当前位置: 首页 > news >正文

t-SNE高维数据可视化实例

t-SNE:高维数据分布可视化

实例1:自动生成一个S形状的三维曲线

实例1结果

实例1完整代码

import matplotlib.pyplot as plt
from sklearn import manifold, datasets
"""对S型曲线数据的降维和可视化"""x, color = datasets.make_s_curve(n_samples=1000, random_state=0)		# 生成一个S形状的三维曲线,以及相应的颜色数据,数据点的数量为1000个,随机数种子是0,color是[1000,1]的一维数据,对应每个点的颜色
n_neighbors = 10
n_components = 2   #n_neighbors和n_components分别表示t-SNE算法中的近邻数和降维后的维度数fig = plt.figure(figsize=(15, 15))		#图像的宽和高
plt.suptitle("Dimensionality Reduction and Visualization of S-Curve Data ", fontsize=14)		#自定义图像名称# 绘制S型曲线的3D图像
ax = fig.add_subplot(211, projection='3d')		#分为2行1列的子图布局,选择第1个子图,投影方式为3D
ax.scatter(x[:, 0], x[:, 1], x[:, 2], c=color, cmap=plt.cm.Spectral) #x[:, 0], x[:, 1], x[:, 2]代表x,y,z 绘制散点图,Spectral colormap将不同的颜色映射到数据集的不同标签上
ax.set_title('Original S-Curve', fontsize=14)
ax.view_init(4, -72)		# 将视角设置为仰角4度,方位角-72度# t-SNE的降维与可视化
ts = manifold.TSNE(n_components=n_components,perplexity=30)  #将原始数据降低到n_components维度;perplexity=30表示t-SNE算法的困惑度参数设置为30。
# 训练模型
y = ts.fit_transform(x)
ax1 = fig.add_subplot(2, 1, 2)   ##分为2行1列的子图布局,选择第2个子图
plt.scatter(y[:, 0], y[:, 1], c=color, cmap=plt.cm.Spectral)
ax1.set_title('t-SNE Curve', fontsize=14)
plt.show()

 实例2:手写数字

实例2结果

这个由于数据量太多,呈现的效果不是很明显 

实例2完整代码

from sklearn import preprocessing
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
import torchvisiontraindata = torchvision.datasets.MNIST(root='./t-SNE_dataset/', train=True, download=True)
testdata = torchvision.datasets.MNIST(root='./t-SNE_dataset/', train=False, download=True)X_train = traindata.data    #[60000, 28, 28]
y_train = traindata.targets #[60000]
X_test = testdata.data      #[10000, 28, 28]
y_test = testdata.targets   #[10000]X_train = X_train.view(len(X_train), -1)  #[样本数量, 特征维度];-1是根据原来的形状自动计算出新的维度大小,以保证总的元素个数不变,这里是28*28
X_test = X_test.view(len(X_test), -1)# t-SNE降维处理
tsne = TSNE(n_components=3, verbose=1 ,random_state=42)  #n_components=3表示降维后的维度为3,即将图像数据降低到三维;verbose=1表示打印详细的日志信息;random_state=42表示设置随机种子以保证可重复性。
train = tsne.fit_transform(X_train)
test = tsne.transform(X_test)  # 注意:使用已经训练好的t-SNE对象对验证集进行降维,不再fit_transform# 归一化处理
scaler = preprocessing.MinMaxScaler(feature_range=(-1,1))
train = scaler.fit_transform(train)
test = scaler.transform(test)  # 对验证集进行归一化处理,使用训练集的scaler对象进行transformfig = plt.figure(figsize=(20, 20))
ax = fig.add_subplot(projection='3d') #创建一个三维坐标轴,并将它添加到图像窗口中
ax.set_title('t-SNE process')
ax.scatter(train[:,0], train[:,1], train[:,2] , c=y_train, marker='o', label='Train', s=10)  
#c=y_train表示根据训练集的标签y_train来对散点进行颜色编码,每个标签对应一个特定的颜色。s=10将每个数据点的大小设置为 10 像素,使用marker='o'表示使用圆圈形状的标记来表示训练集
ax.scatter(test[:,0], test[:,1], test[:,2] , c=y_test, marker='^', label='Test', s=10)  # 使用marker='^'表示使用三角形形状的标记来表示验证集
ax.legend()  # 添加图例,以便区分训练集和验证集plt.show()

实例3:自己的实验(判断迁移是否有效)

实例3实验结果 :

