当前位置: 首页 > news >正文

深度学习 | 基础卷积神经网络

        卷积神经网络是人脸识别、自动驾驶汽车等大多数计算机视觉应用的支柱。可以认为是一种特殊的神经网络架构,其中基本的矩阵乘法运算被卷积运算取代,专门处理具有网格状拓扑结构的数据。


1、全连接层的问题

1.1、全连接层的问题

        “全连接层”的特点是每个单元之间连接所有的前一层单元。这种连接方式使得全连接层能够学习到输入数据之间的非线性关系,并能够在神经网络中扮演重要的角色。

         

        但是,全连接层也存在一些主要问题,这些问题主要表现在以下几个方面:

        1、参数数量巨大:全连接层中的参数数量随着输入和输出单元数量的增加而急剧增加。这会导致训练时间增加,并且很容易导致过拟合。

        举个例子:假设我们有一个全连接层,该层具有 1000 个输入单元和 100 个输出单元

        意味着该层中有  1000x100 = 100000 个权重参数和 100 个偏置参数。这对于较小的神经网络来说可能不是问题,但是对于规模较大的神经网络来说,参数数量的增加可能会导致训练时间增加,并且很容易导致过拟合。

        例如,如果我们在该层之后再添加一个具有 100 个输入单元和 10 个输出单元的全连接层,则该层中将有 100*10=1000 个权重参数和 10 个偏置参数。这样,我们的神经网络中就有 101000 个参数。如果我们再添加几层全连接层,参数数量将会进一步增加。

        可以看出,当神经网络中包含许多全连接层时,参数数量可能会变得非常庞大,这对于训练和推理来说都是挑战。

        2、对空间不友好:全连接层对输入数据的空间属性没有任何假设,这意味着它不能很好地处理空间相关的数据。例如,图像数据中的像素是有空间位置关系的,而全连接层无法很好地利用这种关系。

        3、对小型数据集不友好:由于全连接层中的参数数量非常庞大,因此在训练数据较少的情况下,很容易导致过拟合。

        4、对计算资源不友好:全连接层中的大量参数意味着它需要大量的计算资源进行训练和推理。这对于计算资源有限的系统来说是一个挑战,尤其是在模型规模较大的情况下。

        5、对于序列数据不友好:全连接层无法很好地处理序列数据,因为它无法保留序列中各个元素之间的顺序信息。例如,在处理文本数据时,单词的顺序是非常重要的,但全连接层无法保留这种顺序信息。

1.2、多层感知机的局限

        前面学习的多层感知机,也就是仅仅使用全连接层的深度神经网络,除了上述问题外,在处理实际应用的时候还有很多局限。例如,人工智能试图解决的一大类问题都涉及到图像处理。而多层感知机在这方面遇到了两个显著的困难:平移不变性和局部性问题。

        1. 平移不变性 (Translation Invariance)

        它指的是模型对输入数据的平移不敏感。

        例如,考虑一张 n 维的输入数据和一个平移矩阵 T ,其中 T 是一个 nxn 的矩阵。

        对于一个平移不变的模型 ,对于任意的 x 和 T ,都有 f(x) = f(Tx)。

        这意味着,如果我们将输入数据 x 平移一小段距离,则模型应该能够正确地识别输入中的对象。

        举个例子来说,在图像分类任务中,如果我们将一张图像平移一小段距离,则模型应该能够正确地识别图像中的对象。

        

        但是,多层感知机很难学习到这种平移不变性,因为它们是由许多全连接层组成的,其中每层的权重参数都是固定的。因此,多层感知机很难对输入数据的平移进行建模。

        2. 局部性

        局部性是指模型对输入数据的局部信息敏感。

        这是神经网络中非常好的一个特性,因为在许多应用中,输入数据通常包含大量局部信息,而这些局部信息往往可以帮助我们识别数据中的模式。

        比如图像分类任务中,可以借助图像局部信息识别对象。

        然而遗憾的是,多层感知机很难学习到这种局部性。为什么呢?

        因为它们是由许多全连接层组成的,其中每层的权重参数都是固定的。这意味着,多层感知机无法从输入数据的局部信息中学习到有用的特征。

        还是以图像分类任务来说,假设我们有一张图像,其中包含一个狗的头部,这是想要识别的目标对象。如果我们使用的是多层感知机来进行图像分类,那么需要将整张图像输入到模型中,并期望模型能够从图像的整体信息中识别出狗的头部。然而,由于多层感知机没有学习到局部性的能力,因此很难做到这一点。

         

        正是上述问题,促使科学家们思考如何改进多层感知机这样都是全连接层的网络。由此发展出来了卷积神经网络等一系列更加强大的高级模型。想要学好卷积神经网络,先要从什么是卷积开始。


 2、图像卷积

        

2.1、卷积

        卷积其实是一种数学运算,常用于信号处理和图像处理领域。

        它的基本思想是将一个函数与另一个函数进行点积,并通过滑动窗口的方式计算整个输入数据的值。一维卷积的数学表示如下:

        

        其中 f 和 g 分别表示输入函数和卷积核函数,*  表示卷积运算符,t 表示时间,τ 表示滑动窗口的位置。

        二维卷积的数学公式类似,如下所示:

        

        其中 f 和 g 分别表示输入函数和卷积核函数,*  表示卷积运算符,x 和 y 表示二维平面上的位置,x' 和 y' 表示滑动窗口的位置。

        卷积值通常称为特征映射。

        


