Elasticsearch:生成 AI 中的微调与 RAG
在自然语言处理 (NLP) 领域,出现了两种卓越的技术,每种技术都有其独特的功能:微调大型语言模型 (LLM) 和 RAG(检索增强生成)。 这些方法极大地影响了我们利用语言模型的方式,使它们更加通用和有效。 在本文中,我们将详细介绍微调和 RAG 的含义,并强调它们之间的主要区别。
深入研究微调 LLM:为特定任务定制语言模型
微调是生成人工智能中的一个关键过程,其中预训练的语言模型是针对特定任务或领域/任务定制的。 它涉及完善模型执行专门任务的能力。 (例如,领域:财务,任务:总结)
理解 RAG:使 AI 生成的文本更加上下文相关、事实准确
RAG 代表 “检索增强生成”。 简单来说,RAG是人工智能中一种将信息检索与文本生成相结合的技术。 它可以帮助人工智能模型提供更准确且与上下文相关的响应。
区别:微调与 RAG
微调大语言模型 (LLM) 和 RAG(检索增强生成)是构建和使用自然语言处理模型的两种不同方法。 以下是两者之间主要区别的细分:
目的:
- 微调 LLM:微调涉及采用预先训练的 LLM(例如 GPT-3 或 BERT)并使其适应特定任务。 它是一种用于各种 NLP 任务的通用方法,包括文本分类、语言翻译、情感分析等。 当仅使用模型本身即可完成任务并且不需要外部信息检索时,通常会使用微调的 LLM。
- RAG:RAG 模型专为涉及文本检索和生成的任务而设计。 它们结合了检索机制(从大型数据库中获取相关信息)和生成机制(根据检索到的信息生成类似人类的文本)。 RAG 模型通常用于问答、文档摘要以及其他访问本地信息至关重要的任务。
架构:
- 微调 LLM:微调 LLM 通常从预先训练的模型(如 GPT-3)开始,并通过针对特定任务的数据进行训练来对其进行微调。 该架构基本保持不变,只是对模型参数进行了调整,以优化特定任务的性能。
- RAG:RAG 模型具有混合架构,将基于转换器的 LLM(如 GPT)与外部内存模块相结合,允许从知识源(例如数据库或一组文档)进行高效检索。
训练数据:
- 微调 LLM:微调 LLM 依赖于特定于任务的训练数据,通常由与目标任务匹配的标记示例组成,但它们没有明确涉及检索机制。
- RAG:RAG 模型经过训练可以处理检索和生成,这通常涉及监督数据(用于生成)和演示如何有效检索和使用外部信息的数据的组合。
用例:
- 微调 LLM:微调 LLM 适用于各种 NLP 任务,包括文本分类、情感分析、文本生成等,其中任务主要涉及根据输入理解和生成文本。
- RAG:RAG 模型在任务需要访问外部知识的场景中表现出色,例如开放域问答、文档摘要或可以从知识库提供信息的聊天机器人。
使用 Elasticsearch 拥抱 RAG
RAG 是 NLP 领域的一项关键创新,它集成了检索模型和生成模型的功能,以生成连贯、上下文丰富的文本。
RAG 将检索模型(如我们上面所描述的)与生成模型相结合,检索模型充当 “图书馆员”,扫描大型数据库以获取相关信息,生成模型充当 “作家”,将这些信息合成为与任务更相关的文本。 它用途广泛,适用于实时新闻摘要、自动化客户服务和复杂研究任务等多种领域。
RAG 需要检索模型,例如跨嵌入的向量搜索,与通常基于 LLMs 构建的生成模型相结合,该模型能够将检索到的信息合成为有用的响应。
总结
总之,RAG 和微调 LLM 之间的主要区别在于它们的架构设计和目的。 RAG 模型专门用于需要信息检索和文本生成相结合的任务,而微调 LLM 则适用于特定的 NLP 任务,而不需要外部知识检索。 这些方法之间的选择取决于任务的性质以及是否涉及与外部信息源交互。
相关文章:
Elasticsearch:生成 AI 中的微调与 RAG
在自然语言处理 (NLP) 领域,出现了两种卓越的技术,每种技术都有其独特的功能:微调大型语言模型 (LLM) 和 RAG(检索增强生成)。 这些方法极大地影响了我们利用语言模型的方式,使它们更加通用和有效。 在本文…...
ip静态好还是dhcp好?
