统计直线上2个点的分布占比
直线上有6个格子,向格子里扔2个石子,共有5种可能。
| 1 | 1 | 0 | 0 | 0 | 0 |
| 0 | 1 | 1 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 0 | 0 |
| 0 | 0 | 0 | 1 | 1 | 0 |
| 0 | 0 | 0 | 0 | 1 | 1 |
第1种两个石子是连着的,共有5个
| 1 | 0 | 1 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 | 0 | 0 |
| 0 | 0 | 1 | 0 | 1 | 0 |
| 0 | 0 | 0 | 1 | 0 | 1 |
第2种两个石子间隔1个格子,有4个
| 1 | 0 | 0 | 1 | 0 | 0 |
| 0 | 1 | 0 | 0 | 1 | 0 |
| 0 | 0 | 1 | 0 | 0 | 1 |
两个石子间距为2,有3个
| 1 | 0 | 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 | 0 | 1 |
两个石子间距为3,有2个
| 1 | 0 | 0 | 0 | 0 | 1 |
两个石子间距4,只有1个。一共只有这15种可能。
| 15 | % |
| 5 | 0.333333 |
| 4 | 0.266667 |
| 3 | 0.2 |
| 2 | 0.133333 |
| 1 | 0.066667 |
所以两个石子间距越大,发生的概率越小。所以随机的向这6个格子里扔2个石子,有1/3的概率两个石子是连着的。
( A, B )---1*30*2---( 1, 0 )( 0, 1 )
做一个网络分类A和B,让B全是0,A训练集只有6张图片。
| A | 迭代次数 | ||||||
| 1 | 1 | 0 | 0 | 0 | 0 | 58609.84 |
首先分类1,1,0,0,0,0,得到平均收敛迭代次数为58609,因为差值结构的行可以按照1-2-3-4-5-6-1的顺序变换,所以
| 1 | 1 | 0 | 0 | 0 | 0 |
| 0 | 1 | 1 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 0 | 0 |
| 0 | 0 | 0 | 1 | 1 | 0 |
| 0 | 0 | 0 | 0 | 1 | 1 |
第一组5个结构的迭代次数都相同。
用同样的办法测量第2组和第3组
| A | 迭代次数 | ||||||
| 1 | 1 | 0 | 0 | 0 | 0 | 58609.84 | |
| 1 | 0 | 1 | 0 | 0 | 0 | 61017.26 | |
| 1 | 0 | 0 | 1 | 0 | 0 | 63229.15 |
得到表格,很明显间距是0,1,2的3组的迭代次数是逐渐增加的。因为间距是0,1,2的3组发生的概率是由大到小的,所以这里的迭代次数与结构A的发生概率成反比。发生概率越大,迭代次数越小。越容易被随机到,越容易收敛。
| 1 | 1 | 0 | 0 | 0 | 0 | ||
| 1 | 0 | 0 | 0 | 0 | 1 |
但在神经网络中因为差值结构的循环节长度是6,所以间距为0和间距为4的迭代次数是一样的。
| 1 | 0 | 1 | 0 | 0 | 0 | ||
| 1 | 0 | 0 | 0 | 1 | 0 |
同样间距为1和间距为3的迭代次数也是相同的。
所以只有3组不同的迭代次数。
所以网络
( A, B )---1*30*2---( 1, 0 )( 0, 1 )
的收敛过程等价于随机的向直线上的6个格子里扔石子,有的结构更容易收敛是因为这个结构在搜索范围内天然的占比更大。
随机验算,随机扔了500次,1000次
| 组合 | |||||||
| 15 | % | 500 | % | 1000 | % | ||
| 5 | 0.333333 | 172 | 0.344 | 323 | 0.323 | ||
| 4 | 0.266667 | 131 | 0.262 | 276 | 0.276 | ||
| 3 | 0.2 | 94 | 0.188 | 200 | 0.2 | ||
| 2 | 0.133333 | 66 | 0.132 | 137 | 0.137 | ||
| 1 | 0.066667 | 37 | 0.074 | 64 | 0.064 |
相关文章:
统计直线上2个点的分布占比
直线上有6个格子,向格子里扔2个石子,共有5种可能。 1 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 第1种两个石子是连着的,共有5个 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 …...
uniapp创建/运行/发布项目
1、产生背景----跨平台应用框架 在移动端各大App盛行的时代,App之间的竞争也更加激烈,他们执着于让一个应用可以做多个事情 所以就应运而生了小程序,微信小程序、支付宝小程序、抖音小程序等等基于App本身的内嵌类程序。 但是各大App他不可…...