实例3代码:

from __future__ import print_function
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torch.autograd import Variable
import os
from data_loader_new import DatasetFolder
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
from sklearn import preprocessingdef sne():ckpt_model_0 = "E:/XD_DANN/dataset1400/result1214/mnist_mnistm_model_epoch_0.pth"my_net_0 = torch.load(ckpt_model_0)ckpt_model_9 = "E:/XD_DANN/dataset1400/result1214/mnist_mnistm_model_epoch_99.pth"my_net_9 = torch.load(ckpt_model_9)alpha = 0source_dataset_name = 'shallow_train'  ###target_dataset_name = 'deep_train'  ###source_image_root = os.path.join('..', 't_SNE', source_dataset_name)target_image_root = os.path.join('..', 't_SNE', target_dataset_name)dataset_source = DatasetFolder(source_image_root)dataloader_source = DataLoader(dataset=dataset_source,batch_size=len(dataset_source),shuffle=True,num_workers=8)data_source_iter = iter(dataloader_source)s_img, _, _ = next(data_source_iter)  #图片,标签,位置信息_, _, s_feature_0 = my_net_0(input_data=s_img, alpha=alpha)_, _, s_feature_9 = my_net_9(input_data=s_img, alpha=alpha)  #类别,领域,特征print("源域数据加载成功")dataset_target = DatasetFolder(root=target_image_root)dataloader_target = DataLoader(dataset=dataset_target,batch_size=len(dataset_target),shuffle=True,num_workers=8)data_target_iter = iter(dataloader_target)t_img,_ ,_ = next(data_target_iter)_, _, t_feature_0 = my_net_0(input_data=t_img, alpha=alpha)_, _, t_feature_9 = my_net_9(input_data=t_img, alpha=alpha)  # 类别,领域,特征print("目标域数据加载成功")# s_img = s_img.view(len(s_img), -1)  # [样本数量, 特征维度];-1是根据原来的形状自动计算出新的维度大小,以保证总的元素个数不变,这里是28*28# t_img = t_img.view(len(t_img), -1)s_feature_0 = s_feature_0.view(len(s_feature_0), -1)t_feature_0 = t_feature_0.view(len(t_feature_0), -1)s_feature_9 = s_feature_9.view(len(s_feature_9), -1)t_feature_9 = t_feature_9.view(len(t_feature_9), -1)tsne = TSNE(n_components=2, verbose=1,random_state=42)  # n_components=3表示降维后的维度为3,即将图像数据降低到三维;verbose=1表示打印详细的日志信息;random_state=42表示设置随机种子以保证可重复性。# shallow_before = tsne.fit_transform(s_img.detach().numpy())# deep_before = tsne.fit_transform(t_img.detach().numpy())shallow_before = tsne.fit_transform(s_feature_0.detach().numpy())deep_before = tsne.fit_transform(t_feature_0.detach().numpy())shallow_after = tsne.fit_transform(s_feature_9.detach().numpy())deep_after = tsne.fit_transform(t_feature_9.detach().numpy())scaler = preprocessing.MinMaxScaler(feature_range=(-1, 1))shallow_before = scaler.fit_transform(shallow_before)deep_before = scaler.fit_transform(deep_before)shallow_after = scaler.fit_transform(shallow_after)deep_after = scaler.transform(deep_after)  # 对验证集进行归一化处理,使用训练集的scaler对象进行transformfig = plt.figure(figsize=(30, 30))ax = fig.add_subplot(211)ax.set_title('第0轮次训练结果')ax.scatter(shallow_before[:, 0], shallow_before[:, 1], c='gray', marker='o', label='shallow', s=10)ax.scatter(deep_before[:, 0], deep_before[:, 1], c='red', marker='^', label='deep', s=10)ax.legend()ax = fig.add_subplot(212)ax.set_title('第99轮次训练结果')ax.scatter(shallow_after[:,0], shallow_after[:,1],  c='gray', marker='o', label='shallow', s=10)ax.scatter(deep_after[:,0], deep_after[:,1] , c='red', marker='^', label='deep', s=10)  # 使用marker='^'表示使用三角形形状的标记来表示验证集ax.legend()  # 添加图例,以便区分训练集和验证集plt.rcParams['font.sans-serif'] = ['SimHei']  ## 用来正常显示中文标签plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号plt.show()if __name__ == '__main__':sne()print('done')

大家可以根据自己的实验需要更改代码,提醒若需要显示中文/负号,别忘了这两行代码哟!

plt.rcParams['font.sans-serif'] = ['SimHei']  ## 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号

参考:http://t.csdnimg.cn/cshBV

相关文章:

t-SNE高维数据可视化实例

t-SNE:高维数据分布可视化 实例1:自动生成一个S形状的三维曲线 实例1结果: 实例1完整代码: import matplotlib.pyplot as plt from sklearn import manifold, datasets """对S型曲线数据的降维和可视化"&q…...