选择使用静态 IP 还是 DHCP(动态主机配置协议)取决于您的网络需求和环境。下面是它们的一些特点和适用场景: 静态 IP: 固定的 IP 地址:静态 IP 是手动配置在设备上的固定 IP 地址,不会随时间或网络变化而改…...
PolarDB-X、OceanBase、CockroachDB、TiDB二级索引写入性能测评
为什么要做这个测试 二级索引是关系型数据库相较于NoSQL数据库的一个关键差异。二级索引必须是强一致的,因此索引的写入需要与主键的写入放在一个事务当中,事务的性能是二级索引性能的基础。 目前市面上的分布式数据库中,从使用体验的角度看…...
Convolutional Neural Network(CNN)——卷积神经网络
1.NN的局限性 拓展性差 NN的计算量大性能差,不利于在不同规模的数据集上有效运行若输入维度发生变化,需要修改并重新训练网络容易过拟合 全连接导致参数量特别多,容易过拟合如果增加更多层,参数量会翻倍无法有效利用局部特征 输入…...
鸿蒙开发基本概念
1、开发准备 1.1、UI框架 HarmonyOS提供了一套UI开发框架,即方舟开发框架(ArkUI框架)。方舟开发框架可为开发者提供应用UI开发所必需的能力,比如多种组件、布局计算、动画能力、UI交互、绘制等。 方舟开发框架针对不同目的和技术…...
Open CV 图像处理基础:(二)从基本概念到实践操作
Open CV 图像处理基础:从基本概念到实践操作 一、引言 图像处理是计算机视觉领域的一个重要分支,它涉及对图像的各种操作和处理。了解图像的基本概念、读取和显示方法以及基本操作是图像处理的基础。本文将通过示例文章的形式,帮助初学者逐…...
【MAC】M2 安装docker 与 mysql
一、docker下载地址 下载地址 二、安装docker完成 罗列一下docker常用命令 # 查看docker版本 docker --version# 拉取镜像 docker pull 镜像名# 查看当前所有镜像 docker images# 查看运行中的容器 docker ps -a docker ps grep| 镜像名#镜像启动操作: sudo dock…...
轻量级web开发框架Flask本地部署及无公网ip远程访问界面
文章目录 前言1. 安装部署Flask2. 安装Cpolar内网穿透3. 配置Flask的web界面公网访问地址4. 公网远程访问Flask的web界面 前言 本篇文章讲解如何在本地安装Flask,以及如何将其web界面发布到公网上并进行远程访问。 Flask是目前十分流行的web框架,采用P…...
用最通俗的语言讲解 TCP “三次握手,四次挥手”
目录 一. 前言 二. TCP 报文的头部结构 三. 三次握手 3.1. 三次握手过程 3.2. 为什么要三次握手 四. 四次挥手 4.1. 四次挥手过程 4.2. 为什么要四次挥手 五. 大白话说 5.1. 大白话说三次握手 5.2. 大白话说四次挥手 六. 总结 一. 前言 TCP 是一种面向连接的、可靠…...
使用RedisCacheWriter#clean在线异步地批量扫描匹配删除缓存数据-spring-data-redis
1.背景 生产环境,某云的某个业务Redis实例,触发内存使用率,连续 3 次 平均值 > 85 %告警。 运维同学告知,看看需要怎么优化或者升级配置?分享了其实例RDB的内存剖析链接。 通过内存剖析详情发现,存在某…...
机器视觉:AI赋能缺陷检测,铸就芯片产品的大算力与高能效
导言:近年来,国内芯片行业快速发展,市场对芯片需求的不断增大,芯片的缺陷检测压力也越来越大。芯片产品在生产制造过程中,需要经历数道工序,每个生产环节的材料、环境、工艺参数等都有可能造成产品缺陷。不…...
(9)Linux Git的介绍以及缓冲区
💭 前言 本章我们先对缓冲区的概念进行一个详细的探究,之后会带着大家一步步去编写一个简陋的 "进度条" 小程序。最后我们来介绍一下 Git,着重讲解一下 Git 三板斧,一般只要掌握三板斧就基本够用了。 缓冲区ÿ…...