洛谷 P2367 语文成绩 刷题笔记
P2367 语文成绩 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 差分 令a[i]为b[i]数组的前缀和 a[n]b[1]b[2]b[3].....b[n]; a[n-1]b[1]b[2]b[3].....b[n-1]; 构造差分数组 b[i]a[i]-a[i-1]; 有什么好处 当我们想对a[l]--a[r]范围内所有数据加上一个数x 不必循环 for(i…...
Opencv_CUDA实现推理图像前处理与后处理
Opencv_CUDA实现推理图像前处理与后处理 通过trt 或者 openvino部署深度学习算法时,往往会通过opencv的Mat及算法将图像转换为固定的格式作为输入openvino图像的前后处理后边将在单独的文章中写出今晚空闲搜了一些opencv_cuda的使用方法,在此总结一下前…...
Android.bp 和 Android.mk 的对应关系
参考 Soong 构建系统 Android.mk 转为 Android.bp 没有分支、循环等流程控制的简单的 Android.mk ,可以通过 androidmk 命令转化为 Android.bp source 、lunch 之后执行即可。 androidmk Android.mk > Android.bp对应关系 Android 13 ,build/soon…...
力扣-收集足够苹果的最小花园周长[思维+组合数]
题目链接 题意: 给你一个用无限二维网格表示的花园,每一个 整数坐标处都有一棵苹果树。整数坐标 (i, j) 处的苹果树有 |i| |j| 个苹果。 你将会买下正中心坐标是 (0, 0) 的一块 正方形土地 ,且每条边都与两条坐标轴之一平行。 给你一个整…...
【C语言】自定义类型:结构体深入解析(三)结构体实现位段最终篇
文章目录 📝前言🌠什么是位段?🌉 位段的内存分配🌉VS怎么开辟位段空间呢?🌉位段的跨平台问题🌠 位段的应⽤🌠位段使⽤的注意事项🚩总结 📝前言 本…...
基于Hexo+GitHub Pages 的个人博客搭建
基于HexoGitHub Pages 的个人博客搭建 步骤一:安装 Node.js 和 Git步骤二:创建Github Pages 仓库步骤二:安装 Hexo步骤三:创建 Hexo 项目步骤四:配置 Hexo步骤五:创建新文章步骤六:生成静态文件…...
7. 结构型模式 - 代理模式
亦称: Proxy 意图 代理模式是一种结构型设计模式, 让你能够提供对象的替代品或其占位符。 代理控制着对于原对象的访问, 并允许在将请求提交给对象前后进行一些处理。 问题 为什么要控制对于某个对象的访问呢? 举个例子ÿ…...
挑战Python100题(6)
100+ Python challenging programming exercises 6 Question 51 Define a class named American and its subclass NewYorker. Hints: Use class Subclass(ParentClass) to define a subclass. 定义一个名为American的类及其子类NewYorker。 提示:使用class Subclass(Paren…...
gin实现登录逻辑,包含cookie,session
users/login.html {{define "users/login.html"}} <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>登录页面</title> </head> <body><form method"post" a…...
云原生Kubernetes:K8S集群版本升级(v1.22.14 - v1.23.14)
目录 一、理论 1.K8S集群升级 2.环境 3.升级集群(v1.23.14) 4.验证集群(v1.23.14) 二、实验 1. 环境 2.升级集群(v1.23.14) 2.验证集群(v1.23.14) 一、理论 1.K8S集群升级 …...
C++面向对象(OOP)编程-位运算详解
本文主要介绍原码、位运算的种类,以及常用的位运算的使用场景。 目录 1 原码、反码、补码 2 有符号和无符号数 3 位运算 4 位运算符使用规则 4.1 逻辑移位和算术移位 4.1.1 逻辑左移和算法左移 4.1.2 逻辑右移和算术右移 4.1.3 总结 4.2 位运算的应用场景 …...
linux运行服务提示报错/usr/bin/java: 没有那个文件或目录
如果是直接从官网下载的jdk解压安装,那么/usr/bin/没有java的软连接,即/usr/bin/java,所以即使在/etc/profile中配置了jdk的环境变量也没用,识别不到。 方法一:用java的执行路径配置/usr/bin/java软连接(优…...