配置应用到k8s

配置应用到k8s,前置条件是安装了Docker,Minikube,kubectl 应用已经通过Docker生成本地镜像文件 1,创建godemo-deployment.yaml apiVersion: apps/v1kind: Deploymentmetadata:name: godemo-deploymentspec:replicas: 3 #启动三个…...

(四)STM32 操作 GPIO 点亮 LED灯 / GPIO工作模式

目录 1. STM32 工程模板中的工程目录介绍 2. GPIO 简介 3. GPIO 框图剖析 1)保护二极管及上、下拉电阻 2) P-MOS 管和 N-MOS 管 3)输出数据寄存器 3.1)ODR 端口输出数据寄存器 3.2)BSRR 端口位设置/清除寄存器 4&a…...

你知道跨站脚本攻击吗?一篇带你了解什么叫做XSS

1.XSS简介 (1)XSS简介 XSS作为OWASP TOP 10之一。 XSS中文叫做跨站脚本攻击(Cross-site scripting),本名应该缩写为CSS,但是由于CSS(Cascading Style Sheets,层叠样式脚本&#x…...

JVM入门

JVM概述 JVM位置 JVM体系结构 注意:栈中一定不存在垃圾,栈中数据用完一个弹出一个,总结来说,栈区、本地方法栈、程序计数器这三块必定不存在垃圾。JVM调优主要是针对方法区、堆(99%)进行调优。 常用的第三…...

Cmake基础(5)

这篇文章主要描述如何使用cmake构建一个库工程 文章目录 add_libraryinstall 库工程的代码:头文件和源文件 #ifndef ADD_H #define ADD_H#ifdef _WIN32 #ifdef MYMATH_EXPORTS #define MYMATH_API __declspec(dllexport) #else #define MYMATH_API __declspec(dll…...

Rabbitmq 死信取消超时订单

本文使用的版本 otp_win64_25.0rabbitmq-server-3.11.26rabbitmq插件 rabbitmq_delayed_message_exchange-3.11.1 pom.xml文件 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-amqp</artifactId> …...

C语言—每日选择题—Day55

指针相关博客 打响指针的第一枪&#xff1a;指针家族-CSDN博客 深入理解&#xff1a;指针变量的解引用 与 加法运算-CSDN博客 第一题 1. 若有如下定义&#xff0c;则 p1&m&#xff1b;p2p1&#xff1b; 是正确赋值语句.说法是否正确&#xff1f; int *p1; int *p2; int m …...

软件测试岗位的简历怎么写?项目怎么包装

已经帮大家打包好了包装好的简历模板&#xff0c;大家可以直接进行套用&#xff0c;详情请望下看 自动化测试相关教程推荐&#xff1a; 2023最新自动化测试自学教程新手小白26天入门最详细教程,目前已有300多人通过学习这套教程入职大厂&#xff01;&#xff01;_哔哩哔哩_bili…...

服务器解析漏洞是什么?攻击检测及修复

服务器解析漏洞&#xff08;Server-side Include Vulnerability&#xff0c;SSI漏洞&#xff09;是一种安全漏洞&#xff0c;通常出现在支持服务器端包含&#xff08;SSI&#xff09;功能的Web服务器上。SSI是一种在Web页面中嵌入动态内容的技术&#xff0c;允许开发人员将外部…...

HTML---CSS美化网页元素

文章目录 前言一、pandas是什么&#xff1f;二、使用步骤 1.引入库2.读入数据总结 一.div 标签&#xff1a; <div>是HTML中的一个常用标签&#xff0c;用于定义HTML文档中的一个区块&#xff08;或一个容器&#xff09;。它可以包含其他HTML元素&#xff0c;如文本、图像…...

【Docker】基础篇

文章目录 Docker为什么出现容器和虚拟机关于虚拟机关于Docker二者区别&#xff1a; Docker的基本组成相关概念-镜像&#xff0c;容器&#xff0c;仓库安装Docker卸载docker阿里云镜像加速docker run的原理**为什么容器比虚拟机快**Docker的常用命令1.帮助命令2.镜像相关命令3.容…...

Potplayer播放器远程访问群晖WebDav本地资源【内网穿透】

文章目录 本教程解决的问题是&#xff1a;按照本教程方法操作后&#xff0c;达到的效果是&#xff1a;1 使用环境要求&#xff1a;2 配置webdav3 测试局域网使用potplayer访问webdav3 内网穿透&#xff0c;映射至公网4 使用固定地址在potplayer访问webdav 国内流媒体平台的内容…...

【神经网络】imshow展示图片报错

文章目录 代码示例报错信息报错原因解决方法其他问题 代码示例 plt.imshow(np.squeeze(images[0]))报错信息 Invalid shape (3, 60, 90) for image data报错原因 格式错误&#xff0c;输入具有RGB值的图像&#xff0c;输入三维数组参数的格式应该是&#xff08;高度&#xf…...