2.2、图像卷积

        在图像处理中,卷积通常用于图像卷积和图像滤波。

        图像卷积是指将图像与卷积核进行卷积运算,从而得到新的图像。

        

        


2.3、互相关运算和卷积运算

*** 存疑

         在图像卷积中,这两个数学概念经常容易混淆。互相关运算(cross-correlation)的数学定义如下:

        

        其中,I 是输入图像,K 是卷积核,* 是互相关运算的符号, (x,y)是输出图像中的像素坐标。

        真正的卷积运算(convolution)数学公式:

        

        二者是不是长的很像,只差了一个正负号,卷积和互相关相比加号变成了减号。

        严格说在数学上它们是不同的运算,但是在图像处理领域,两者差别就没那么明显了,或者说反而产生了混用现象。

        我们用一个例子来加以说明。

        先看互相关运算,下图左边为原始图像,它和一个卷积核做互相关运算后得到右边的输出图像。

        

        卷积核在左边图像上滑动,同时做互相关运算,也就是对应元素相乘在相加。由于原图像多数元素都为0,只在输入图像中心为1,因此最后输出了右边图像。结果显示相当于把卷积核进行了180度翻转。

        再来看卷积运算,公式中它和互相关相比改变了符号,体现在图像上就是先把卷积核进行了180度翻转,或者说就是先左右翻转,然后上下翻转,然后再进行互相关运算。如下图所示:

        

        由于卷积运算相当于翻转了两次,因此最后输出图像中还是123456789这样的顺序,而互相关运算只翻转了一次,最终结果变成了987654321这样的形式。

        虽然两种运算看似不同,但由于卷积核是自己定的,本身没有顺序上的限制,所以完全可以用翻转过的卷积核,这样以来二者就没啥区别了。也正是因为这个原因,大部分深度学习框架在代码实现的时候偷了懒,干脆用了互相关运算替代了卷积。因此严格意义上说,卷积层用的是互相关运算,但依然被叫成了卷积。

        


2.4、图像卷积的作用

        


3、卷积层

         

        应用了图像卷积操作的神经网络隐藏层。

        卷积层的主要作用是提取输入数据的局部特征,并将这些局部特征抽象为更高级的特征。

        Filter 滤波器也就是核函数。

        

        对比经典的神经元模型:

                

3.1、图像内核的效果:

        Image Kernels explained visually

3.2、感受野(Receptive Field)

        感受野就是 对外界输入信息有相应的区域,是指输入张量中卷积层特征映射中的每个元素所能“感受”到的区域。

        例如,假设输入张量的大小为 H x W ,内核大小为 k x k,那么卷积层的感受野大小就为 k x k。

        举个例子,假设输入张量是一张 5x5 的图像,卷积层使用 3x3 的内核,stride 1 为 ,padding 为 0 ,那么卷积层的输出张量大小为 3x3 ,感受野大小为 3x3 。

        在计算机视觉当中,就是卷积核的大小;

        在生物学中,就是神经元的刺激反应范围。

        

3.3、卷积层和全连接层区别

        卷积核大小限制放松了,卷积核可滑动 ~

        

        卷积层的输入是一个多维数组,而全连接层的输入是一个向量。

3.4、卷积层的性质

         1、稀疏交互

        ***  存疑

        Sparse Interaction:核的大小远远小于输入的大小,连接变少,交互更加稀疏。

        从而可以通过只有几十个或上百个像素点的图像内核,图像内核本身可以变得很小,来检测很小但是更加有意义的图像特征,就像拿着放大镜去看。

        输入图像可能是非常大的,因此他就减少了对模型参数的存储,大大提高了统计的效率。

        

         2、参数共享

         Parameter Sharing: 空间不同位置共享同样的参数(内核小窗口滑动)。

        共享权值的方式意味着,同一个卷积层内的所有节点都使用相同的权值。这与全连接层不同,全连接层中的每个节点都有一个独立的权值。因此卷积层的参数数量要比全连接层少得多。

        显著降低模型参数存储需求,提高统计效率。

        

         3、平移相等性(平移等变)

         Translation Equivariance

        输入变化,输出跟着相同变化。

        假定 f 是特征,g 是变换,用公式表示:

                

        即先提取特征再进行变换和 先进行变换在提取特征 没什么区别。

        


3.5、卷积层常见操作

3.5.1、Padding 填充

         如果卷积核和输入图像尺寸不同,输出图像的大小就不能与输入图像保持一致了。为了解决这个问题,人们想出了很简单但是实用的办法,就是填充(padding)操作。

        卷积内核越界时,采用填充。

        padding = (卷积核大小 - 1) / 2

        

        使用填充时的注意事项:
  • 在使用 padding 时,你需要确定 padding 的大小。一般来说,padding 的大小应该是卷积核的大小的一半。例如,如果卷积核的大小是 3x3,则 padding 的大小应该是 1。这样,卷积核就可以对输入图像的所有像素进行卷积运算,而不会忽略边缘像素。

  • 在使用 padding 时,输入图像的大小会变大。这可能会导致模型的计算量增加,并可能需要更多的存储空间。因此,你需要考虑是否真的需要使用 padding,或者是否可以使用更小的 padding 大小。

  • 在使用 padding 时,输出图像的大小也会变大。这可能会导致模型的计算量增加,并可能需要更多的存储空间。因此,你需要考虑是否真的需要使用 padding,或者是否可以使用更小的 padding 大小。