华为云之ECS云产品快速入门
华为云之ECS云产品快速入门 一、ECS云服务器介绍二、本次实践目标三、创建虚拟私有云VPC1.虚拟私有云VPC介绍2.进入虚拟私有云VPC管理页面3.创建虚拟私有云4.查看创建的VPC 四、创建弹性云服务器ECS——Linux1.进入ECS购买界面2.创建弹性云服务器(Linux)——基础配置步骤3.创建…...
tcp 的限制 (TCP_WRAPPERS)
#江南的江 #每日鸡汤:青春是打开了就合不上的书,人生是踏上了就回不了头的路,爱情是扔出了就收不回的赌注。 #初心和目标:拿到高级网络工程师 TCP_WRAPPERs Tcp_wrappers 对于七层模型中是位于第四层的安全工具,他…...
如何保证架构的质量
1. 如何保证架构的质量: ①. 稳定性、健壮性(1). 系统稳定性: ①. 定义:a. 当一个实际的系统处于一个平衡的状态时,如果受到外来作用的影响时,系统经过一个过渡过程仍然能够回到原来的平衡状态.b. 可以说这个系统是稳定的,否则系统不稳定c. 如一根绳子绑着小球,处于垂直状态,…...
JavaWeb笔记之前端开发JavaScript
一、引言 1.1 简介 JavaScript一种解释性脚本语言,是一种动态类型、弱类型、基于原型继承的语言,内置支持类型。 它的解释器被称为JavaScript引擎,作为浏览器的一部分,广泛用于客户端的脚本语言,用来给HTML网页增加…...
SCAU:18063 圈中的游戏
18063 圈中的游戏 时间限制:1000MS 代码长度限制:10KB 提交次数:0 通过次数:0 题型: 编程题 语言: G;GCC;VC Description 有n个人围成一圈,从第1个人开始报数1、2、3,每报到3的人退出圈子。编程使用链表找出最后留下的人。输入格式 输入一个数n&a…...
.NET Core中鉴权 Authentication Authorization
Authentication: 鉴定身份信息,例如用户有没有登录,用户基本信息 Authorization: 判定用户有没有权限 使用框架提供的Cookie鉴权方式 1.首先在服务容器注入鉴权服务和Cookie服务支持 services.AddAuthentication(options > {options.DefaultAuthe…...
PyTorch深度学习实战(26)——卷积自编码器(Convolutional Autoencoder)
PyTorch深度学习实战(26)——卷积自编码器 0. 前言1. 卷积自编码器2. 使用 t-SNE 对相似图像进行分组小结系列链接 0. 前言 我们已经学习了自编码器 (AutoEncoder) 的原理,并使用 PyTorch 搭建了全连接自编码器,但我们使用的数据…...
Milvus实战:构建QA系统及推荐系统
Milvus简介 全民AI的时代已经在趋势之中,各类应用层出不穷,而想要构建一个完善的AI应用/系统,底层存储是不可缺少的一个组件。 与传统数据库或大数据存储不同的是,这种场景下则需要选择向量数据库,是专门用来存储和查…...
使用Docker部署Nexus Maven私有仓库并结合Cpolar实现远程访问
文章目录 1. Docker安装Nexus2. 本地访问Nexus3. Linux安装Cpolar4. 配置Nexus界面公网地址5. 远程访问 Nexus界面6. 固定Nexus公网地址7. 固定地址访问Nexus Nexus是一个仓库管理工具,用于管理和组织软件构建过程中的依赖项和构件。它与Maven密切相关,可…...
GEE-Sentinel-2月度时间序列数据合成并导出
系列文章目录 第一章:时间序列数据合成 文章目录 系列文章目录前言时间序列数据合成总结 前言 利用每个月可获取植被指数数据取均值,合成月度平均植被指数,然后将12个月中的数据合成一个12波段的时间数据合成数据。 时间序列数据合成 代码…...
【深度学习】语言模型与注意力机制以及Bert实战指引之二
文章目录 前言 前言 这一篇是bert实战的完结篇,准备中。...
计算机网络 网络层下 | IPv6 路由选择协议,P多播,虚拟专用网络VPN,MPLS多协议标签
文章目录 5 IPv65.1 组成5.2 IPv6地址5.3 从IPv4向IPv6过渡5.3.1 双协议栈5.3.2 隧道技术 6 因特网的路由选择协议6.1 内部网关协议RIP6.2 内部网关协议 OSPF基本特点 6.3 外部网关协议 BGP6.3.1 路由选择 6.4 路由器组成6.4.1 基本了解6.4.2 结构 7 IP多播7.1 硬件多播7.2 IP多…...
