当前位置: 首页 > news >正文

【Python机器学习系列】一文带你了解机器学习中的Pipeline管道机制(理论+源码)

这是Python机器学习原创文章,我的第183篇原创文章。

一、引言

       对于表格数据,一套完整的机器学习建模流程如下:

图片

背景知识1:机器学习中的学习器

【Python机器学习系列】一文搞懂机器学习中的转换器和估计器(附案例)

背景知识2:机器学习中的管道机制

简介:

        转换器用于数据的预处理和特征工程,它们无状态且只学习转换规则。而估计器用于模型的训练和预测,它们有状态且学习训练数据中的模式和规律。转换器和估计器在机器学习中扮演不同的角色,但它们通常可以结合在一起构建一个完整的机器学习流程。

        机器学习的管道(Pipeline)机制通过将多个转换器和估计器按顺序连接在一起,可以构建一个完整的数据处理和模型训练流程。在管道机制中,可以使用Pipeline类来组织和连接不同的转换器和估计器。Pipeline类提供了一种简单的方式来定义和管理机器学习任务的流程。

好处:

        1.管道机制是按照封装顺序依次执行的一种机制,在机器学习算法中得以应用的根源在于,参数集在新数据集(比如测试集)上的重复使用。

        2.可以结合grid search对参数进行选择。

二、实现过程

导入第三方库

import pandas as pd
from sklearn.pipeline import Pipeline #管道机制
from sklearn.pipeline import make_pipeline
from sklearn.model_selection import train_test_split #分训练和测试集
#导入“流水线”各个模块(标准化,降维,分类)
from  sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.svm import SVC
from sklearn.model_selection import GridSearchCV

准备数据

data = pd.read_csv(r'Dataset.csv')
df = pd.DataFrame(data)
target = 'target'
features = df.columns.drop(target)
X_train, X_test, y_train, y_test = train_test_split(df[features], df[target], test_size=0.2, random_state=0)

2.1 建立管道进行分类预测

        steps为Pipeline类最关键的参数,sklearn规定它是一个[( ),( )]类型,列表里面是一个个元组,分别为名字和工序,从左到右是流水线上的先后顺序。Pipleline中最后一个之外的所有estimators都必须是变换器(transformers),最后一个estimator可以是任意类型(transformer,classifier,regresser),如果最后一个estimator是个分类器,则整个pipeline就可以作为分类器使用,如果最后一个estimator是个聚类器,则整个pipeline就可以作为聚类器使用。如果你不想为每一个步骤提供用户指定的名称,这种情况下,就可以用make_pipeline函数创建管道,它可以为我们创建管道并根据每个步骤所属的类为其自动命名。

# pipe=Pipeline(steps=[('standardScaler',StandardScaler()), ('pca', PCA()), ('svc',SVC())])
pipe=make_pipeline(StandardScaler(),PCA(),SVC())
pipe.predict(X_test) #预测结果
print('Test accuracy: %.3f' % pipe.score(X_test, y_test))#输出精度

输出:

图片

2.2 管道流水线+网格搜索参数

        在机器学习中,超参数是模型的配置参数,需要在训练之前设置,并且不能通过模型的学习过程来自动调整。超参数的选择对于模型的性能和泛化能力非常重要,因此需要通过实验来确定最佳的超参数组合。GridSearchCV是scikit-learn库中的一个类,用于进行网格搜索(Grid Search)和交叉验证(Cross-Validation)来选择模型的最佳超参数。使用GridSearchCV时,需要提供一个估计器(Estimator)对象、超参数的候选值列表和评估指标(如准确率、均方误差等)。GridSearchCV将对所有超参数组合进行交叉验证,并返回具有最佳性能的超参数组合及其对应的模型。

pipeline=Pipeline([('scaler',StandardScaler()),('pca',PCA()),('svm',SVC())])
param_grid={'svm__C':[0.001,0.01,0.1,1,10,100],'svm__gamma':[0.001,0.01,0.1,1,10,100]}# 定义网格搜索参数,用<estimator>__<parameter>形式设置参数
grid=GridSearchCV(pipeline,param_grid,cv=5, scoring='accuracy')# 网格搜索模型实例化
grid.fit(X_train,y_train)
grid.predict(X_test)
print('Test accuracy: %.3f' % grid.score(X_test, y_test))#输出精度

输出:

图片

        本文简单介绍了机器学习管道流水线机制的使用方法,事实上特征处理过程也可以加入管道,我们还可以自定义转化器加入管道中,可以对不同的特征处理划分不同的管道,这些用法我后期出文章再细说。

本期内容就到这里,我们下期再见!需要数据集和源码的小伙伴关注底部公众号添加作者微信!

