当前位置: 首页 > news >正文

C# Onnx yolov8 plane detection

C# Onnx yolov8 plane detection

效果

模型信息

Model Properties
-------------------------
date:2023-12-22T10:57:49.823820
author:Ultralytics
task:detect
license:AGPL-3.0 https://ultralytics.com/license
version:8.0.172
stride:32
batch:1
imgsz:[640, 640]
names:{0: 'planes'}
---------------------------------------------------------------

Inputs
-------------------------
name:images
tensor:Float[1, 3, 640, 640]
---------------------------------------------------------------

Outputs
-------------------------
name:output0
tensor:Float[1, 5, 8400]
---------------------------------------------------------------

项目

代码

using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Drawing.Imaging;
using System.Linq;
using System.Windows.Forms;

namespace Onnx_Yolov8_Demo
{
    public partial class Form1 : Form
    {
        public Form1()
        {
            InitializeComponent();
        }

        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        string image_path = "";
        string startupPath;
        string classer_path;
        DateTime dt1 = DateTime.Now;
        DateTime dt2 = DateTime.Now;
        string model_path;
        Mat image;
        DetectionResult result_pro;
        Mat result_image;
        Result result;

        SessionOptions options;
        InferenceSession onnx_session;
        Tensor<float> input_tensor;
        List<NamedOnnxValue> input_container;
        IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;
        DisposableNamedOnnxValue[] results_onnxvalue;

        Tensor<float> result_tensors;

        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;
            pictureBox1.Image = null;
            image_path = ofd.FileName;
            pictureBox1.Image = new Bitmap(image_path);
            textBox1.Text = "";
            image = new Mat(image_path);
            pictureBox2.Image = null;
        }

        private void button2_Click(object sender, EventArgs e)
        {
            if (image_path == "")
            {
                return;
            }

            button2.Enabled = false;
            pictureBox2.Image = null;
            textBox1.Text = "";

            //图片缩放
            image = new Mat(image_path);
            int max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows;
            Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);
            Rect roi = new Rect(0, 0, image.Cols, image.Rows);
            image.CopyTo(new Mat(max_image, roi));

            float[] result_array = new float[8400 * 84];
            float[] factors = new float[2];
            factors[0] = factors[1] = (float)(max_image_length / 640.0);

            // 将图片转为RGB通道
            Mat image_rgb = new Mat();
            Cv2.CvtColor(max_image, image_rgb, ColorConversionCodes.BGR2RGB);
            Mat resize_image = new Mat();
            Cv2.Resize(image_rgb, resize_image, new OpenCvSharp.Size(640, 640));

            // 输入Tensor
            for (int y = 0; y < resize_image.Height; y++)
            {
                for (int x = 0; x < resize_image.Width; x++)
                {
                    input_tensor[0, 0, y, x] = resize_image.At<Vec3b>(y, x)[0] / 255f;
                    input_tensor[0, 1, y, x] = resize_image.At<Vec3b>(y, x)[1] / 255f;
                    input_tensor[0, 2, y, x] = resize_image.At<Vec3b>(y, x)[2] / 255f;
                }
            }

            //将 input_tensor 放入一个输入参数的容器,并指定名称
            input_container.Add(NamedOnnxValue.CreateFromTensor("images", input_tensor));

            dt1 = DateTime.Now;
            //运行 Inference 并获取结果
            result_infer = onnx_session.Run(input_container);
            dt2 = DateTime.Now;

            // 将输出结果转为DisposableNamedOnnxValue数组
            results_onnxvalue = result_infer.ToArray();

            // 读取第一个节点输出并转为Tensor数据
            result_tensors = results_onnxvalue[0].AsTensor<float>();

            result_array = result_tensors.ToArray();

            resize_image.Dispose();
            image_rgb.Dispose();

            result_pro = new DetectionResult(classer_path, factors);
            result = result_pro.process_result(result_array);
            result_image = result_pro.draw_result(result, image.Clone());

            if (!result_image.Empty())
            {
                pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
                textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";
            }
            else
            {
                textBox1.Text = "无信息";
            }

            button2.Enabled = true;
        }

        private void Form1_Load(object sender, EventArgs e)
        {
            startupPath = System.Windows.Forms.Application.StartupPath;

            model_path = "model/yolov8m-plane-detection.onnx";
            classer_path = "model/lable.txt";

            // 创建输出会话,用于输出模型读取信息
            options = new SessionOptions();
            options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
            options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行

            // 创建推理模型类,读取本地模型文件
            onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径

