当前位置: 首页 > news >正文

统计直线上2个点的分布占比

直线上有6个格子,向格子里扔2个石子,共有5种可能。

1

1

0

0

0

0

0

1

1

0

0

0

0

0

1

1

0

0

0

0

0

1

1

0

0

0

0

0

1

1

第1种两个石子是连着的,共有5个

1

0

1

0

0

0

0

1

0

1

0

0

0

0

1

0

1

0

0

0

0

1

0

1

第2种两个石子间隔1个格子,有4个

1

0

0

1

0

0

0

1

0

0

1

0

0

0

1

0

0

1

两个石子间距为2,有3个

1

0

0

0

1

0

0

1

0

0

0

1

两个石子间距为3,有2个

1

0

0

0

0

1

两个石子间距4,只有1个。一共只有这15种可能。

15

%

5

0.333333

4

0.266667

3

0.2

2

0.133333

1

0.066667

所以两个石子间距越大,发生的概率越小。所以随机的向这6个格子里扔2个石子,有1/3的概率两个石子是连着的。

( A, B )---1*30*2---( 1, 0 )( 0, 1 )

做一个网络分类A和B,让B全是0,A训练集只有6张图片。

A

迭代次数

1

1

0

0

0

0

58609.84

首先分类1,1,0,0,0,0,得到平均收敛迭代次数为58609,因为差值结构的行可以按照1-2-3-4-5-6-1的顺序变换,所以

1

1

0

0

0

0

0

1

1

0

0

0

0

0

1

1

0

0

0

0

0

1

1

0

0

0

0

0

1

1

第一组5个结构的迭代次数都相同。

用同样的办法测量第2组和第3组

A

迭代次数

1

1

0

0

0

0

58609.84

1

0

1

0

0

0

61017.26

1

0

0

1

0

0

63229.15

得到表格,很明显间距是0,1,2的3组的迭代次数是逐渐增加的。因为间距是0,1,2的3组发生的概率是由大到小的,所以这里的迭代次数与结构A的发生概率成反比。发生概率越大,迭代次数越小。越容易被随机到,越容易收敛。

1

1

0

0

0

0

1

0

0

0

0

1

但在神经网络中因为差值结构的循环节长度是6,所以间距为0和间距为4的迭代次数是一样的。

1

0

1

0

0

0

1

0

0

0

1

0

同样间距为1和间距为3的迭代次数也是相同的。

所以只有3组不同的迭代次数。

所以网络

( A, B )---1*30*2---( 1, 0 )( 0, 1 )

的收敛过程等价于随机的向直线上的6个格子里扔石子,有的结构更容易收敛是因为这个结构在搜索范围内天然的占比更大。

随机验算,随机扔了500次,1000次

组合

15

%

500

%

1000

%

5

0.333333

172

0.344

323

0.323

4

0.266667

131

0.262

276

0.276

3

0.2

94

0.188

200

0.2

2

0.133333

66

0.132

137

0.137

1

0.066667

37

0.074

64

0.064

相关文章:

统计直线上2个点的分布占比

直线上有6个格子,向格子里扔2个石子,共有5种可能。 1 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 第1种两个石子是连着的,共有5个 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 …...

uniapp创建/运行/发布项目

1、产生背景----跨平台应用框架 在移动端各大App盛行的时代,App之间的竞争也更加激烈,他们执着于让一个应用可以做多个事情 所以就应运而生了小程序,微信小程序、支付宝小程序、抖音小程序等等基于App本身的内嵌类程序。 但是各大App他不可…...

洛谷 P2367 语文成绩 刷题笔记

P2367 语文成绩 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 差分 令a[i]为b[i]数组的前缀和 a[n]b[1]b[2]b[3].....b[n]; a[n-1]b[1]b[2]b[3].....b[n-1]; 构造差分数组 b[i]a[i]-a[i-1]; 有什么好处 当我们想对a[l]--a[r]范围内所有数据加上一个数x 不必循环 for(i…...

Opencv_CUDA实现推理图像前处理与后处理

Opencv_CUDA实现推理图像前处理与后处理 通过trt 或者 openvino部署深度学习算法时,往往会通过opencv的Mat及算法将图像转换为固定的格式作为输入openvino图像的前后处理后边将在单独的文章中写出今晚空闲搜了一些opencv_cuda的使用方法,在此总结一下前…...