作者简介:

读研期间发表6篇SCI数据挖掘相关论文,现在某研究院从事数据算法相关科研工作,结合自身科研实践经历不定期分享关于Python、机器学习、深度学习、人工智能系列基础知识与应用案例。致力于只做原创,以最简单的方式理解和学习,关注我一起交流成长。

相关文章:

【Python机器学习系列】一文带你了解机器学习中的Pipeline管道机制(理论+源码)

这是Python机器学习原创文章&#xff0c;我的第183篇原创文章。 一、引言 对于表格数据&#xff0c;一套完整的机器学习建模流程如下&#xff1a; 背景知识1&#xff1a;机器学习中的学习器 【Python机器学习系列】一文搞懂机器学习中的转换器和估计器&#xff08;附案例&…...

算法基础之整数划分

整数划分 核心思想&#xff1a; 计数类dp 背包做法 f[i][j] 表示 取 1 – i 的物品 总容量为j的选法数量 f[i][j] f[i-1][j] f[i-1][j-v[i]] f[i-1][j-2v[i]] f[i-1][j-3v[i]] ……f[i-1][j-kv[i]] f[i][j-v[i]] f[i-1][j-v[i]] f[i-1][j-2v[i]] f[i-1][j-3v[i]] ……f[i…...

关于“Python”的核心知识点整理大全47

目录 16.1.10 错误检查 highs_lows.py highs_lows.py 16.2 制作世界人口地图&#xff1a;JSON 格式 16.2.1 下载世界人口数据 16.2.2 提取相关的数据 population_data.json world_population.py 16.2.3 将字符串转换为数字值 world_population.py 2world_population…...

Android 8.1 设置USB传输文件模式(MTP)

项目需求&#xff0c;需要在电脑端adb发送通知手机端接收指令&#xff0c;将USB的仅充电模式更改成传输文件&#xff08;MTP&#xff09;模式&#xff0c;便捷用户在我的电脑里操作内存文件&#xff0c;下面是我们的常见的修改方式 1、android12以下、android21以上是这种方式…...

模型量化 | Pytorch的模型量化基础

官方网站&#xff1a;Quantization — PyTorch 2.1 documentation Practical Quantization in PyTorch | PyTorch 量化简介 量化是指执行计算和存储的技术 位宽低于浮点精度的张量。量化模型 在张量上执行部分或全部操作&#xff0c;精度降低&#xff0c;而不是 全精度&#xf…...

adb和logcat常用命令

adb的作用 adb构成 client端&#xff0c;在电脑上&#xff0c;负责发送adb命令daemon守护进程adbd&#xff0c;在手机上&#xff0c;负责接收和执行adb命令server端&#xff0c;在电脑上&#xff0c;负责管理client和daemon之间的通信 adb工作原理 client端将命令发送给ser…...

千巡翼X4轻型无人机 赋能智慧矿山

千巡翼X4轻型无人机 赋能智慧矿山 传统的矿山测绘需要大量测绘员通过采用手持RTK、全站仪对被测区域进行外业工作&#xff0c;再通过方格网法、三角网法、断面法等进行计算&#xff0c;需要耗费大量人力和时间。随着无人机航测技术的不断发展&#xff0c;利用无人机作业可以大…...

【Android 13】使用Android Studio调试系统应用之Settings移植(一):编译服务器的配置、AOSP源码的下载、编译、运行

文章目录 1. 篇头语2. 系列文章3. ubuntu 最佳版本3.1 下载并安装3.2 配置AOSP工具链3.3 配置Python多版本支持4. AOSP源码下载4.1 配置repo工具4.2 源码下载5. AOSP编译5.1 添加emulator模拟器配置5.1.1 哪些是支持模拟器的Products?5.1.2 添加方法5.2 编译...