【MATLAB第83期】基于MATLAB的LSTM代理模型的SOBOL全局敏感性运用
【MATLAB第83期】基于MATLAB的LSTM代理模型的SOBOL全局敏感性运用 引言 在前面几期,介绍了敏感性分析法,本期来介绍lstm作为代理模型的sobol全局敏感性分析模型。 【MATLAB第31期】基于MATLAB的降维/全局敏感性分析/特征排序/数据处理回归问题MATLAB代…...
求奇数的和 C语言xdoj147
题目描述:计算给定一组整数中奇数的和,直到遇到0时结束。 输入格式:共一行,输入一组整数,以空格分隔 输出格式:输出一个整数 示例: 输入:1 2 3 4 5 0 6 7 输出:9 #inclu…...
全链路压力测试:解析其主要特点
随着信息技术的飞速发展和云计算的普及,全链路压力测试作为一种关键的质量保障手段,在软件开发和系统部署中扮演着至关重要的角色。全链路压力测试以模拟真实生产环境的压力和负载,对整个业务流程进行全面测试,具有以下主要特点&a…...
算法基础之约数个数
约数个数 核心思想: 用哈希表存每个质因数的指数 然后套公式 #include <iostream>#include <algorithm>#include <unordered_map>#include <vector>using namespace std;const int N 110 , mod 1e9 7;typedef long long LL; //long l…...
【ECharts】折线图
文章目录 折线图1折线图2折线图3示例 参考: Echarts官网 Echarts 配置项 折线图1 带X轴、Y轴标记线,其中X轴是’category’ 类目轴,适用于离散的类目数据。 let myChart echarts.init(this.$refs.line_chart2); let yList [400, 500, 6…...
java jdbc连接池
什么是连接池: Java JDBC连接池是一个管理和分配数据库连接的工具。在Java应用程序中,连接到数据库是一个耗时且资源密集的操作,而连接池可以通过创建一组预先初始化的数据库连接,然后将其保持在连接池中,并按需分配给…...
深圳广东网站建设套餐/郑州网站优化排名
01 listPython内置的一种数据类型是列表:list。list是一种有序的集合,可以随时添加和删除其中的元素。比如,列出班里所有同学的名字,就可以用一个list表示:classmates [Michael, Bob, Tracy]print(classmates)变量cla…...
福州网站制作策划/石家庄百度seo代理
思路: 点绘制出的多边形,且直线只能平行x轴或者y轴。 要求看不见的边有多长。 思路: 只需要算出周长,减去外周长就好了。 #include<cmath> #include<cstdio> #include<cstring> #include<algorithm> #i…...
用苹果cms做电影网站/最好的免费信息发布平台
需求: python代码实现 1. 按层打印二叉树 2. 需要打印二叉树层与层之间的斜线 3. 结点的下一层如果没有子节点,以‘N’代替 方法: 使用namedtuple表示二叉树使用StringIO方法,遍历时写入结果,最后打印出结果打印…...
17zwd一起做网站/百度seo关键词怎么做
如果你经常阅读Python的官方文档,可以看到很多文档都有示例代码。比如re模块就带了很多示例代码: >>> import re >>> m re.search((?<abc)def, abcdef) >>> m.group(0) def 可以把这些示例代码在Python的交互式环境下输…...
珠海哪个公司做网站好/网站seo诊断分析
早些时候,有个客户14块盘的磁盘阵列出现故障,需要恢复的数据是oracle数据库,客户在寻求数据恢复技术支持,要求我提供详细的数据恢复方案,以下是提供给客户的详细数据恢复解决方案,本方案包含Raid数据恢复和…...
南通网站建设方案服务/重庆seo排名优化
1,先到Oracle网站下载Instant Client : http://www.oracle.com/technology/global/cn/software/tech/oci/instantclient/index.html 根据你的操作系统选择不同的Instant Client版本 下载回是一个压缩文件,解压之后的文件夹叫:D:/instantclient_11_2.放在你喜欢的目录即可.例如:…...