当前位置: 首页 > news >正文

CEC2017(Python):五种算法(DE、RFO、OOA、PSO、GWO)求解CEC2017

一、5种算法简介

1、差分进化算法DE

2、红狐优化算法RFO

3、鱼鹰优化算法OOA

4、粒子群优化算法PSO

5、灰狼优化算法GWO

二、CEC2017简介

参考文献:

[1]Awad, N. H., Ali, M. Z., Liang, J. J., Qu, B. Y., & Suganthan, P. N. (2016). “Problem definitions and evaluation criteria for the CEC2017 special session and competition on single objective real-parameter numerical optimization,” Technical Report. Nanyang Technological University, Singapore.

三、5种算法求解CEC2017

(1)部分Python代码

import cec2017.functions as functions
import numpy as np
import matplotlib.pyplot as plt
from DE import DE
from RFO import RFO
from OOA import OOA
from PSO import PSO
from GWO import GWOplt.rcParams['font.sans-serif']=['Microsoft YaHei']
#主程序
function_name =7 #CEC2017 测试函数 1-29
SearchAgents_no = 50#种群大小
Max_iter = 100#最大迭代次数
dim=30;#维度只能是 10/30/50/100
lb = -100*np.ones(dim)#下界
ub = 100*np.ones(dim)#上界
fobj= functions.all_functions[function_name-1]BestX1,BestF1,curve1 = DE(SearchAgents_no, Max_iter,lb,ub,dim,fobj)#问题求解
BestX2,BestF2,curve2 = RFO(SearchAgents_no, Max_iter,lb,ub,dim,fobj)#问题求解
BestX3,BestF3,curve3 = OOA(SearchAgents_no, Max_iter,lb,ub,dim,fobj)#问题求解
BestX4,BestF4,curve4 = PSO(SearchAgents_no, Max_iter,lb,ub,dim,fobj)#问题求解
BestX5,BestF5,curve5 = GWO(SearchAgents_no, Max_iter,lb,ub,dim,fobj)#问题求解
#画收敛曲线图
Labelstr=['DE','RFO','OOA','PSO','GWO']
Colorstr=['r','g','b','k','c']
if BestF1>0:plt.semilogy(curve1,color=Colorstr[0],linewidth=2,label=Labelstr[0])plt.semilogy(curve2,color=Colorstr[1],linewidth=2,label=Labelstr[1])plt.semilogy(curve3,color=Colorstr[2],linewidth=2,label=Labelstr[2])plt.semilogy(curve4,color=Colorstr[3],linewidth=2,label=Labelstr[3])plt.semilogy(curve5,color=Colorstr[4],linewidth=2,label=Labelstr[4])
else:plt.plot(curve1,color=Colorstr[0],linewidth=2,label=Labelstr[0])plt.plot(curve2,color=Colorstr[1],linewidth=2,label=Labelstr[1])plt.plot(curve3,color=Colorstr[2],linewidth=2,label=Labelstr[2])plt.plot(curve4,color=Colorstr[3],linewidth=2,label=Labelstr[3])plt.plot(curve5,color=Colorstr[4],linewidth=2,label=Labelstr[4])plt.xlabel("Iteration")
plt.ylabel("Fitness")
plt.xlim(0,Max_iter)
plt.title("CEC2017-F"+str(function_name))
plt.legend()
plt.savefig(str(function_name)+'.png')
plt.show()
#

(2)部分结果

四、完整Python代码

相关文章:

CEC2017(Python):五种算法(DE、RFO、OOA、PSO、GWO)求解CEC2017

一、5种算法简介 1、差分进化算法DE 2、红狐优化算法RFO 3、鱼鹰优化算法OOA 4、粒子群优化算法PSO 5、灰狼优化算法GWO 二、CEC2017简介 参考文献: [1]Awad, N. H., Ali, M. Z., Liang, J. J., Qu, B. Y., & Suganthan, P. N. (2016). “Problem defini…...

数字身份验证:跨境电商如何应对账户安全挑战?

在数字化时代,随着跨境电商的蓬勃发展,账户安全问题逐渐成为行业和消费者关注的焦点。随着网络犯罪日益猖獗,用户的数字身份安全面临着更加复杂的威胁。本文将深入探讨数字身份验证在跨境电商中的重要性,并探讨各种创新技术和策略…...

Nature | 大型语言模型(LLM)能够发现和产生新知识吗?

大型语言模型(LLM)是基于大量数据进行预训练的超大型深度学习模型。底层转换器是一组神经网络,这些神经网络由具有自注意力功能的编码器和解码器组成。编码器和解码器从一系列文本中提取含义,并理解其中的单词和短语之间的关系。通…...

C# 使用ZXing.Net生成二维码和条码

写在前面 条码生成是一个经常需要处理的功能,本文介绍一个条码处理类库,ZXing用Java实现的多种格式的一维二维条码图像处理库,而ZXing.Net是其.Net版本的实现。 在WinForm下使用该类库需要从NuGet安装两个组件: ZXing.Net ZXing…...

Windows系统配置pytorch环境,Jupyter notebook编辑器安装使用(深度学习本地篇)

如今现在好一点的笔记本都自带英伟达独立显卡,对于一些简单的深度学习项目,是不需要连接服务器的,甚至数据量不大的话,cpu也足够进行训练学习。我把电脑上一些以前的笔记整理一下,记录起来,方便自己35岁事业…...