  • 在使用 padding 时,你可能需要使用更多的卷积层来捕捉更多的特征。因为使用 padding 后输入图像的大小会变大,所以你可能需要使用更多的卷积层来提取图像的特征。

3.5.2、Stride 步长

        调整步长可以改变卷积核在输入图像上滑动的距离,

        导致卷积核对输入图像进行卷积运算的次数减少,输出图像大小成倍减小,但是可能导致信息丢失。

        此外,步长还可以用于控制卷积核的步长在输入图像的哪一维方向滑动。

        例如,假设我们有一个 4x4 的输入图像和一个 3x3 的卷积核。如果我们设置步长为 (1, 2),则卷积核会在输入图像的行方向滑动 1 个像素,在列方向滑动 2 个像素。这样,卷积核会对输入图像进行 4 次卷积运算,并产生一个 2x2 的输出图像。

        

代码实现:

import torch# 创建输入图像
input_image = torch.tensor([[1, 2, 3, 4],[5, 6, 7, 8],[9, 10, 11, 12],[13, 14, 15, 16]])# 创建卷积核
kernel = torch.tensor([[0, 1, 0],[1, 1, 1],[0, 1, 0]])# 使用步长为 1 进行卷积运算
output_image = torch.conv2d(input_image.unsqueeze(0).unsqueeze(0), kernel.unsqueeze(0).unsqueeze(0), stride=1, padding=1)
print("Output image with stride=1:")
print(output_image) # 使用步长为 2 进行卷积运算
output_image_strided = torch.conv2d(input_image.unsqueeze(0).unsqueeze(0), kernel.unsqueeze(0).unsqueeze(0), stride=2,padding=1)
print("Output image with stride=2:")
print(output_image_strided)  # 使用步长为 3 进行卷积运算
output_image_strided = torch.conv2d(input_image.unsqueeze(0).unsqueeze(0), kernel.unsqueeze(0).unsqueeze(0), stride=3)
print("Output image with stride=3:")
print(output_image_strided)  
Output image with stride=1:
tensor([[[[ 8, 12, 16, 15],[21, 30, 35, 31],[37, 50, 55, 47],[36, 52, 56, 43]]]])
Output image with stride=2:
tensor([[[[ 8, 16],[37, 55]]]])
Output image with stride=3:
tensor([[[[30]]]])

3.6、卷积常见参数关系

        卷积层的特征映射(feature map)是指卷积层对输入数据进行卷积后得到的输出张量。        

        特征映射中的每个元素都是输入张量中相应区域的卷积和,其中区域的大小和形状由卷积层的内核大小决定。

         

        为什么不用 奇数 x 偶数,偶数 x 偶数 的卷积核呢?

        这是由于 奇数 x 奇数 的卷积核 更容易进行padding,而且更容易找到卷积的锚点。

3.7、多通道卷积

        

        每个滤波器 Filter 都是卷积核的一个集合。

        

        输入通道数 = 卷积核通道个数

        

        滤波器个数 = 输出通道数

        

        最后输出 feature map。


3.8、分组卷积

         

        从上图可以看出,一般的卷积会对输入数据的整体一起做卷积操作,

        即输入数据:H1×W1×C1;

        而卷积核大小为h1×w1,一共有C2个,即共有C2个h×w×c1的滤波器,

        然后卷积得到的输出数据就是H2×W2×C2。

        这里我们假设输出和输出的分辨率是不变的。主要看这个过程是一气呵成的,这对于存储器的容量提出了更高的要求。 

        

        如果将输入 feature map 按通道分为 g 组,则每组特征图的尺寸为

        每组对应的滤波器卷积核的 尺寸 为 

        每组的滤波器数量为  个,滤波器总数依然为 C2 个。

        每组的滤波器只与其同组的输入 map 进行卷积,每组输出特征图尺寸为

        将 g 组卷积后的结果进行拼接 (concatenate) ,

        得到最终的得到最终尺寸为  的输出特征图。


 4、池化层 Pooling

        本质就是采样,用来压缩信息。

        将输入的特征映射到更小的特征空间中,从而使网络结构变得更加紧凑。

        如果没有池化层,网络的参数数量就会变得非常大,这会导致训练时间变长,并且容易出现过拟合现象。

        池化层通过下采样的方式实现了信息的压缩,减少了网络的参数数量,这有助于缩短训练时间,并且可以防止过拟合。

        这里,下采样是指将输入的特征缩小为原来的一部分。此外,池化层还可以帮助网络学习更加抽象的特征,从而提升分类的准确率。

        总体而言,池化层在卷积神经网络中起到了信息压缩的作用,减少了参数的数量,防止过拟合,并且可以帮助网络学习更加抽象的特征。

4.1、卷积网络典型结构

        分类问题会加上一层 softmax。

        

4.2、最大池化 Max Pooling

        使用邻域内最大值来代替网络在该位置的输出

        

4.3、平均池化 Average Pooling

         求区域(滤波器 / 窗口)的平均值。

        

        最大池化层可以帮助网络学习更强的特征,而平均池化层可以帮助网络学习更平滑的特征。二者都可以帮助网络学习更强的特征,同时还可以防止过拟合。当然,池化层可能会丢失某些有用的信息,并且对噪声敏感。

4.4、填充、步长和多通道问题

        Padding:与卷积层类似,用于控制输出大小。例如,在池化层后使用全连接层时,可以使用填充来确保输入和输出大小相同。

        Stride:池化运算期间每次滑动的窗口的距离。步长越大,窗口在输入图像上的滑动距离就越大,这意味着输出的特征图就越小。步长越小,窗口在输入上的滑动距离就越小,这意味着输出的特征图就越大。

