') #分为2行1列的子图布局,选择第1个子图,投影方式为3D
ax.scatter(x[:, 0], x[:, 1], x[:, 2], c=color, cmap=plt.cm.Spectral) #x[:, 0], x[:, 1], x[:, 2]代表x,y,z 绘制散点图,Spectral colormap将不同的颜色映射到数据集的不同标签上
ax.set_title('Original S-Curve', fontsize=14)
ax.view_init(4, -72) # 将视角设置为仰角4度,方位角-72度# t-SNE的降维与可视化
ts = manifold.TSNE(n_components=n_components,perplexity=30) #将原始数据降低到n_components维度;perplexity=30表示t-SNE算法的困惑度参数设置为30。
# 训练模型
y = ts.fit_transform(x)
ax1 = fig.add_subplot(2, 1, 2) ##分为2行1列的子图布局,选择第2个子图
plt.scatter(y[:, 0], y[:, 1], c=color, cmap=plt.cm.Spectral)
ax1.set_title('t-SNE Curve', fontsize=14)
plt.show()
实例2:手写数字
实例2结果

这个由于数据量太多,呈现的效果不是很明显
实例2完整代码
from sklearn import preprocessing
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
import torchvisiontraindata = torchvision.datasets.MNIST(root='./t-SNE_dataset/', train=True, download=True)
testdata = torchvision.datasets.MNIST(root='./t-SNE_dataset/', train=False, download=True)X_train = traindata.data #[60000, 28, 28]
y_train = traindata.targets #[60000]
X_test = testdata.data #[10000, 28, 28]
y_test = testdata.targets #[10000]X_train = X_train.view(len(X_train), -1) #[样本数量, 特征维度];-1是根据原来的形状自动计算出新的维度大小,以保证总的元素个数不变,这里是28*28
X_test = X_test.view(len(X_test), -1)# t-SNE降维处理
tsne = TSNE(n_components=3, verbose=1 ,random_state=42) #n_components=3表示降维后的维度为3,即将图像数据降低到三维;verbose=1表示打印详细的日志信息;random_state=42表示设置随机种子以保证可重复性。
train = tsne.fit_transform(X_train)
test = tsne.transform(X_test) # 注意:使用已经训练好的t-SNE对象对验证集进行降维,不再fit_transform# 归一化处理
scaler = preprocessing.MinMaxScaler(feature_range=(-1,1))
train = scaler.fit_transform(train)
test = scaler.transform(test) # 对验证集进行归一化处理,使用训练集的scaler对象进行transformfig = plt.figure(figsize=(20, 20))
ax = fig.add_subplot(projection='3d') #创建一个三维坐标轴,并将它添加到图像窗口中
ax.set_title('t-SNE process')
ax.scatter(train[:,0], train[:,1], train[:,2] , c=y_train, marker='o', label='Train', s=10)
#c=y_train表示根据训练集的标签y_train来对散点进行颜色编码,每个标签对应一个特定的颜色。s=10将每个数据点的大小设置为 10 像素,使用marker='o'表示使用圆圈形状的标记来表示训练集
ax.scatter(test[:,0], test[:,1], test[:,2] , c=y_test, marker='^', label='Test', s=10) # 使用marker='^'表示使用三角形形状的标记来表示验证集
ax.legend() # 添加图例,以便区分训练集和验证集plt.show()
实例3:自己的实验(判断迁移是否有效)
实例3实验结果 :

实例3代码:
from __future__ import print_function
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torch.autograd import Variable
import os
from data_loader_new import DatasetFolder
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
from sklearn import preprocessingdef sne():ckpt_model_0 = "E:/XD_DANN/dataset1400/result1214/mnist_mnistm_model_epoch_0.pth"my_net_0 = torch.load(ckpt_model_0)ckpt_model_9 = "E:/XD_DANN/dataset1400/result1214/mnist_mnistm_model_epoch_99.pth"my_net_9 = torch.load(ckpt_model_9)alpha = 0source_dataset_name = 'shallow_train' ###target_dataset_name = 'deep_train' ###source_image_root = os.path.join('..', 't_SNE', source_dataset_name)target_image_root = os.path.join('..', 't_SNE', target_dataset_name)dataset_source = DatasetFolder(source_image_root)dataloader_source = DataLoader(dataset=dataset_source,batch_size=len(dataset_source),shuffle=True,num_workers=8)data_source_iter = iter(dataloader_source)s_img, _, _ = next(data_source_iter) #图片,标签,位置信息_, _, s_feature_0 = my_net_0(input_data=s_img, alpha=alpha)_, _, s_feature_9 = my_net_9(input_data=s_img, alpha=alpha) #类别,领域,特征print("源域数据加载成功")dataset_target = DatasetFolder(root=target_image_root)dataloader_target = DataLoader(dataset=dataset_target,batch_size=len(dataset_target),shuffle=True,num_workers=8)data_target_iter = iter(dataloader_target)t_img,_ ,_ = next(data_target_iter)_, _, t_feature_0 = my_net_0(input_data=t_img, alpha=alpha)_, _, t_feature_9 = my_net_9(input_data=t_img, alpha=alpha) # 类别,领域,特征print("目标域数据加载成功")# s_img = s_img.view(len(s_img), -1) # [样本数量, 特征维度];-1是根据原来的形状自动计算出新的维度大小,以保证总的元素个数不变,这里是28*28# t_img = t_img.view(len(t_img), -1)s_feature_0 = s_feature_0.view(len(s_feature_0), -1)t_feature_0 = t_feature_0.view(len(t_feature_0), -1)s_feature_9 = s_feature_9.view(len(s_feature_9), -1)t_feature_9 = t_feature_9.view(len(t_feature_9), -1)tsne = TSNE(n_components=2, verbose=1,random_state=42) # n_components=3表示降维后的维度为3,即将图像数据降低到三维;verbose=1表示打印详细的日志信息;random_state=42表示设置随机种子以保证可重复性。# shallow_before = tsne.fit_transform(s_img.detach().numpy())# deep_before = tsne.fit_transform(t_img.detach().numpy())shallow_before = tsne.fit_transform(s_feature_0.detach().numpy())deep_before = tsne.fit_transform(t_feature_0.detach().numpy())shallow_after = tsne.fit_transform(s_feature_9.detach().numpy())deep_after = tsne.fit_transform(t_feature_9.detach().numpy())scaler = preprocessing.MinMaxScaler(feature_range=(-1, 1))shallow_before = scaler.fit_transform(shallow_before)deep_before = scaler.fit_transform(deep_before)shallow_after = scaler.fit_transform(shallow_after)deep_after = scaler.transform(deep_after) # 对验证集进行归一化处理,使用训练集的scaler对象进行transformfig = plt.figure(figsize=(30, 30))ax = fig.add_subplot(211)ax.set_title('第0轮次训练结果')ax.scatter(shallow_before[:, 0], shallow_before[:, 1], c='gray', marker='o', label='shallow', s=10)ax.scatter(deep_before[:, 0], deep_before[:, 1], c='red', marker='^', label='deep', s=10)ax.legend()ax = fig.add_subplot(212)ax.set_title('第99轮次训练结果')ax.scatter(shallow_after[:,0], shallow_after[:,1], c='gray', marker='o', label='shallow', s=10)ax.scatter(deep_after[:,0], deep_after[:,1] , c='red', marker='^', label='deep', s=10) # 使用marker='^'表示使用三角形形状的标记来表示验证集ax.legend() # 添加图例,以便区分训练集和验证集plt.rcParams['font.sans-serif'] = ['SimHei'] ## 用来正常显示中文标签plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号plt.show()if __name__ == '__main__':sne()print('done')
大家可以根据自己的实验需要更改代码,提醒若需要显示中文/负号,别忘了这两行代码哟!
plt.rcParams['font.sans-serif'] = ['SimHei'] ## 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
参考:http://t.csdnimg.cn/cshBV
相关文章:
t-SNE高维数据可视化实例
t-SNE:高维数据分布可视化 实例1:自动生成一个S形状的三维曲线 实例1结果: 实例1完整代码: import matplotlib.pyplot as plt from sklearn import manifold, datasets """对S型曲线数据的降维和可视化"&q…...
配置应用到k8s
配置应用到k8s,前置条件是安装了Docker,Minikube,kubectl 应用已经通过Docker生成本地镜像文件 1,创建godemo-deployment.yaml apiVersion: apps/v1kind: Deploymentmetadata:name: godemo-deploymentspec:replicas: 3 #启动三个…...