            // 输入Tensor
            input_tensor = new DenseTensor<float>(new[] { 1, 3, 640, 640 });
            // 创建输入容器
            input_container = new List<NamedOnnxValue>();

            image_path = "test_img/1.jpg";
            pictureBox1.Image = new Bitmap(image_path);
            image = new Mat(image_path);

        }

        private void pictureBox1_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox1.Image);
        }

        private void pictureBox2_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox2.Image);
        }

        SaveFileDialog sdf = new SaveFileDialog();
        private void button3_Click(object sender, EventArgs e)
        {
            if (pictureBox2.Image == null)
            {
                return;
            }
            Bitmap output = new Bitmap(pictureBox2.Image);
            sdf.Title = "保存";
            sdf.Filter = "Images (*.jpg)|*.jpg|Images (*.png)|*.png|Images (*.bmp)|*.bmp|Images (*.emf)|*.emf|Images (*.exif)|*.exif|Images (*.gif)|*.gif|Images (*.ico)|*.ico|Images (*.tiff)|*.tiff|Images (*.wmf)|*.wmf";
            if (sdf.ShowDialog() == DialogResult.OK)
            {
                switch (sdf.FilterIndex)
                {
                    case 1:
                        {
                            output.Save(sdf.FileName, ImageFormat.Jpeg);
                            break;
                        }
                    case 2:
                        {
                            output.Save(sdf.FileName, ImageFormat.Png);
                            break;
                        }
                    case 3:
                        {
                            output.Save(sdf.FileName, ImageFormat.Bmp);
                            break;
                        }
                    case 4:
                        {
                            output.Save(sdf.FileName, ImageFormat.Emf);
                            break;
                        }
                    case 5:
                        {
                            output.Save(sdf.FileName, ImageFormat.Exif);
                            break;
                        }
                    case 6:
                        {
                            output.Save(sdf.FileName, ImageFormat.Gif);
                            break;
                        }
                    case 7:
                        {
                            output.Save(sdf.FileName, ImageFormat.Icon);
                            break;
                        }

                    case 8:
                        {
                            output.Save(sdf.FileName, ImageFormat.Tiff);
                            break;
                        }
                    case 9:
                        {
                            output.Save(sdf.FileName, ImageFormat.Wmf);
                            break;
                        }
                }
                MessageBox.Show("保存成功,位置:" + sdf.FileName);
            }
        }
    }
}