一篇文章教会你数据仓库之详解拉链表怎么做
前言 本文将会谈一谈在数据仓库中拉链表相关的内容,包括它的原理、设计、以及在我们大数据场景下的实现方式。 全文由下面几个部分组成: 先分享一下拉链表的用途、什么是拉链表。通过一些小的使用场景来对拉链表做近一步的阐释,以及拉链表和…...
C/S医院检验LIS系统源码
一、检验科LIS系统概述: LIS系统即实验室信息管理系统。LIS系统能实现临床检验信息化,检验科信息管理自动化。其主要功能是将检验科的实验仪器传出的检验数据经数据分析后,自动生成打印报告,通过网络存储在数据库中ÿ…...
项目应用多级缓存示例
前不久做的一个项目,需要在前端实时展示硬件设备的数据。设备很多,并且每个设备的数据也很多,总之就是数据很多。同时,设备的刷新频率很快,需要每2秒读取一遍数据。 问题来了,我们如何读取数据,…...
音视频技术开发周刊 | 325
每周一期,纵览音视频技术领域的干货。 新闻投稿:contributelivevideostack.com。 AI读心术震撼登顶会!模型翻译脑电波,人类思想被投屏|NeurIPS 2023 在最近举办的NeurIPS大会上,研究人员展示了当代AI更震撼…...
量化服务器 - 后台挂载运行
服务器 - 后台运行 pip3命令被kill 在正常的pip命令后面加上 -no-cache-dir tmux 使用教程 https://codeleading.com/article/40954761108/ 如果你希望在 tmux 中后台执行一个 Python 脚本,你可以按照以下步骤操作: 启动 tmux: tmux这将会创建一个新…...
使用tesla gpu 加速大模型,ffmpeg,unity 和 UE等二三维应用
我们知道tesla gpu 没有显示器接口,那么在windows中怎么使用加速unity ue这种三维编辑器呢,答案就是改变注册表来加速相应的三维渲染程序. 1 tesla gpu p40 p100 加速 在windows中使用regedit 来改变 核显配置, 让p100 p40 等等显卡通过核显…...
OpenLayers 可视化之热力图
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 热力图(Heatmap)又叫热点图,是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...
树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频
使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...
理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端
🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...
抖音增长新引擎:品融电商,一站式全案代运营领跑者
抖音增长新引擎:品融电商,一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中,品牌如何破浪前行?自建团队成本高、效果难控;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...
在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module
1、为什么要修改 CONNECT 报文? 多租户隔离:自动为接入设备追加租户前缀,后端按 ClientID 拆分队列。零代码鉴权:将入站用户名替换为 OAuth Access-Token,后端 Broker 统一校验。灰度发布:根据 IP/地理位写…...
QT: `long long` 类型转换为 `QString` 2025.6.5
在 Qt 中,将 long long 类型转换为 QString 可以通过以下两种常用方法实现: 方法 1:使用 QString::number() 直接调用 QString 的静态方法 number(),将数值转换为字符串: long long value 1234567890123456789LL; …...
全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比
目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...
是否存在路径(FIFOBB算法)
题目描述 一个具有 n 个顶点e条边的无向图,该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序,确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数,分别表示n 和 e 的值(1…...
论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing
Muffin 论文 现有方法 CRADLE 和 LEMON,依赖模型推理阶段输出进行差分测试,但在训练阶段是不可行的,因为训练阶段直到最后才有固定输出,中间过程是不断变化的。API 库覆盖低,因为各个 API 都是在各种具体场景下使用。…...
解析两阶段提交与三阶段提交的核心差异及MySQL实现方案
引言 在分布式系统的事务处理中,如何保障跨节点数据操作的一致性始终是核心挑战。经典的两阶段提交协议(2PC)通过准备阶段与提交阶段的协调机制,以同步决策模式确保事务原子性。其改进版本三阶段提交协议(3PC…...