Android.bp 和 Android.mk 的对应关系

参考 Soong 构建系统 Android.mk 转为 Android.bp 没有分支、循环等流程控制的简单的 Android.mk ,可以通过 androidmk 命令转化为 Android.bp source 、lunch 之后执行即可。 androidmk Android.mk > Android.bp对应关系 Android 13 ,build/soon…...

力扣-收集足够苹果的最小花园周长[思维+组合数]

题目链接 题意: 给你一个用无限二维网格表示的花园,每一个 整数坐标处都有一棵苹果树。整数坐标 (i, j) 处的苹果树有 |i| |j| 个苹果。 你将会买下正中心坐标是 (0, 0) 的一块 正方形土地 ,且每条边都与两条坐标轴之一平行。 给你一个整…...

【C语言】自定义类型:结构体深入解析(三)结构体实现位段最终篇

文章目录 📝前言🌠什么是位段?🌉 位段的内存分配🌉VS怎么开辟位段空间呢?🌉位段的跨平台问题🌠 位段的应⽤🌠位段使⽤的注意事项🚩总结 📝前言 本…...

基于Hexo+GitHub Pages 的个人博客搭建

基于HexoGitHub Pages 的个人博客搭建 步骤一:安装 Node.js 和 Git步骤二:创建Github Pages 仓库步骤二:安装 Hexo步骤三:创建 Hexo 项目步骤四:配置 Hexo步骤五:创建新文章步骤六:生成静态文件…...

7. 结构型模式 - 代理模式

亦称: Proxy 意图 代理模式是一种结构型设计模式, 让你能够提供对象的替代品或其占位符。 代理控制着对于原对象的访问, 并允许在将请求提交给对象前后进行一些处理。 问题 为什么要控制对于某个对象的访问呢? 举个例子&#xff…...

挑战Python100题(6)

100+ Python challenging programming exercises 6 Question 51 Define a class named American and its subclass NewYorker. Hints: Use class Subclass(ParentClass) to define a subclass. 定义一个名为American的类及其子类NewYorker。 提示:使用class Subclass(Paren…...

gin实现登录逻辑,包含cookie,session

users/login.html {{define "users/login.html"}} <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>登录页面</title> </head> <body><form method"post" a…...

云原生Kubernetes:K8S集群版本升级(v1.22.14 - v1.23.14)

目录 一、理论 1.K8S集群升级 2.环境 3.升级集群&#xff08;v1.23.14&#xff09; 4.验证集群&#xff08;v1.23.14&#xff09; 二、实验 1. 环境 2.升级集群&#xff08;v1.23.14&#xff09; 2.验证集群&#xff08;v1.23.14&#xff09; 一、理论 1.K8S集群升级 …...

C++面向对象(OOP)编程-位运算详解

本文主要介绍原码、位运算的种类&#xff0c;以及常用的位运算的使用场景。 目录 1 原码、反码、补码 2 有符号和无符号数 3 位运算 4 位运算符使用规则 4.1 逻辑移位和算术移位 4.1.1 逻辑左移和算法左移 4.1.2 逻辑右移和算术右移 4.1.3 总结 4.2 位运算的应用场景 …...

linux运行服务提示报错/usr/bin/java: 没有那个文件或目录

如果是直接从官网下载的jdk解压安装&#xff0c;那么/usr/bin/没有java的软连接&#xff0c;即/usr/bin/java&#xff0c;所以即使在/etc/profile中配置了jdk的环境变量也没用&#xff0c;识别不到。 方法一&#xff1a;用java的执行路径配置/usr/bin/java软连接&#xff08;优…...

一篇文章教会你数据仓库之详解拉链表怎么做

前言 本文将会谈一谈在数据仓库中拉链表相关的内容&#xff0c;包括它的原理、设计、以及在我们大数据场景下的实现方式。 全文由下面几个部分组成&#xff1a; 先分享一下拉链表的用途、什么是拉链表。通过一些小的使用场景来对拉链表做近一步的阐释&#xff0c;以及拉链表和…...

C/S医院检验LIS系统源码

一、检验科LIS系统概述&#xff1a; LIS系统即实验室信息管理系统。LIS系统能实现临床检验信息化&#xff0c;检验科信息管理自动化。其主要功能是将检验科的实验仪器传出的检验数据经数据分析后&#xff0c;自动生成打印报告&#xff0c;通过网络存储在数据库中&#xff…...