using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Drawing.Imaging;
using System.Linq;
using System.Windows.Forms;namespace Onnx_Yolov8_Demo
{public partial class Form1 : Form{public Form1(){InitializeComponent();}string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";string image_path = "";string startupPath;string classer_path;DateTime dt1 = DateTime.Now;DateTime dt2 = DateTime.Now;string model_path;Mat image;DetectionResult result_pro;Mat result_image;Result result;SessionOptions options;InferenceSession onnx_session;Tensor<float> input_tensor;List<NamedOnnxValue> input_container;IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;DisposableNamedOnnxValue[] results_onnxvalue;Tensor<float> result_tensors;private void button1_Click(object sender, EventArgs e){OpenFileDialog ofd = new OpenFileDialog();ofd.Filter = fileFilter;if (ofd.ShowDialog() != DialogResult.OK) return;pictureBox1.Image = null;image_path = ofd.FileName;pictureBox1.Image = new Bitmap(image_path);textBox1.Text = "";image = new Mat(image_path);pictureBox2.Image = null;}private void button2_Click(object sender, EventArgs e){if (image_path == ""){return;}button2.Enabled = false;pictureBox2.Image = null;textBox1.Text = "";//图片缩放image = new Mat(image_path);int max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows;Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);Rect roi = new Rect(0, 0, image.Cols, image.Rows);image.CopyTo(new Mat(max_image, roi));float[] result_array = new float[8400 * 84];float[] factors = new float[2];factors[0] = factors[1] = (float)(max_image_length / 640.0);// 将图片转为RGB通道Mat image_rgb = new Mat();Cv2.CvtColor(max_image, image_rgb, ColorConversionCodes.BGR2RGB);Mat resize_image = new Mat();Cv2.Resize(image_rgb, resize_image, new OpenCvSharp.Size(640, 640));// 输入Tensorfor (int y = 0; y < resize_image.Height; y++){for (int x = 0; x < resize_image.Width; x++){input_tensor[0, 0, y, x] = resize_image.At<Vec3b>(y, x)[0] / 255f;input_tensor[0, 1, y, x] = resize_image.At<Vec3b>(y, x)[1] / 255f;input_tensor[0, 2, y, x] = resize_image.At<Vec3b>(y, x)[2] / 255f;}}//将 input_tensor 放入一个输入参数的容器,并指定名称input_container.Add(NamedOnnxValue.CreateFromTensor("images", input_tensor));dt1 = DateTime.Now;//运行 Inference 并获取结果result_infer = onnx_session.Run(input_container);dt2 = DateTime.Now;// 将输出结果转为DisposableNamedOnnxValue数组results_onnxvalue = result_infer.ToArray();// 读取第一个节点输出并转为Tensor数据result_tensors = results_onnxvalue[0].AsTensor<float>();result_array = result_tensors.ToArray();resize_image.Dispose();image_rgb.Dispose();result_pro = new DetectionResult(classer_path, factors);result = result_pro.process_result(result_array);result_image = result_pro.draw_result(result, image.Clone());if (!result_image.Empty()){pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";}else{textBox1.Text = "无信息";}button2.Enabled = true;}private void Form1_Load(object sender, EventArgs e){startupPath = System.Windows.Forms.Application.StartupPath;model_path = "model/yolov8m-plane-detection.onnx";classer_path = "model/lable.txt";// 创建输出会话,用于输出模型读取信息options = new SessionOptions();options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行// 创建推理模型类,读取本地模型文件onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径// 输入Tensorinput_tensor = new DenseTensor<float>(new[] { 1, 3, 640, 640 });// 创建输入容器input_container = new List<NamedOnnxValue>();image_path = "test_img/1.jpg";pictureBox1.Image = new Bitmap(image_path);image = new Mat(image_path);}private void pictureBox1_DoubleClick(object sender, EventArgs e){Common.ShowNormalImg(pictureBox1.Image);}private void pictureBox2_DoubleClick(object sender, EventArgs e){Common.ShowNormalImg(pictureBox2.Image);}SaveFileDialog sdf = new SaveFileDialog();private void button3_Click(object sender, EventArgs e){if (pictureBox2.Image == null){return;}Bitmap output = new Bitmap(pictureBox2.Image);sdf.Title = "保存";sdf.Filter = "Images (*.jpg)|*.jpg|Images (*.png)|*.png|Images (*.bmp)|*.bmp|Images (*.emf)|*.emf|Images (*.exif)|*.exif|Images (*.gif)|*.gif|Images (*.ico)|*.ico|Images (*.tiff)|*.tiff|Images (*.wmf)|*.wmf";if (sdf.ShowDialog() == DialogResult.OK){switch (sdf.FilterIndex){case 1:{output.Save(sdf.FileName, ImageFormat.Jpeg);break;}case 2:{output.Save(sdf.FileName, ImageFormat.Png);break;}case 3:{output.Save(sdf.FileName, ImageFormat.Bmp);break;}case 4:{output.Save(sdf.FileName, ImageFormat.Emf);break;}case 5:{output.Save(sdf.FileName, ImageFormat.Exif);break;}case 6:{output.Save(sdf.FileName, ImageFormat.Gif);break;}case 7:{output.Save(sdf.FileName, ImageFormat.Icon);break;}case 8:{output.Save(sdf.FileName, ImageFormat.Tiff);break;}case 9:{output.Save(sdf.FileName, ImageFormat.Wmf);break;}}MessageBox.Show("保存成功,位置:" + sdf.FileName);}}}
}

下载

源码下载

相关文章:

C# Onnx yolov8 plane detection

C# Onnx yolov8 plane detection 效果 模型信息 Model Properties ------------------------- date&#xff1a;2023-12-22T10:57:49.823820 author&#xff1a;Ultralytics task&#xff1a;detect license&#xff1a;AGPL-3.0 https://ultralytics.com/license version&am…...

Oracle定时任务的创建与禁用/删除

在开始操作之前&#xff0c;先从三W开始&#xff0c;即我常说的what 是什么&#xff1b;why 为什么使用&#xff1b;how 如何使用。 一、Oracle定时器是什么 Oracle定时器是一种用于在特定时间执行任务或存储过程的工具&#xff0c;可以根据需求设置不同的时间段和频率来执行…...

Asp.Net Core 项目中常见中间件调用顺序

常用的 AspNetCore 项目中间件有这些&#xff0c;调用顺序如下图所示&#xff1a; 最后的 Endpoint 就是最终生成响应的中间件。 Configure调用如下&#xff1a; public void Configure(IApplicationBuilder app, IWebHostEnvironment env){if (env.IsDevelopment()){app.UseD…...

