智能优化算法应用:基于向量加权平均算法3D无线传感器网络(WSN)覆盖优化 - 附代码
智能优化算法应用:基于向量加权平均算法3D无线传感器网络(WSN)覆盖优化 - 附代码
文章目录
- 智能优化算法应用:基于向量加权平均算法3D无线传感器网络(WSN)覆盖优化 - 附代码
- 1.无线传感网络节点模型
- 2.覆盖数学模型及分析
- 3.向量加权平均算法
- 4.实验参数设定
- 5.算法结果
- 6.参考文献
- 7.MATLAB代码
摘要:本文主要介绍如何用向量加权平均算法进行3D无线传感器网(WSN)覆盖优化。
1.无线传感网络节点模型
本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)≤Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xn−xp)2+(yn−yp)2+(zn−zp)2为点和之间的欧式距离。
2.覆盖数学模型及分析
现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l m∗n∗l个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xi−x)2+(yi−y)2+(zi−z)2(3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)≤r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=m∗n∗l∑Pcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。
3.向量加权平均算法
向量加权平均算法原理请参考:https://blog.csdn.net/u011835903/article/details/123626532
向量加权平均算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1−CoverRatio)=argmin(1−m∗n∗l∑Pcov)(6)
4.实验参数设定
无线传感器覆盖参数设定如下:
%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径
向量加权平均算法参数如下:
%% 设定向量加权平均优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点
5.算法结果


从结果来看,覆盖率在优化过程中不断上升。表明向量加权平均算法对覆盖优化起到了优化的作用。
6.参考文献
[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.
7.MATLAB代码
相关文章:
智能优化算法应用:基于向量加权平均算法3D无线传感器网络(WSN)覆盖优化 - 附代码
智能优化算法应用:基于向量加权平均算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于向量加权平均算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.向量加权平均算法4.实验参数设定…...
SpringBoot - Maven 打包合并一个胖 JAR 以及主项目 JAR 依赖 JAR 分离打包解决方案
问题描述 <plugin><groupId>org.springframework.boot</groupId><artifactId>spring-boot-maven-plugin</artifactId><version>2.1.18.RELEASE</version><configuration><!--<classifier>exec</classifier>--…...
react 18 Hooks扩展函数式组件的状态管理
React函数式组件 特点 React函数式组件具有以下特点: 简洁:使用函数的方式定义组件,语法简单直观。无状态:函数式组件没有内部状态(state),只依赖于传入的props。可复用:函数式组…...
智能优化算法应用:基于浣熊算法3D无线传感器网络(WSN)覆盖优化 - 附代码
智能优化算法应用:基于浣熊算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于浣熊算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.浣熊算法4.实验参数设定5.算法结果6.参考文献7.MA…...
c++ qt QtWidgetsApplication 项目 使用外部ui
1 包含生成的UI头文件: 例如,如果你的Qt Designer的.ui文件名为test.ui,那么生成的头文件通常为ui_test.h。 #include "ui_test.h"2 实例化UI类:.h文件中实例化ui 在你的主要类的头文件中,你通常会声明一个U…...
使用React 18、Echarts和MUI实现温度计
关键词 React 18 Echarts和MUI 前言 在本文中,我们将结合使用React 18、Echarts和MUI(Material-UI)库,展示如何实现一个交互性的温度计。我们将使用Echarts绘制温度计的外观,并使用MUI创建一个漂亮的用户界面。 本文…...
使用代码生成工具快速开发应用-结合后端Web API提供接口和前端页面快速生成,实现通用的业务编码规则管理
1、通用的业务编码规则的管理功能 在前面随笔我们介绍了一个通用的业务编码规则的管理功能,通过代码生成工具Database2Sharp一步步的生成相关的后端和Winform、WPF的界面,进行了整合,通过利用代码生成工具Database2sharp生成节省了常规功能的…...
Android 13 - Media框架(26)- OMXNodeInstance(三)
上一节我们了解了OMXNodeInstance中的端口定义,这一节我们一起来学习ACodec、OMXNode、OMX 组件使用的 buffer 到底是怎么分配出来的,以及如何关联起来的。(我们只会去了解 graphic buffer的创建、input bytebuffer的创建、secure buffer的创…...
力扣题目学习笔记(OC + Swift)21. 合并两个有序链表
21. 合并两个有序链表 将两个升序链表合并为一个新的 升序 链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。 链表解题经典三把斧: 哑巴节点栈快慢指针 此题比较容易想到的解法是迭代法,生成哑巴节点,然后迭代生成后续节点。…...
C# WPF上位机开发(windows pad上的应用)
【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing 163.com】 大部分同学可能都认为c# wpf只能用在pc端。其实这是一种误解。c# wpf固然暂时只能运行在windows平台上面,但是windows平台不仅仅是电脑…...
Word使用技巧【开题报告】
1、修改目录:选中目录,点击更新域。 2、更改或删除单个页面上的页眉或页脚 3、借助其他软件在Word导入参考文献 利用zetero导入文献:安装zetero 解决参考文献插入问题 在Word中插入文献操作步骤 英文文献出现“等”,如何解决 Zote…...