【1】Docker详解与部署微服务实战

Docker 详解 Docker 简介 Docker 是一个开源的容器化平台&#xff0c;可以帮助开发者将应用程序和其依赖的环境打包成一个可移植、可部署的容器。Docker 的主要目标是通过容器化技术实现应用程序的快速部署、可移植性和可扩展性&#xff0c;从而简化应用程序的开发、测试和部…...

C# JsonString转Object以及Object转JsonString

主要讲述了两种方法的转换&#xff0c;最后提供了格式化输出JsonString字符串。 需要引用程序集 System.Web.Extensions.dll、Newtonsoft.Json.dll System.Web.Extensions.dll可直接在程序集中引用&#xff0c;Newtonsoft.Json.dll需要在NuGet中下载引用。 详细代码&#xf…...

华为OD机试真题-中文分词模拟器-2023年OD统一考试(C卷)

题目描述: 给定一个连续不包含空格字符串,该字符串仅包含英文小写字母及英文文标点符号(逗号、分号、句号),同时给定词库,对该字符串进行精确分词。 说明: 1.精确分词: 字符串分词后,不会出现重叠。即“ilovechina” ,不同词库可分割为 “i,love,china” “ilove,c…...

【并发设计模式】聊聊 基于Copy-on-Write模式下的CopyOnWriteArrayList

在并发编程领域&#xff0c;其实除了使用上一篇中的属性不可变。还有一种方式那就是针对读多写少的场景下。我们可以读不加锁&#xff0c;只针对于写操作进行加锁。本质上就是读写复制。读的直接读取&#xff0c;写的使用写一份数据的拷贝数据&#xff0c;然后进行写入。在将新…...

OpenCV中使用Mask R-CNN实现图像分割的原理与技术实现方案

本文详细介绍了在OpenCV中利用Mask R-CNN实现图像分割的原理和技术实现方案。Mask R-CNN是一种先进的深度学习模型&#xff0c;通过结合区域提议网络&#xff08;Region Proposal Network&#xff09;和全卷积网络&#xff08;Fully Convolutional Network&#xff09;&#xf…...

论文阅读《Rethinking Efficient Lane Detection via Curve Modeling》

目录 Abstract 1. Introduction 2. Related Work 3. BezierLaneNet 3.1. Overview 3.2. Feature Flip Fusion 3.3. End-to-end Fit of a Bezier Curve 4. Experiments 4.1. Datasets 4.2. Evalutaion Metics 4.3. Implementation Details 4.4. Comparisons 4.5. A…...

Leetcode—2660.保龄球游戏的获胜者【简单】

2023每日刷题&#xff08;七十二&#xff09; Leetcode—2660.保龄球游戏的获胜者 实现代码 class Solution { public:int isWinner(vector<int>& player1, vector<int>& player2) {long long sum1 0, sum2 0;int n player1.size();for(int i 0; i &…...

ubuntu服务器上安装KVM虚拟化

今天想着在ubuntu上来安装一个windwos操作系统&#xff0c;原因是因为我们楼上有几台不错的服务器&#xff0c;但是都是linux系统的。 今天我想着要给同事们搭建一个chatgpt环境&#xff0c;用来开发程序&#xff0c;但是ubuntu上其实也可以安装我嫌麻烦&#xff0c;刚好想折腾…...

SpreadJS 集成使用案例

SpreadJS 集成案例 介绍&#xff1a; SpreadJS 基于 HTML5 标准&#xff0c;支持跨平台开发和集成&#xff0c;支持所有主流浏览器&#xff0c;无需预装任何插件或第三方组件&#xff0c;以原生的方式嵌入各类应用&#xff0c;可以与各类后端技术框架相结合。SpreadJS 以 纯前…...

单挑力扣(LeetCode)SQL题:534. 游戏玩法分析 III(难度:中等)

题目&#xff1a;534. 游戏玩法分析 III &#xff08;通过次数23,825 | 提交次数34,947&#xff0c;通过率68.17%&#xff09; Table:Activity----------------------- | Column Name | Type | ----------------------- | player_id | int | | device_id | int…...

【OpenCV】告别人工目检:深度学习技术引领工业品缺陷检测新时代

目录 前言 机器视觉 缺陷检测 工业上常见缺陷检测方法 内容简介 作者简介 目录 读者对象 如何阅读本书 获取方式 前言 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。 点击跳转到网站 机器视觉…...