(四)STM32 操作 GPIO 点亮 LED灯 / GPIO工作模式
目录 1. STM32 工程模板中的工程目录介绍 2. GPIO 简介 3. GPIO 框图剖析 1)保护二极管及上、下拉电阻 2) P-MOS 管和 N-MOS 管 3)输出数据寄存器 3.1)ODR 端口输出数据寄存器 3.2)BSRR 端口位设置/清除寄存器 4&a…...
你知道跨站脚本攻击吗?一篇带你了解什么叫做XSS
1.XSS简介 (1)XSS简介 XSS作为OWASP TOP 10之一。 XSS中文叫做跨站脚本攻击(Cross-site scripting),本名应该缩写为CSS,但是由于CSS(Cascading Style Sheets,层叠样式脚本&#x…...
JVM入门
JVM概述 JVM位置 JVM体系结构 注意:栈中一定不存在垃圾,栈中数据用完一个弹出一个,总结来说,栈区、本地方法栈、程序计数器这三块必定不存在垃圾。JVM调优主要是针对方法区、堆(99%)进行调优。 常用的第三…...
Cmake基础(5)
这篇文章主要描述如何使用cmake构建一个库工程 文章目录 add_libraryinstall 库工程的代码:头文件和源文件 #ifndef ADD_H #define ADD_H#ifdef _WIN32 #ifdef MYMATH_EXPORTS #define MYMATH_API __declspec(dllexport) #else #define MYMATH_API __declspec(dll…...
Rabbitmq 死信取消超时订单
本文使用的版本 otp_win64_25.0rabbitmq-server-3.11.26rabbitmq插件 rabbitmq_delayed_message_exchange-3.11.1 pom.xml文件 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-amqp</artifactId> …...
C语言—每日选择题—Day55
指针相关博客 打响指针的第一枪:指针家族-CSDN博客 深入理解:指针变量的解引用 与 加法运算-CSDN博客 第一题 1. 若有如下定义,则 p1&m;p2p1; 是正确赋值语句.说法是否正确? int *p1; int *p2; int m …...
软件测试岗位的简历怎么写?项目怎么包装
已经帮大家打包好了包装好的简历模板,大家可以直接进行套用,详情请望下看 自动化测试相关教程推荐: 2023最新自动化测试自学教程新手小白26天入门最详细教程,目前已有300多人通过学习这套教程入职大厂!!_哔哩哔哩_bili…...
服务器解析漏洞是什么?攻击检测及修复
服务器解析漏洞(Server-side Include Vulnerability,SSI漏洞)是一种安全漏洞,通常出现在支持服务器端包含(SSI)功能的Web服务器上。SSI是一种在Web页面中嵌入动态内容的技术,允许开发人员将外部…...
HTML---CSS美化网页元素
文章目录 前言一、pandas是什么?二、使用步骤 1.引入库2.读入数据总结 一.div 标签: <div>是HTML中的一个常用标签,用于定义HTML文档中的一个区块(或一个容器)。它可以包含其他HTML元素,如文本、图像…...
【Docker】基础篇
文章目录 Docker为什么出现容器和虚拟机关于虚拟机关于Docker二者区别: Docker的基本组成相关概念-镜像,容器,仓库安装Docker卸载docker阿里云镜像加速docker run的原理**为什么容器比虚拟机快**Docker的常用命令1.帮助命令2.镜像相关命令3.容…...
Potplayer播放器远程访问群晖WebDav本地资源【内网穿透】
文章目录 本教程解决的问题是:按照本教程方法操作后,达到的效果是:1 使用环境要求:2 配置webdav3 测试局域网使用potplayer访问webdav3 内网穿透,映射至公网4 使用固定地址在potplayer访问webdav 国内流媒体平台的内容…...
【神经网络】imshow展示图片报错
文章目录 代码示例报错信息报错原因解决方法其他问题 代码示例 plt.imshow(np.squeeze(images[0]))报错信息 Invalid shape (3, 60, 90) for image data报错原因 格式错误,输入具有RGB值的图像,输入三维数组参数的格式应该是(高度…...
【C++】对象特性:无参有参构造函数,拷贝构造函数,析构函数
目录 对象的初始化和清理1.1 构造函数和析构函数1.2 构造函数的分类及调用1.3 拷贝构造函数调用时机1.4 构造函数调用规则1.5 深拷贝与浅拷贝 对象的初始化和清理 生活中我们买的电子产品都基本会有出厂设置,在某一天我们不用时候也会删除一些自己信息数据保证安全。…...