【JVM】一、认识JVM

文章目录 1、虚拟机2、Java虚拟机3、JVM的整体结构4、Java代码的执行流程5、JVM的分类6、JVM的生命周期 1、虚拟机 虚拟机&#xff0c;Virtual Machine&#xff0c;一台虚拟的计算机&#xff0c;用来执行虚拟计算机指令。分为&#xff1a; 系统虚拟机&#xff1a;如VMware&am…...

[SWPUCTF 2021 新生赛]Do_you_know_http已

打开环境 它说用WLLM浏览器打开&#xff0c;使用BP抓包&#xff0c;发送到重发器 修改User-Agent 下一步&#xff0c;访问a.php 这儿他说添加一个本地地址&#xff0c;它给了一个183.224.40.160&#xff0c;我用了发现没用&#xff0c;然后重新添加一个地址&#xff1a;X-Forwa…...

hadoop01_完全分布式搭建

hadoop完全分布式搭建 1 完全分布式介绍 Hadoop运行模式包括&#xff1a;本地模式&#xff08;计算的数据存在Linux本地&#xff0c;在一台服务器上 自己测试&#xff09;、伪分布式模式&#xff08;和集群接轨 HDFS yarn&#xff0c;在一台服务器上执行&#xff09;、完全分…...

【每日一题】得到山形数组的最少删除次数

文章目录 Tag题目来源解题思路方法一&#xff1a;最长递增子序列 写在最后 Tag 【最长递增子序列】【数组】【2023-12-22】 题目来源 1671. 得到山形数组的最少删除次数 解题思路 方法一&#xff1a;最长递增子序列 前后缀分解 根据前后缀思想&#xff0c;以 nums[i] 为山…...

2023年,为什么汽车依然有很多小毛病?

汽车出现小毛病是一个复杂的问题&#xff0c;其原因涉及到汽车本身的设计、制造质量、维护保养以及使用环境等多个方面。只有汽车制造商、车主和社会各界共同努力&#xff0c;才能够减少汽车的小毛病&#xff0c;提高汽车的可靠性和安全性。 比如&#xff0c;汽车的维护和保养…...

yocto系列讲解[实战篇]93 - 添加Qtwebengine和Browser实例

By: fulinux E-mail: fulinux@sina.com Blog: https://blog.csdn.net/fulinus 喜欢的盆友欢迎点赞和订阅! 你的喜欢就是我写作的动力! 目录 概述集成meta-qt5移植过程中的问题问题1:virtual/libgl set to mesa, not mesa-gl问题2:dmabuf-server-buffer tries to use undecl…...

Python实验报告十一、自定义类模拟三维向量及其运算

一、实验目的&#xff1a; 1、了解如何定义一个类。 2、了解如何定义类的私有数据成员和成员方法。 3、了解如何使用自定义类实例化对象。 二、实验内容&#xff1a; 定义一个三维向量类&#xff0c;并定义相应的特殊方法实现两个该类对象之间的加、减运算&#xff08;要…...

机器学习 | 聚类Clustering 算法

物以类聚人以群分。 什么是聚类呢&#xff1f; 1、核心思想和原理 聚类的目的 同簇高相似度 不同簇高相异度 同类尽量相聚 不同类尽量分离 聚类和分类的区别 分类 classification 监督学习 训练获得分类器 预测未知数据 聚类 clustering 无监督学习&#xff0c;不关心类别标签 …...

IntelliJ IDEA 2023.3 新功能介绍

IntelliJ IDEA 2023.3 在众多领域进行了全面的改进&#xff0c;引入了许多令人期待的功能和增强体验。以下是该版本的一些关键亮点&#xff1a; IntelliJ IDEA mac版下载 macappbox.com/a/intellij-idea-for-mac.html 1. AI Assistant 的全面推出 IntelliJ IDEA 2023.3 中&am…...

2. 行为模式 - 命令模式

亦称&#xff1a; 动作、事务、Action、Transaction、Command 意图 命令模式是一种行为设计模式&#xff0c; 它可将请求转换为一个包含与请求相关的所有信息的独立对象。 该转换让你能根据不同的请求将方法参数化、 延迟请求执行或将其放入队列中&#xff0c; 且能实现可撤销…...