【C++】对象特性:无参有参构造函数,拷贝构造函数,析构函数

目录 对象的初始化和清理1.1 构造函数和析构函数1.2 构造函数的分类及调用1.3 拷贝构造函数调用时机1.4 构造函数调用规则1.5 深拷贝与浅拷贝 对象的初始化和清理 生活中我们买的电子产品都基本会有出厂设置&#xff0c;在某一天我们不用时候也会删除一些自己信息数据保证安全。…...

【算法与数据结构】1005、LeetCode K 次取反后最大化的数组和

文章目录 一、题目二、解法三、完整代码 所有的LeetCode题解索引&#xff0c;可以看这篇文章——【算法和数据结构】LeetCode题解。 一、题目 二、解法 思路分析&#xff1a;本题允许某个下标的数字多次翻转&#xff0c;因此思路比较简单。首先&#xff0c;我们要求最大和&…...

作业--day34

使用select完成TCP并发服务器和客户端 server.c #include <myhead.h>#define PORT 8888 #define IP "192.168.125.137"int main(int argc, const char *argv[]) {int sfd socket(AF_INET, SOCK_STREAM, 0);if(sfd -1){perror("socket error");re…...

车辆违规开启远光灯检测系统:融合YOLO-MS改进YOLOv8

1.研究背景与意义 项目参考AAAI Association for the Advancement of Artificial Intelligence 研究背景与意义 随着社会的不断发展和交通工具的普及&#xff0c;车辆违规行为成为了一个严重的问题。其中&#xff0c;车辆违规开启远光灯是一种常见的违规行为&#xff0c;给其…...

爬虫工作量由小到大的思维转变---<第十三章 Scrapy之pipelines分离的思考>

前言: 收到留言: "我的爬取的数据处理有点大,scrapy抓网页挺快,处理数据慢了!" -----针对这位粉丝留言,我只想说:你那培训班老师可能给你漏了课程! 大概你们上课讲的案例属于demo,他教了你一些基本操作,但他没有对相关业务对你讲透! 你研究一下pipelines,或者看我现…...

【Unity】运行时创建曲线(贝塞尔的运用)

[Unity]运行时创建线&#xff08;贝塞尔的运用&#xff09; 1. 实现的目标 在运行状态下创建一条可以使用贝塞尔方法实时编辑的网格曲线。 2. 原理介绍 2.1 曲线的创建 unity建立网格曲线可以参考Unity程序化网格体的实现方法。主要分为顶点&#xff0c;三角面&#xff0c…...

云计算——弹性云计算器(ECS)

弹性云服务器&#xff1a;ECS 概述 云计算重构了ICT系统&#xff0c;云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台&#xff0c;包含如下主要概念。 ECS&#xff08;Elastic Cloud Server&#xff09;&#xff1a;即弹性云服务器&#xff0c;是云计算…...

Leetcode 3576. Transform Array to All Equal Elements

Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接&#xff1a;3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到&#xf…...

React hook之useRef

React useRef 详解 useRef 是 React 提供的一个 Hook&#xff0c;用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途&#xff0c;下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...

Admin.Net中的消息通信SignalR解释

定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...

FFmpeg 低延迟同屏方案

引言 在实时互动需求激增的当下&#xff0c;无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作&#xff0c;还是游戏直播的画面实时传输&#xff0c;低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架&#xff0c;凭借其灵活的编解码、数据…...

MMaDA: Multimodal Large Diffusion Language Models

CODE &#xff1a; https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA&#xff0c;它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构&#xf…...

【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力

引言&#xff1a; 在人工智能快速发展的浪潮中&#xff0c;快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型&#xff08;LLM&#xff09;。该模型代表着该领域的重大突破&#xff0c;通过独特方式融合思考与非思考…...

五年级数学知识边界总结思考-下册

目录 一、背景二、过程1.观察物体小学五年级下册“观察物体”知识点详解&#xff1a;由来、作用与意义**一、知识点核心内容****二、知识点的由来&#xff1a;从生活实践到数学抽象****三、知识的作用&#xff1a;解决实际问题的工具****四、学习的意义&#xff1a;培养核心素养…...

【配置 YOLOX 用于按目录分类的图片数据集】

现在的图标点选越来越多&#xff0c;如何一步解决&#xff0c;采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集&#xff08;每个目录代表一个类别&#xff0c;目录下是该类别的所有图片&#xff09;&#xff0c;你需要进行以下配置步骤&#x…...

Python如何给视频添加音频和字幕

在Python中&#xff0c;给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加&#xff0c;包括必要的代码示例和详细解释。 环境准备 在开始之前&#xff0c;需要安装以下Python库&#xff1a;…...