        多通道: 每个通道上单独池化再拼接;混合池化;全局池化等

4.5、池化层的特点

        不变性(invariance): 含平移,旋转和缩放,池化主要指平移不变。

        如果输出是给出图中猫的位置,不管输入怎么移动、缩放,输出相应的改变这就是等变性。

        如果只是输出是否有猫,无论猫怎么移动,输出都保持有猫的判断,就是不变性。

        

        不变性(invariance):池化层主要是平移不变性。

        保留主要特征的同时减少参数和计算量,防止过拟合。

        可以帮助网络学习更加抽象的特征。

        池化层没有参数。

                 


4.6、先验视角看卷积和池化

        

        卷积:隐藏神经元权重必须与其邻居权重相同。

        池化:神经元具有少量平移、旋转、缩放的不变性。

        卷积和池化可以看成是模型引人了很强的先验概率分布。

        


5、LeNet 模型

        最经典的深度卷积神经网络,由Yann LeCun在1998年提出的LeNet。它是为了解决手写数字识别问题而设计的,并且在当时取得了很好的成功。

LeNet结构

                

  • 输入层:LeNet的输入层接受28x28像素的灰度图像。

  • 卷积层1:这一层包含6个卷积核,每个卷积核的大小为5x5,卷积步长为1。该层使用Sigmoid激活函数。

  • 池化层1:这一层使用2x2的最大池化窗口,步长为2。这一层的作用是降低图像尺寸,并保留最重要的特征。

  • 卷积层2:这一层包含16个卷积核,每个卷积核的大小为5x5,卷积步长为1。该层使用Sigmoid激活函数。

  • 池化层2:这一层使用2x2的最大池化窗口,步长为2。这一层的作用与池化层1相同。

  • 全连接层:这一层包含120个节点,使用Sigmoid激活函数。

  • 全连接层:这一层包含84个节点,使用Sigmoid激活函数。

  • 输出层:这一层包含10个节点,对应0~9的十个数字。

代码实现:

# 导入必要的库,torchinfo用于查看模型结构
import torch
import torch.nn as nn
from torchinfo import summary

模型定义

# 定义LeNet的网络结构
class LeNet(nn.Module):def __init__(self, num_classes=10):super(LeNet, self).__init__()# 卷积层1:输入1个通道,输出6个通道,卷积核大小为5x5self.conv1 = nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5)# 卷积层2:输入6个通道,输出16个通道,卷积核大小为5x5self.conv2 = nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5)# 全连接层1:输入16x4x4=256个节点,输出120个节点,由于输入数据略有差异,修改为16x4x4self.fc1 = nn.Linear(in_features=16 * 4 * 4, out_features=120)# 全连接层2:输入120个节点,输出84个节点self.fc2 = nn.Linear(in_features=120, out_features=84)# 输出层:输入84个节点,输出10个节点self.fc3 = nn.Linear(in_features=84, out_features=num_classes)def forward(self, x):# 使用ReLU激活函数,并进行最大池化x = torch.relu(self.conv1(x))x = nn.functional.max_pool2d(x, kernel_size=2)# 使用ReLU激活函数,并进行最大池化x = torch.relu(self.conv2(x))x = nn.functional.max_pool2d(x, kernel_size=2)# 将多维张量展平为一维张量x = x.view(-1, 16 * 4 * 4)# 全连接层x = torch.relu(self.fc1(x))# 全连接层x = torch.relu(self.fc2(x))# 全连接层x = self.fc3(x)return x

网络结构

# 查看模型结构及参数量,input_size表示示例输入数据的维度信息
summary(LeNet(), input_size=(1, 1, 28, 28))
==========================================================================================
Layer (type:depth-idx)                   Output Shape              Param #
==========================================================================================
LeNet                                    [1, 10]                   --
├─Conv2d: 1-1                            [1, 6, 24, 24]            156
├─Conv2d: 1-2                            [1, 16, 8, 8]             2,416
├─Linear: 1-3                            [1, 120]                  30,840
├─Linear: 1-4                            [1, 84]                   10,164
├─Linear: 1-5                            [1, 10]                   850
==========================================================================================
Total params: 44,426
Trainable params: 44,426
Non-trainable params: 0
Total mult-adds (M): 0.29
==========================================================================================
Input size (MB): 0.00
Forward/backward pass size (MB): 0.04
Params size (MB): 0.18
Estimated Total Size (MB): 0.22
==========================================================================================