Java智慧工地源码 SAAS智慧工地源码 智慧工地管理可视化平台源码 带移动APP

一、系统主要功能介绍 系统功能介绍&#xff1a; 【项目人员管理】 1. 项目管理&#xff1a;项目名称、施工单位名称、项目地址、项目地址、总造价、总面积、施工准可证、开工日期、计划竣工日期、项目状态等。 2. 人员信息管理&#xff1a;支持身份证及人脸信息采集&#…...

php学习02-php标记风格

<?php echo "这是xml格式风格" ?><script language"php">echo 脚本风格标记 </script><% echo "这是asp格式风格" %>推荐使用xml格式风格 如果要使用简短风格和ASP风格&#xff0c;需要在php.ini中对其进行配置&#…...

13.1 jar文件

13.1 jar文件 java归档&#xff08;JAR&#xff09;文件&#xff0c;将应用程序打包后仅提供的单独文件&#xff0c;可包含类文件&#xff0c;也可包含图片、声音等其他类型文件。 JAR文件使用了大家熟悉的Zip压缩格式&#xff0c;pack200为通常的zip压缩算法&#xff0c;对类…...

论文阅读:Long-Term Visual Simultaneous Localization and Mapping

论文摘要指出&#xff0c;为了在长期变化的环境中准确进行定位&#xff0c;提出了一种新型的长期视觉SLAM&#xff08;同步定位与地图构建&#xff09;系统&#xff0c;该系统具备地图预测和动态物体移除功能。系统首先设计了一个高效的视觉点云匹配算法&#xff0c;将2D像素信…...

Docker 学习总结(80)—— 轻松驾驭容器,玩转 LazyDocker

前言 LazyDocker 是一个用户友好的命令行工具,简化了 Docker 的管理。它能够通过单一命令执行常见的 Docker 任务,如启动、停止、重启和移除容器。LazyDocker 还能轻松查看日志、清理未使用的容器和镜像,并自定义指标。 简绍 LazyDocker 是一个用户友好的 CLI 工具,可以轻…...

Android 13 - Media框架(24)- MediaCodecList

这一节我们要了解 MediaCodecList 中的信息是如何加载的&#xff0c;以及这些信息是如何使用到的。 // static sp<IMediaCodecList> MediaCodecList::getLocalInstance() {Mutex::Autolock autoLock(sInitMutex);if (sCodecList nullptr) {MediaCodecList *codecList n…...

【稳定检索|投稿优惠】2024年交通运输与能源动力国际学术会议(IACTEP 2024)

2024年交通运输与能源动力国际学术会议(IACTEP 2024) 2024 International Academic Conference on Transportation and Energy Power(IACTEP) 一、【会议简介】 2024年交通运输与能源动力国际学术会议(IACTEP 2024)将在美丽的三亚盛大启幕。本次会议将聚焦交通运输与能源动力等…...

React学习计划-React16--React基础(三)收集表单数据、高阶函数柯里化、类的复习

1. 收集表单数据 包含表单的组件分类 受控组件——页面中所有输入类的DOM,随着输入&#xff0c;把值存维护在状态里&#xff0c;需要用的时候去状态里取值&#xff08;推荐&#xff0c;避免了过渡使用ref&#xff09;非受控组件——页面中所有输入类的DOM&#xff0c;现用现取…...

研究生课程 |《数值分析》复习

搭配往年真题册食用最佳。...

55 回溯算法解黄金矿工问题

问题描述&#xff1a;你要开发一座金矿&#xff0c;地质学家已经探明了这座金矿中的资源分布&#xff0c;并用大小为m*n的网格grid进行了标注&#xff0c;每个单元格中的整数就表示这一单元格中的黄金数量&#xff1b;如果单元格是空的&#xff0c;那么就是0&#xff0c;为了使…...

[笔记]ByteBuffer垃圾回收

参考&#xff1a;https://blog.csdn.net/lom9357bye/article/details/133702169 public static void main(String[] args) throws Throwable {List<Object> list new ArrayList<>();Thread thread new Thread(() -> {ByteBuffer byteBuffer ByteBuffer.alloc…...

c++ opencv中unsigned char *、Mat、Qimage互相转换

unsigned char * 转Mat unsinged char * data img.data; Mat mat (h,w,cv_8UC3,data,0);void * 转Qimage uchar * bit (uchar*)pRknnInputData; QImage image QImage(bit, 2048,1536, QImage::Format_RGB888);qimage转Mat QImage image QImage (MODEL_INPUT_WIDTH_SIZE,MODE…...