VR全景图片制作时有哪些技巧,VR全景图片能带来哪些好处

引言&#xff1a; VR全景图片是通过虚拟现实技术制作出的具有沉浸感的图片&#xff0c;能够提供给用户一种身临其境的感觉。在宣传方面&#xff0c;它有着独特的优势和潜力&#xff0c;能够帮助吸引更多的潜在客户&#xff0c;那么VR全景图片制作时有哪些技巧&#xff0c;VR全…...

多场景 OkHttpClient 管理器 - Android 网络通信解决方案

下面是一个完整的 Android 实现&#xff0c;展示如何创建和管理多个 OkHttpClient 实例&#xff0c;分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...

服务器硬防的应用场景都有哪些?

服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式&#xff0c;避免服务器受到各种恶意攻击和网络威胁&#xff0c;那么&#xff0c;服务器硬防通常都会应用在哪些场景当中呢&#xff1f; 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...

在web-view 加载的本地及远程HTML中调用uniapp的API及网页和vue页面是如何通讯的?

uni-app 中 Web-view 与 Vue 页面的通讯机制详解 一、Web-view 简介 Web-view 是 uni-app 提供的一个重要组件&#xff0c;用于在原生应用中加载 HTML 页面&#xff1a; 支持加载本地 HTML 文件支持加载远程 HTML 页面实现 Web 与原生的双向通讯可用于嵌入第三方网页或 H5 应…...

LangChain知识库管理后端接口:数据库操作详解—— 构建本地知识库系统的基础《二》

这段 Python 代码是一个完整的 知识库数据库操作模块&#xff0c;用于对本地知识库系统中的知识库进行增删改查&#xff08;CRUD&#xff09;操作。它基于 SQLAlchemy ORM 框架 和一个自定义的装饰器 with_session 实现数据库会话管理。 &#x1f4d8; 一、整体功能概述 该模块…...

SQL慢可能是触发了ring buffer

简介 最近在进行 postgresql 性能排查的时候,发现 PG 在某一个时间并行执行的 SQL 变得特别慢。最后通过监控监观察到并行发起得时间 buffers_alloc 就急速上升,且低水位伴随在整个慢 SQL,一直是 buferIO 的等待事件,此时也没有其他会话的争抢。SQL 虽然不是高效 SQL ,但…...

Go 并发编程基础:通道(Channel)的使用

在 Go 中&#xff0c;Channel 是 Goroutine 之间通信的核心机制。它提供了一个线程安全的通信方式&#xff0c;用于在多个 Goroutine 之间传递数据&#xff0c;从而实现高效的并发编程。 本章将介绍 Channel 的基本概念、用法、缓冲、关闭机制以及 select 的使用。 一、Channel…...

在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)

考察一般的三次多项式&#xff0c;以r为参数&#xff1a; p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]&#xff1b; 此多项式的根为&#xff1a; 尽管看起来这个多项式是特殊的&#xff0c;其实一般的三次多项式都是可以通过线性变换化为这个形式…...

为什么要创建 Vue 实例

核心原因:Vue 需要一个「控制中心」来驱动整个应用 你可以把 Vue 实例想象成你应用的**「大脑」或「引擎」。它负责协调模板、数据、逻辑和行为,将它们变成一个活的、可交互的应用**。没有这个实例,你的代码只是一堆静态的 HTML、JavaScript 变量和函数,无法「活」起来。 …...

Ubuntu Cursor升级成v1.0

0. 当前版本低 使用当前 Cursor v0.50时 GitHub Copilot Chat 打不开&#xff0c;快捷键也不好用&#xff0c;当看到 Cursor 升级后&#xff0c;还是蛮高兴的 1. 下载 Cursor 下载地址&#xff1a;https://www.cursor.com/cn/downloads 点击下载 Linux (x64) &#xff0c;…...

ubuntu系统文件误删(/lib/x86_64-linux-gnu/libc.so.6)修复方案 [成功解决]

报错信息&#xff1a;libc.so.6: cannot open shared object file: No such file or directory&#xff1a; #ls, ln, sudo...命令都不能用 error while loading shared libraries: libc.so.6: cannot open shared object file: No such file or directory重启后报错信息&…...