模型训练

# 导入必要的库
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
from tqdm import * # tqdm用于显示进度条并评估任务时间开销
import numpy as np
import sys# 设置随机种子
torch.manual_seed(0)# 定义模型、优化器、损失函数
model = LeNet()
optimizer = optim.SGD(model.parameters(), lr=0.02)
criterion = nn.CrossEntropyLoss()# 设置数据变换和数据加载器
transform = transforms.Compose([transforms.ToTensor(),  # 将数据转换为张量
])# 加载训练数据
train_dataset = datasets.MNIST(root='../data/mnist/', train=True, download=True, transform=transform)
# 实例化训练数据加载器
train_loader = DataLoader(train_dataset, batch_size=256, shuffle=True)
# 加载测试数据
test_dataset = datasets.MNIST(root='../data/mnist/', train=False, download=True, transform=transform)
# 实例化测试数据加载器
test_loader = DataLoader(test_dataset, batch_size=256, shuffle=False)# 设置epoch数并开始训练
num_epochs = 10  # 设置epoch数
loss_history = []  # 创建损失历史记录列表
acc_history = []   # 创建准确率历史记录列表# tqdm用于显示进度条并评估任务时间开销
for epoch in tqdm(range(num_epochs), file=sys.stdout):# 记录损失和预测正确数total_loss = 0total_correct = 0# 批量训练model.train()for inputs, labels in train_loader:# 预测、损失函数、反向传播optimizer.zero_grad()outputs = model(inputs)loss = criterion(outputs, labels)loss.backward()optimizer.step()# 记录训练集losstotal_loss += loss.item()# 测试模型,不计算梯度model.eval()with torch.no_grad():for inputs, labels in test_loader:# 预测outputs = model(inputs)# 记录测试集预测正确数total_correct += (outputs.argmax(1) == labels).sum().item()# 记录训练集损失和测试集准确率loss_history.append(np.log10(total_loss))  # 将损失加入损失历史记录列表,由于数值有时较大,这里取对数acc_history.append(total_correct / len(test_dataset))# 将准确率加入准确率历史记录列表# 打印中间值if epoch % 2 == 0:tqdm.write("Epoch: {0} Loss: {1} Acc: {2}".format(epoch, loss_history[-1], acc_history[-1]))# 使用Matplotlib绘制损失和准确率的曲线图
import matplotlib.pyplot as plt
plt.plot(loss_history, label='loss')
plt.plot(acc_history, label='accuracy')
plt.legend()
plt.show()# 输出准确率
print("Accuracy:", acc_history[-1])
Epoch: 0 Loss: 2.7325645021239664 Acc: 0.2633
Epoch: 2 Loss: 2.630008887238046 Acc: 0.6901  
Epoch: 4 Loss: 1.9096679044736495 Acc: 0.9047 
Epoch: 6 Loss: 1.7179356540642037 Acc: 0.9424 
Epoch: 8 Loss: 1.5851480201856594 Acc: 0.9413 
100%|██████████| 10/10 [01:46<00:00, 10.65s/it]

Accuracy: 0.9628


参考

7-5 卷积神经网络

Chapter-07/7.6 卷积神经网络代码实现.ipynb · 梗直哥/Deep-Learning-Code - Gitee.com

分组卷积:Grouped convolution-CSDN博客

轻量级网络论文-MobileNetv1 详解 - 知乎

相关文章:

深度学习 | 基础卷积神经网络

卷积神经网络是人脸识别、自动驾驶汽车等大多数计算机视觉应用的支柱。可以认为是一种特殊的神经网络架构&#xff0c;其中基本的矩阵乘法运算被卷积运算取代&#xff0c;专门处理具有网格状拓扑结构的数据。 1、全连接层的问题 1.1、全连接层的问题 “全连接层”的特点是每个…...

[字符编码]windwos下使用libiconv转换编码格式(二)

在http://t.csdnimg.cn/PLUuz笔记中实现了常用编码格式转换的功能,但这还是一个demo。因为代码中向libiconv库函数传递的字符串是存放在堆空间中的(我也是从网上找例子测试,是否一定要开辟堆空间存放还有待考证),如果一次性转换的字节数很巨大的话,就会导致内存空间不足,进而引…...

textile 语法

1、文字修饰 修饰行内文字 字体样式textile 语法对应的 XHTML 语法实际显示效果加强*strong*<strong>strong</strong>strong强调_emphasis_<em>emphasis</em>emphasis加粗**bold**<b>bold</b>bold斜体__italics__<i>italics</i…...

【快速开发】使用SvelteKit

自我介绍 做一个简单介绍&#xff0c;酒架年近48 &#xff0c;有20多年IT工作经历&#xff0c;目前在一家500强做企业架构&#xff0e;因为工作需要&#xff0c;另外也因为兴趣涉猎比较广&#xff0c;为了自己学习建立了三个博客&#xff0c;分别是【全球IT瞭望】&#xff0c;【…...

【docker笔记】docker常用命令

1、帮助启动类命令 1.1 启动、重启、查询当前状态、停止 systemctl start docker systemctl stop docker systemctl restart docker systemctl status docker1.2 设置开机启动 systemctl enable docker1.3 查看docker概要信息 docker info1.4 查看docker帮助文档 docker -…...

API 接口怎样设计才安全?

设计安全的API接口是确保应用程序和数据安全的重要方面之一。下面是一些设计安全的API接口的常见实践&#xff1a; 1. 身份验证和授权&#xff1a; 使用适当的身份验证机制&#xff0c;如OAuth、JWT或基本身份验证&#xff0c;以确保只有经过身份验证的用户可以访问API。实施…...

网站被CC攻击了怎么办?CC攻击有什么危害

网络爆炸性地发展&#xff0c;网络环境也日益复杂和开放&#xff0c;同时各种各样的恶意威胁和攻击日益增多&#xff0c;其中网站被CC也是常见的情况。 CC攻击有什么危害呢&#xff1f; 被CC会导致&#xff1a; 1.访问速度变慢&#xff1a;网站遭受CC攻击后&#xff0c;由于…...

Docker - 镜像 | 容器 日常开发常用指令 + 演示(一文通关)

目录 Docker 开发常用指令汇总 辅助命令 docker version docker info docker --help 镜像命令 查看镜像信息 下载镜像 搜索镜像 删除镜像 容器命令 查看运行中的容器 运行容器 停止、启动、重启、暂停、恢复容器 杀死容器 删除容器 查看容器日志 进入容器内部…...