电子学会C/C++编程等级考试2022年06月(七级)真题解析
C/C++等级考试(1~8级)全部真题・点这里 第1题:有多少种二叉树 输入n(1<n<13),求n个结点的二叉树有多少种形态 时间限制:1000 内存限制:65536输入 整数n输出 答案 样例输入 3样例输出 5 答案: //参考答案 #include<bits/stdc++.h> using namespace std; …...
git中的smart checkout和force checkout
切换分支时出现了这个问题: 这是因为shiyan01分支修改了代码,但是没有commit, 所以在切换到test分支的时候弹出这个窗口 一、smart checkout(智能签出) 会把shiyan01分支的改动内容带到test分支。合并处理后的内容就变成了test分支的内容,而shiyan01分支的改动会被…...
vue3整合Element-Plus,极速上手。
条件分页查询: 需求分析: form表单 Button按钮 Table表格 Pagination分页 页面布局: 搜索表单: 如果表单封装的数据较多,建议绑定到一个对象中。 …...
学习Vue2.x
文章目录 一、使用Vue脚手架1.ref和props属性2.mixin混入3.组件化编码流程4.webStorage5.组件自定义事件6.全局事件总线7.消息订阅与发布 二、使用步骤1.引入库 一、使用Vue脚手架 1.ref和props属性 ref属性: (1)被用来给元素或子组件注册应…...
新手如何快速熟悉代码,写出东西(持续更新)
目录 第一章、最小编程任务的设想1.1)程序员入门会遇到的问题1.2)最小编程任务的设想1.3)编程逻辑1.4)具体需求 第二章、最小编程单元的练习2.1)代码/需求方面2.1.1)初级练习2.1.2)中级练习2.1.…...
11-网络安全框架及模型-软件安全能力成熟度模型(SSCMM)
目录 软件安全能力成熟度模型 1 背景概述 2 主要内容 3 成熟度等级定义 4 关键过程和实践 5 评估方法 6 改进建议 7 持续改进 8 主要价值 9 应用场景 10 优势和局限性 备注 软件安全能力成熟度模型 1 背景概述 SSCMM模型是软件安全能力成熟度模型,它描…...
Linux操作系统基础知识点
Linux是一种计算机操作系统,其内核由林纳斯本纳第克特托瓦兹(Linus Benedict Torvalds)于1991年首次发布。Linux操作系统通常与GNU套件一起使用,因此也被称为GNU/Linux。它是一种类UNIX的操作系统,设计为多用户、多任务…...
python 通过opencv及face_recognition识别人脸
效果: 使用Python的cv2库和face_recognition库来进行人脸检测和比对的 0是代表一样 认为是同一人。 代码: pip install opencv-python pip install face_recognition# 导入cv2库,用于图像处理 import cv2 # 导入face_recognition库&#…...
Android开发中常见的Hook技术有哪些?
Hook技术介绍 Hook技术是一种在软件开发中常见的技术,它允许开发者在特定的事件发生时插入自定义的代码逻辑。常见的应用场景包括在函数调用前后执行特定的操作,或者在特定的事件发生时触发自定义的处理逻辑。 在Android开发中,Hook通常是通…...
基于FPGA的PID算法学习———实现PID比例控制算法
基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容:参考网站: PID算法控制 PID即:Proportional(比例)、Integral(积分&…...
51c自动驾驶~合集58
我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留,CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制(CCA-Attention),…...
从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路
进入2025年以来,尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断,但全球市场热度依然高涨,入局者持续增加。 以国内市场为例,天眼查专业版数据显示,截至5月底,我国现存在业、存续状态的机器人相关企…...
为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?
在建筑行业,项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升,传统的管理模式已经难以满足现代工程的需求。过去,许多企业依赖手工记录、口头沟通和分散的信息管理,导致效率低下、成本失控、风险频发。例如&#…...
【生成模型】视频生成论文调研
工作清单 上游应用方向:控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...
iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈
在日常iOS开发过程中,性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期,开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发,但背后往往隐藏着系统资源调度不当…...
代码规范和架构【立芯理论一】(2025.06.08)
1、代码规范的目标 代码简洁精炼、美观,可持续性好高效率高复用,可移植性好高内聚,低耦合没有冗余规范性,代码有规可循,可以看出自己当时的思考过程特殊排版,特殊语法,特殊指令,必须…...
Spring AI Chat Memory 实战指南:Local 与 JDBC 存储集成
一个面向 Java 开发者的 Sring-Ai 示例工程项目,该项目是一个 Spring AI 快速入门的样例工程项目,旨在通过一些小的案例展示 Spring AI 框架的核心功能和使用方法。 项目采用模块化设计,每个模块都专注于特定的功能领域,便于学习和…...
Python 训练营打卡 Day 47
注意力热力图可视化 在day 46代码的基础上,对比不同卷积层热力图可视化的结果 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pypl…...
基于鸿蒙(HarmonyOS5)的打车小程序
1. 开发环境准备 安装DevEco Studio (鸿蒙官方IDE)配置HarmonyOS SDK申请开发者账号和必要的API密钥 2. 项目结构设计 ├── entry │ ├── src │ │ ├── main │ │ │ ├── ets │ │ │ │ ├── pages │ │ │ │ │ ├── H…...