项目应用多级缓存示例

前不久做的一个项目&#xff0c;需要在前端实时展示硬件设备的数据。设备很多&#xff0c;并且每个设备的数据也很多&#xff0c;总之就是数据很多。同时&#xff0c;设备的刷新频率很快&#xff0c;需要每2秒读取一遍数据。 问题来了&#xff0c;我们如何读取数据&#xff0c…...

音视频技术开发周刊 | 325

每周一期&#xff0c;纵览音视频技术领域的干货。 新闻投稿&#xff1a;contributelivevideostack.com。 AI读心术震撼登顶会&#xff01;模型翻译脑电波&#xff0c;人类思想被投屏&#xff5c;NeurIPS 2023 在最近举办的NeurIPS大会上&#xff0c;研究人员展示了当代AI更震撼…...

量化服务器 - 后台挂载运行

服务器 - 后台运行 pip3命令被kill 在正常的pip命令后面加上 -no-cache-dir tmux 使用教程 https://codeleading.com/article/40954761108/ 如果你希望在 tmux 中后台执行一个 Python 脚本&#xff0c;你可以按照以下步骤操作&#xff1a; 启动 tmux: tmux这将会创建一个新…...

使用tesla gpu 加速大模型,ffmpeg,unity 和 UE等二三维应用

我们知道tesla gpu 没有显示器接口&#xff0c;那么在windows中怎么使用加速unity ue这种三维编辑器呢&#xff0c;答案就是改变注册表来加速相应的三维渲染程序. 1 tesla gpu p40 p100 加速 在windows中使用regedit 来改变 核显配置&#xff0c; 让p100 p40 等等显卡通过核显…...

OpenLayers 可视化之热力图

注&#xff1a;当前使用的是 ol 5.3.0 版本&#xff0c;天地图使用的key请到天地图官网申请&#xff0c;并替换为自己的key 热力图&#xff08;Heatmap&#xff09;又叫热点图&#xff0c;是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...

树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频

使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端

&#x1f31f; 什么是 MCP&#xff1f; 模型控制协议 (MCP) 是一种创新的协议&#xff0c;旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议&#xff0c;它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

抖音增长新引擎:品融电商,一站式全案代运营领跑者

抖音增长新引擎&#xff1a;品融电商&#xff0c;一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中&#xff0c;品牌如何破浪前行&#xff1f;自建团队成本高、效果难控&#xff1b;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...

在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module

1、为什么要修改 CONNECT 报文&#xff1f; 多租户隔离&#xff1a;自动为接入设备追加租户前缀&#xff0c;后端按 ClientID 拆分队列。零代码鉴权&#xff1a;将入站用户名替换为 OAuth Access-Token&#xff0c;后端 Broker 统一校验。灰度发布&#xff1a;根据 IP/地理位写…...

QT: `long long` 类型转换为 `QString` 2025.6.5

在 Qt 中&#xff0c;将 long long 类型转换为 QString 可以通过以下两种常用方法实现&#xff1a; 方法 1&#xff1a;使用 QString::number() 直接调用 QString 的静态方法 number()&#xff0c;将数值转换为字符串&#xff1a; long long value 1234567890123456789LL; …...

全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比

目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec&#xff1f; IPsec VPN 5.1 IPsec传输模式&#xff08;Transport Mode&#xff09; 5.2 IPsec隧道模式&#xff08;Tunne…...

是否存在路径(FIFOBB算法)

题目描述 一个具有 n 个顶点e条边的无向图&#xff0c;该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序&#xff0c;确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数&#xff0c;分别表示n 和 e 的值&#xff08;1…...

论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing

Muffin 论文 现有方法 CRADLE 和 LEMON&#xff0c;依赖模型推理阶段输出进行差分测试&#xff0c;但在训练阶段是不可行的&#xff0c;因为训练阶段直到最后才有固定输出&#xff0c;中间过程是不断变化的。API 库覆盖低&#xff0c;因为各个 API 都是在各种具体场景下使用。…...

解析两阶段提交与三阶段提交的核心差异及MySQL实现方案

引言 在分布式系统的事务处理中&#xff0c;如何保障跨节点数据操作的一致性始终是核心挑战。经典的两阶段提交协议&#xff08;2PC&#xff09;通过准备阶段与提交阶段的协调机制&#xff0c;以同步决策模式确保事务原子性。其改进版本三阶段提交协议&#xff08;3PC&#xf…...