要参加微软官方 Copilot 智能编程训练营了

GitHub Copilot 是由 GitHub、OpenAI 和 Microsoft 联合开发的生成式 AI 模型驱动的。 GitHub Copilot 分析用户正在编辑的文件及相关文件的上下文&#xff0c;并在编写代码时提供自动补全式的建议。 刚好下周要参加微软官方组织的 GitHub Copilot 工作坊-智能编程训练营&…...

Python入门学习篇(五)——列表字典

1 列表 1.1 定义 ①有序可重复的元素集合 ②可以存放不同类型的数据 ③个人理解:类似于java中的数组1.2 相关方法 1.2.1 获取列表长度 a 语法 len(列表名)b 示例代码 list2 [1, 2, "hello", 4] print(len(list2))c 运行结果 1.2.2 获取列表值 a 语法 列表名…...

React尝鲜

组件 React的组件就是一个js函数&#xff0c;函数内部return一个由jsx语法创建的html代码片段。 //MyComp.js export default function MyComp(){return (<h1>我是新组件MyComp</h1>) } 在需要引入组件的地方import导入组件&#xff0c;并放在相应位置 //App.js…...

锯齿云服务器租赁使用教程

首先登陆锯齿云账号 网盘上传数据集与代码 随后我们需要做的是将所需要的数据集与代码上传到网盘&#xff08;也可以直接在租用服务器后将数据集与代码传到服务器的硬盘上&#xff0c;但这样做会消耗大量时间&#xff0c;造成资源浪费&#xff09; 点击工作空间&#xff1a;…...

HarmonyOS和OpenHarmony的区别

1.概要 众所周知&#xff0c;鸿蒙是华为开发的一款分布式操作系统。因为开发系统&#xff0c;最重要的是集思广益&#xff0c;大家共同维护。为了在IOS和Android之间生存&#xff0c;鸿蒙的茁壮成长一定是需要开源&#xff0c;各方助力才能实现。   在这种思想上&#xff0c;…...

Redis Stream消息队列之基本语法与使用方式

前言 本文的主角是Redis Stream&#xff0c;它是Redis5.0版本新增加的数据结构&#xff0c;主要用于消息队列&#xff0c;提供了消息的持久化和主备复制功能&#xff0c;可以让任何客户端访问任何时刻的数据&#xff0c;并且能记住每一个客户端的访问位置&#xff0c;还能保证…...

制造行业定制软件解决方案——工业信息采集平台

摘要&#xff1a;针对目前企业在线检测数据信号种类繁多&#xff0c;缺乏统一监控人员和及时处置措施等问题。蓝鹏测控开发针对企业工业生产的在线数据的集中采集分析平台&#xff0c;通过该工业信息采集平台可将企业日常各种仪表设备能够得到数据进行集中分析处理存储&#xf…...

[python]用python实现对arxml文件的操作

目录 关键词平台说明一、背景二、方法2.1 库2.2 code 关键词 python、excel、DBC、openpyxl 平台说明 项目Valuepython版本3.6 一、背景 有时候需要批量处理arxml文件(ARXML 文件符合 AUTOSAR 4.0 标准)&#xff0c;但是工作量太大&#xff0c;阔以考虑用python。 二、方…...

pdf 在线编辑

https://smallpdf.com/edit-pdf#rapp 参考 https://zh.wikihow.com/%E5%B0%86%E5%9B%BE%E5%83%8F%E6%8F%92%E5%85%A5PDF...

自然语言处理(NLP):理解语言,赋能未来

目录 前言1 什么是NLP2 NLP的用途3 发展历史4 NLP的基本任务4.1 词性标注&#xff08;Part-of-Speech Tagging&#xff09;4.2 命名实体识别&#xff08;Named Entity Recognition&#xff09;4.3 共指消解&#xff08;Co-reference Resolution&#xff09;4.4 依存关系分析&am…...

FastAPI使用loguru时,出现重复日志打印的解决方案

首先看图&#xff0c;发现每个日志都被打印了3条。其实这个和uvicorn日志打印的设计有关&#xff0c;在uvicorn中有多个logger&#xff0c;分别是uvicorn、uvicorn.error、uvicorn.access 而LOGGING默认有一个属性propagate&#xff0c;这个属性为True时&#xff0c;子日志记录…...

构建每个聚类的profile和deletion_mean特征

通过summarize_clusters函数构建每个聚类的protein[cluster_profile]和protein[cluster_deletion_mean]特征。目的是把extra_msa信息反映到msa中。 集成函数数据处理流程&#xff1a; sample_msa ->make_masked_msa -> nearest_neighbor_clusters -> summarize_clu…...

Milvus数据一致性介绍及选择方法

1、Milvus 时钟机制 Milvus 通过时间戳水印来保障读链路的一致性&#xff0c;如下图所示&#xff0c;在往消息队列插入数据时&#xff0c; Milvus 不光会为这些插入记录打上时间戳&#xff0c;还会不间断地插入同步时间戳&#xff0c;以图中同步时间戳 syncTs1 为例&#xff0…...

异常处理和单元测试python

一、实验题目 异常处理和单元测试 二、实验目的 了解异常的基本概念和常用异常类。掌握异常处理的格式、处理方法。掌握断言语句的作用和使用方法。了解单元测试的基本概念和作用。掌握在Python中使用测试模块进行单元测试的方法和步骤。 三、实验内容 编程实现如下功能&a…...