法线贴图实现衣服上皱褶特效

在线工具推荐&#xff1a; 3D数字孪生场景编辑器 - GLTF/GLB材质纹理编辑器 - 3D模型在线转换 - Three.js AI自动纹理开发包 - YOLO 虚幻合成数据生成器 - 三维模型预览图生成器 - 3D模型语义搜索引擎 法线贴图在3D建模中扮演着重要的角色&#xff0c;它通过模拟表面的微…...

2017年第六届数学建模国际赛小美赛B题电子邮件中的笔迹分析解题全过程文档及程序

2017年第六届数学建模国际赛小美赛 B题 电子邮件中的笔迹分析 原题再现&#xff1a; 笔迹分析是一种非常特殊的调查形式&#xff0c;用于将人们与书面证据联系起来。在法庭或刑事调查中&#xff0c;通常要求笔迹鉴定人确认笔迹样本是否来自特定的人。由于许多语言证据出现在电…...

CentOS安装Python解释,CentOS设置python虚拟环境,linux设置python虚拟环境

一、安装python解释器 1、创建解释器安装的目录&#xff1a;/usr/local/python39 cd /usr/local mkdir python39 2、下载依赖 yum -y install zlib-devel bzip2-devel openssl-devel ncurses-devel sqlite-devel readline-devel tk-devel gcc make libffi-devel xz-devel …...

在线智能防雷监控(检测)系统应用方案

在线智能防雷监控系统是一种利用现代信息技术&#xff0c;对防雷设施的运行状态进行实时监测、管理和控制的系统&#xff0c;它可以有效提高防雷保护的安全性、可靠性和智能化程度&#xff0c;降低运维成本和风险&#xff0c;为用户提供全方位的防雷解决方案。 在线智能防雷监控…...

flutter + firebase 云消息通知教程 (android-安卓、ios-苹果)

如果能看到这篇文章的 一定已经对手机端的 消息推送通知 有了一定了解。 国内安卓厂商这里不提都有自己的FCM 可自行查找。&#xff08;国内因无法科学原因 &#xff0c;不能使用谷歌服务&#xff09;只说海外的。 目前 adnroid 和 ios 推送消息分别叫 FCM 和 APNs。这里通过…...

客服外包在哪个平台接业务/苏州seo报价

算法流程 优化算法 优化1&#xff1a;Center-Symmetric Census Transform (CSCT) CSCT并行 MC并行 优化2&#xff1a;代价聚合并行 实验结果 除了在集成了 8 个 ARM 内核和 2 个 Maxwell SM 且 TDP 为 10W 的 NVIDIA Tegra X1 上执行之外&#xff0c;为了进行比较&#xff…...

wordpress 4.8 下载/网站seo设计方案案例

n<500的树上有点权&#xff08;有正负&#xff09;&#xff0c;选若干个点使点权和>X(<1e6)并且相邻点的对数最多&#xff0c;输出相邻点最多多少对。 在n个点里选某权和的最多相邻点->在n个点里选某数量的相邻点使权和最大 f(i,j,0/1)--子树i中选j对相邻关系&…...

wordpress 单核 并发/seo观察网

关注“Java技术迷”升职加薪不脱发&#xff01;作者 | 臣不贰_NotoChen来源 | CSDNPageHelper一. 开发准备1. 开发工具IntelliJ IDEA 2020.2.32. 开发环境Red Hat Open JDK 8u256Apache Maven 3.6.33. 开发依赖SpringBoot<dependency><groupId>org.springframework…...

广州seo网站推广优化/今日头条新闻在线看

什么是索引覆盖就是select的数据列只用从索引中就能够取得&#xff0c;不必读取数据行&#xff0c;换句话说查询列要被所建的索引覆盖。那么显然select * from ...是一种拙劣的查询&#xff0c;除非你建立了包含所有列的索引&#xff08;这样建索引脑子进水&#xff09;。对 于…...

网站建设外包兼职/百度总部地址

阅读本文大概需要5分钟。经常有读者问&#xff1a;做程序员太累要不要考个公务员或者找一份国企工作、刚毕业是选择考公还是去互联网公司&#xff1f;这些问题不同人有不同的答案&#xff0c;很多时候没法回答&#xff0c;只好回一句&#xff1a;要不先考上公务员或者拿了国企O…...

苏州网站建设系统方案/怎么创建自己的游戏网站

在CAD作图过程中&#xff0c;肯定会遇到一些各种各样的问题&#xff0c;那么我们该怎样去解决那些问题呢&#xff1f;别急&#xff0c;今天小编就跟大家来分享一些经常出现的问题以及解决办法。1.将CAD默认保存文件设置为最低我们只需在绘图界面输入OP&#xff0c;弹出对话框后…...