【算法与数据结构】1005、LeetCode K 次取反后最大化的数组和
文章目录 一、题目二、解法三、完整代码 所有的LeetCode题解索引,可以看这篇文章——【算法和数据结构】LeetCode题解。 一、题目 二、解法 思路分析:本题允许某个下标的数字多次翻转,因此思路比较简单。首先,我们要求最大和&…...
作业--day34
使用select完成TCP并发服务器和客户端 server.c #include <myhead.h>#define PORT 8888 #define IP "192.168.125.137"int main(int argc, const char *argv[]) {int sfd socket(AF_INET, SOCK_STREAM, 0);if(sfd -1){perror("socket error");re…...
车辆违规开启远光灯检测系统:融合YOLO-MS改进YOLOv8
1.研究背景与意义 项目参考AAAI Association for the Advancement of Artificial Intelligence 研究背景与意义 随着社会的不断发展和交通工具的普及,车辆违规行为成为了一个严重的问题。其中,车辆违规开启远光灯是一种常见的违规行为,给其…...
爬虫工作量由小到大的思维转变---<第十三章 Scrapy之pipelines分离的思考>
前言: 收到留言: "我的爬取的数据处理有点大,scrapy抓网页挺快,处理数据慢了!" -----针对这位粉丝留言,我只想说:你那培训班老师可能给你漏了课程! 大概你们上课讲的案例属于demo,他教了你一些基本操作,但他没有对相关业务对你讲透! 你研究一下pipelines,或者看我现…...
【Unity】运行时创建曲线(贝塞尔的运用)
[Unity]运行时创建线(贝塞尔的运用) 1. 实现的目标 在运行状态下创建一条可以使用贝塞尔方法实时编辑的网格曲线。 2. 原理介绍 2.1 曲线的创建 unity建立网格曲线可以参考Unity程序化网格体的实现方法。主要分为顶点,三角面,…...
设计模式和设计原则回顾
设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...
stm32G473的flash模式是单bank还是双bank?
今天突然有人stm32G473的flash模式是单bank还是双bank?由于时间太久,我真忘记了。搜搜发现,还真有人和我一样。见下面的链接:https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...
ubuntu搭建nfs服务centos挂载访问
在Ubuntu上设置NFS服务器 在Ubuntu上,你可以使用apt包管理器来安装NFS服务器。打开终端并运行: sudo apt update sudo apt install nfs-kernel-server创建共享目录 创建一个目录用于共享,例如/shared: sudo mkdir /shared sud…...
FFmpeg 低延迟同屏方案
引言 在实时互动需求激增的当下,无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作,还是游戏直播的画面实时传输,低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架,凭借其灵活的编解码、数据…...
可靠性+灵活性:电力载波技术在楼宇自控中的核心价值
可靠性灵活性:电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中,电力载波技术(PLC)凭借其独特的优势,正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据,无需额外布…...
为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?
在建筑行业,项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升,传统的管理模式已经难以满足现代工程的需求。过去,许多企业依赖手工记录、口头沟通和分散的信息管理,导致效率低下、成本失控、风险频发。例如&#…...
鱼香ros docker配置镜像报错:https://registry-1.docker.io/v2/
使用鱼香ros一件安装docker时的https://registry-1.docker.io/v2/问题 一键安装指令 wget http://fishros.com/install -O fishros && . fishros出现问题:docker pull 失败 网络不同,需要使用镜像源 按照如下步骤操作 sudo vi /etc/docker/dae…...
【Go语言基础【12】】指针:声明、取地址、解引用
文章目录 零、概述:指针 vs. 引用(类比其他语言)一、指针基础概念二、指针声明与初始化三、指针操作符1. &:取地址(拿到内存地址)2. *:解引用(拿到值) 四、空指针&am…...
LLMs 系列实操科普(1)
写在前面: 本期内容我们继续 Andrej Karpathy 的《How I use LLMs》讲座内容,原视频时长 ~130 分钟,以实操演示主流的一些 LLMs 的使用,由于涉及到实操,实际上并不适合以文字整理,但还是决定尽量整理一份笔…...
uniapp 开发ios, xcode 提交app store connect 和 testflight内测
uniapp 中配置 配置manifest 文档:manifest.json 应用配置 | uni-app官网 hbuilderx中本地打包 下载IOS最新SDK 开发环境 | uni小程序SDK hbulderx 版本号:4.66 对应的sdk版本 4.66 两者必须一致 本地打包的资源导入到SDK 导入资源 | uni小程序SDK …...