蓝牙物联网在汽车领域的应用

I、蓝牙的技术特点 ​ 1998 年 5 月&#xff0c;瑞典爱立信、芬兰诺基亚、日本东芝、美国IBM 和英特尔公司五家著名厂商&#xff0c;在联合拓展短离线通信技术的标准化活动时提出了蓝牙技术的概念。蓝牙工作在无需许可的 2.4GHz 工业频段 (SIM)之上(我国的频段范围为2400.0~248…...

用23种设计模式打造一个cocos creator的游戏框架----(二十二)原型模式

1、模式标准 模式名称&#xff1a;原型模式 模式分类&#xff1a;创建型 模式意图&#xff1a;用原型实例指定创建对象的种类&#xff0c;并且通过复制这些原型创建新的对象 结构图&#xff1a; 适用于&#xff1a; 1、当一个系统应该独立于它的产品创建、构成和表示时 2、…...

paddle 55 使用Paddle Inference部署嵌入nms的PPYoloe模型(端到端fps达到52.63)

Paddle Inference 是飞桨的原生推理库,提供服务器端的高性能推理能力。由于 Paddle Inference 能力直接基于飞桨的训练算子,因此它支持飞桨训练出的所有模型的推理。paddle平台训练出的模型转换为静态图时可以选用Paddle Inference的框架进行推理,博主以前都是将静态图转换为…...

自动化测试工具-Selenium:WebDriver的API/方法使用全解

我们上一篇文章介绍了Selenium的三大组件&#xff0c;其中介绍了WebDriver是最重要的组件。在这里&#xff0c;我们将看到WebDriver常用的API/方法&#xff08;注&#xff1a;这里使用Python语言来进行演示&#xff09;。 1. WebDriver创建 打开VSCode&#xff0c;我们首先引…...

如何通过蓝牙串口启动智能物联网?

1、低功耗蓝牙(BLE)介绍 BLE 技术是一种低成本、短距离、可互操作的鲁棒性无线技术&#xff0c;工作在免许可的 2,4 GHZ 工业、科学、医学(Industrial Scientific Medical&#xff0c;ISM)频段。BLE在设计之初便被定位为一种超低功耗(Ultra Low Power&#xff0c;ULP)无线技术&…...

Linux---基础操作命令

内容导航 类别内容导航机器学习机器学习算法应用场景与评价指标机器学习算法—分类机器学习算法—回归机器学习算法—聚类机器学习算法—异常检测机器学习算法—时间序列数据可视化数据可视化—折线图数据可视化—箱线图数据可视化—柱状图数据可视化—饼图、环形图、雷达图统…...

uniapp怎么动态渲染导航栏的title?

直接在接口请求里面写入以下&#xff1a; 自己要什么参数就写什么参数 本人仅供参考&#xff1a; this.name res.data.data[i].name; console.log(名字, res.data.data[i].name); uni.setNavigationBarTitle({title: this.name}) 效果&#xff1a;...

【机器学习】决策树

参考课程视频&#xff1a;https://www.icourse163.org/course/NEU-1462101162?tid1471214452 1 概述 样子&#xff1a; 2 分裂 2.1 分裂原则 信息增益 信息增益比 基尼指数 3 终止 & 剪枝 3.1 终止条件 无需分裂 当前节点内样本同属一类 无法分裂 当前节点内…...

[node] Node.js的全局对象Global

[node] Node.js的全局对象Global 什么是全局对象 & 全局变量全局对象与全局变量全局变量-- __filename全局变量-- __dirname全局函数-- setTimeout(cb, ms)全局函数-- clearTimeout(t)全局函数-- setInterval(cb, ms)全局变量-- consoleconsole 方法概览 全局变量-- proces…...

完整的 Meteor NPM 集成

在Meteor中&#xff0c;你只能使用包内的模块。你不能直接将模块与流星应用一起使用。此软件包解决了该问题 文章目录 源码下载地址安装定义软件包使用软件包在 Meteor 方法中使用 npm 模块的示例应用程序接口异步实用程序Async.runSync&#xff08;函数&#xff09;Meteor.sy…...

智能优化算法应用:基于骑手优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于骑手优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于骑手优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.骑手优化算法4.实验参数设定5.算法结果6.…...

解决 MATLAB 遗传算法中 exitflg=4 的问题

一、优化问题简介 以求解下述优化问题为例&#xff1a; P 1 : min ⁡ p ∑ k 1 K p k s . t . { ∑ k 1 K R k r e q l o g ( 1 α k ∗ p k ) ≤ B b s , ∀ k ∈ K p k ≥ 0 , ∀ k ∈ K \begin{align} {P_1:}&\mathop{\min}_{\bm{p}}{ \sum\limits_{k1}^K p_k } \no…...

云卷云舒:云原生业务应用成熟度模型

笔者最近学习了信通院发布的《云原生应用成熟度的评估模型》&#xff0c;做如下解读&#xff1a; 一、概述 云原生业务应用成熟度模型从企业业务应用基础设施域、应用研发域以及服务治理域等三个能力域二十个过程域综合评估企业业务应用在弹性、高可用、自愈性、可观测性以及…...

STM32的以太网外设+PHY(LAN8720)使用详解(5):MAC及DMA配置

0 工具准备 1.野火 stm32f407霸天虎开发板 2.LAN8720数据手册 3.STM32F4xx中文参考手册1 MAC及DMA配置 1.1 使能ETH时钟 stm32的ETH外设挂载在AHB1总线上&#xff0c;位于RCC_AHB1ENR的bit25-bit27&#xff1a; 相关语句如下&#xff1a; RCC_AHB1PeriphClockCmd(RCC_AHB1…...

GitHub、Gitee、Gitlab共用一个SSH密钥配置

目录 1. 说明2. 生成ssh2-1. 设置全局邮箱和用户名2-2. 生成全局ssh 3. Github、Gitee配置ssh3-1. Github配置3-2. Gitee配置 1. 说明 由于我的Github、Gitee、Gitlab用的邮箱不同&#xff0c;向不同的平台提交代码时都需要验证密码&#xff0c;非常麻烦所以配置了一个共用的S…...

ClickHouse(19)ClickHouse集成Hive表引擎详细解析

文章目录 Hive集成表引擎创建表使用示例如何使用HDFS文件系统的本地缓存查询 ORC 输入格式的Hive 表在 Hive 中建表在 ClickHouse 中建表 查询 Parquest 输入格式的Hive 表在 Hive 中建表在 ClickHouse 中建表 查询文本输入格式的Hive表在Hive 中建表在 ClickHouse 中建表 资料…...

用C求斐波那契数列-----(C每日一编程)

斐波那契数列: 斐波那契数列是指这样一个数列&#xff1a;1&#xff0c;1&#xff0c;2&#xff0c;3&#xff0c;5&#xff0c;8&#xff0c;13&#xff0c;21&#xff0c;34&#xff0c;55&#xff0c;89……这个数列从第3项开始 &#xff0c;每一项都等于前两项之和。 递推…...

在Jetpack Compose中使用ExoPlayer实现直播流和音频均衡器

在Jetpack Compose中使用ExoPlayer实现直播流和音频均衡器 背景 ExoPlayer与Media3的能力结合&#xff0c;为Android应用程序播放多媒体内容提供了强大的解决方案。在本教程中&#xff0c;我们将介绍如何设置带有Media3的ExoPlayer来支持使用M3U8 URL进行直播流。此外&#x…...

持续集成交付CICD:Jira 远程触发 Jenkins 实现更新 GitLab 分支

目录 一、实验 1.环境 2.GitLab 查看项目 3.Jira新建模块 4. Jira 通过Webhook 触发Jenkins流水线 3.Jira 远程触发 Jenkins 实现更新 GitLab 分支 二、问题 1.Jira 配置网络钩子失败 2. Jira 远程触发Jenkins 报错 一、实验 1.环境 &#xff08;1&#xff09;主机 …...

基于SSM的面向TCP_IP的网络互联实验平台

文章目录 项目介绍主要功能截图:部分代码展示设计总结项目获取方式🍅 作者主页:超级无敌暴龙战士塔塔开 🍅 简介:Java领域优质创作者🏆、 简历模板、学习资料、面试题库【关注我,都给你】 🍅文末获取源码联系🍅 项目介绍 基于SSM的面向TCP和IP的网络互联实验平台…...

【IDEA】try-catch自动生成中修改catch的内容

编辑器 --> 文件和代码模板 --> 代码 --> Catch Statement Body...

2024 十大AI预测

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…...

【Linux基础开发工具】gcc/g++使用make/Makefile

目录 前言 gcc/g的使用 1. 语言的发展 1.1 语言和编译器自举的过程 1.2 程序翻译的过程&#xff1a; 2. 动静态库的理解 Linux项目自动化构建工具-make/makefile 1. 快速上手使用 2. makefile/make执行顺序的理解 前言 了解完vim编辑器的使用&#xff0c;接下来就可以尝…...

Windows Nginx版本升级

记录windows系统上nginx版本从1.22.1直接升级到1.25.3&#xff0c;全程一步到位&#xff01; nginx官网: https://nginx.org/ C:\Windows\system32>cd C:\nginx# 查看当前nginx版本C:\nginx>nginx -v nginx version: nginx/1.22.1# 停止nginx服务C:\nginx>net stop ng…...

kubernetes集群 应用实践 kafka部署

kubernetes集群 应用实践 kafka部署 零.1、环境说明 零.2、kafka架构说明 zookeeper在kafka集群中的作用 一、Broker注册 二、Topic注册 三、Topic Partition选主 四、生产者负载均衡 五、消费者负载均衡 一、持久化存储资源准备 1.1 创建共享目录 [rootnfsserver ~]# mkdir -…...

Featured Based知识蒸馏及代码(3): Focal and Global Knowledge (FGD)

文章目录 1. 摘要2. Focal and Global 蒸馏的原理2.1 常规的feature based蒸馏算法2.2 Focal Distillation2.3 Global Distillation2.4 total loss3. 实验完整代码论文: htt...

CentOs 安装MySQL

1、拉取安装包 wget --no-check-certificate dev.mysql.com/get/mysql-community-release-el6-5.noarch.rpm 成功拉取 2、安装 yum install mysql-community-release-el6-5.noarch.rpm 过程中可能需要你同意一些东西&#xff0c;y 即可 然后稍微检查一下 yum repolist enabled…...

基于Java (spring-boot)的在线考试管理系统

一、项目介绍 系统功能说明 1、系统共有管理员、老师、学生三个角色&#xff0c;管理员拥有系统最高权限。 2、老师拥有考试管理、题库管理、成绩管理、学生管理四个模块。 3、学生可以参与考试、查看成绩、试题练习、留言等功能 二、作品包含 三、项目技术 后端语言&…...