详解“量子极限下运行的光学神经网络”——相干伊辛机

量子计算和量子启发计算可能成为解答复杂优化问题的新前沿,而经典计算机在历史上是无法解决这些问题的。 当今最快的计算机可能需要数千年才能完成高度复杂的计算,包括涉及许多变量的组合优化问题;研究人员正在努力将解决这些问题所需的时间缩…...

uniapp通过蓝牙传输数据 (安卓)

在uni-app中,可以通过原生插件的方式来实现蓝牙传输数据的功能。以下是一般的步骤: 1. 创建一个原生插件 在uni-app项目的根目录下,创建一个原生插件的目录,比如"uni-bluetooth"。然后在该目录下创建一个"Androi…...

LT8612UX-HDMI2.0 to HDMI2.0 and VGA Converter with Audio,支持三通道视频DAC

HDMI2.0 to HDMI2.0 and VGA Converter with Audio 1. 描述 LT8612UX是一个HDMI到HDMI和vga转换器,它将HDMI2.0数据流转换为HDMI2.0信号和模拟RGB信号。 它还输出8通道I2S和SPDIF信号,使高质量的7.1通道音频。 LT8612UX支持符合HDMI2.0/ 1.4规范的…...

python gui programming cook,python gui视频教程

大家好,给大家分享一下python gui programming cook,很多人还不知道这一点。下面详细解释一下。现在让我们来看看! Source code download: 本文相关源码 前言 上一节我们实现了明细窗体GUI的搭建,并且设置了查看、修改、添加三种不…...

亚马逊bsr排名的影响因素,如何提高BSR排名?-站斧浏览器

亚马逊BSR排名的影响因素有哪些? 销售速度:BSR排名主要基于产品的销售速度,即最近一段时间内的销售量。销售速度越快,BSR排名越高。 销售历史:亚马逊会考虑产品的历史销售数据,新上架的产品可能需要一段时…...

K8s-安全机制

目录 1、//机制说明 2、认证(Authentication) 3、鉴权(Authorization) 4、准入控制(Admission Control) 5、实践:创建一个用户只能管理指定的命名空间 1、//机制说明 Kubernetes 作为一个分…...

GPT-3: Language Models are Few-Shot Learners

GPT-3 论文 数据集 CommonCrawl:文章通过高质量参考语料库对CommonCrawl数据集进行了过滤,并通过模糊去重对文档进行去重,且增加了高质量参考语料库以增加文本的多样性。WebText:文章采用了类似GPT-2中的WebText文档收集清洗方…...

Qt Quick 用cmake怎么玩子项目

以下内容为本人的著作,如需要转载,请声明原文链接 微信公众号「ENG八戒」https://mp.weixin.qq.com/s/o-_aGqreuQda-ZmKktvxwA 以往在公司开发众多的项目中,都会出现要求本项目里部分功能模块代码需要具备保密性。如果需要对外输出demo工程&…...

大数据学习(29)-Spark Shuffle

&&大数据学习&& 🔥系列专栏: 👑哲学语录: 承认自己的无知,乃是开启智慧的大门 💖如果觉得博主的文章还不错的话,请点赞👍收藏⭐️留言📝支持一下博主哦&#x1f91…...

archiver error. Connect internal only, until freed.

[64000][257] ORA-00257: archiver error. Connect internal only, until freed.原因 归档日志写满了、闪回日志写满了(根本原因是服务器磁盘写满了) # 切换到oracle服务 su - oracle# 使用sysdba用户登录 解决方案:(https://blog.csdn.net/qq_37635373/article/details/933282…...

鸿蒙HarmonyOS-图表应用

简介 随着移动应用的不断发展,数据可视化成为提高用户体验和数据交流的重要手段之一。在HarmonyOS应用开发中,一个强大而灵活的图表库是实现这一目标的关键。而MPChart就是这样一款图表库,它为开发者提供了丰富的功能和灵活性,使得…...

elasticsearch 笔记三:查询建议介绍、Suggester、自动完成

一、查询建议介绍 1. 查询建议是什么? 查询建议,为用户提供良好的使用体验。主要包括: 拼写检查; 自动建议查询词(自动补全) 拼写检查如图: 自动建议查询词(自动补全)…...

【hyperledger-fabric】将智能合约部署到通道

简介 本文主要来自于B站视频教学视频,也主要参看了官方文档中下图这一章节。针对自己开发的代码做出相应的总结。 1.启动网络 # 跳转到指定的目录 cd /root/fabric/fabric-samples/test-network# 启动docker容器并且创建通道 ./network.sh up createChannel2.打…...

nginx设置跨域访问

目录 一&#xff1a;前端请求 二&#xff1a;后端设置 网站架构前端使用jquery请求&#xff0c;后端使用nginxphp-fpm 一&#xff1a;前端请求 <script> $.getJSON(http://nngzh.youjoy.com/cc.php, { openid: sd, }, function(res) { alert(res); if(res.code 0) …...

Go语言学习第二天

Go语言数组详解 var 数组变量名 [元素数量]Type 数组变量名&#xff1a;数组声明及使用时的变量名。 元素数量&#xff1a;数组的元素数量&#xff0c;可以是一个表达式&#xff0c;但最终通过编译期计算的结果必须是整型数值&#xff0c;元素数量不能含有到运行时才能确认大小…...

阿里云OpenSearch-LLM智能问答故障的一天

上周五使用阿里云开放搜索问答版时&#xff0c;故障了一整天&#xff0c;可能这个服务使用的人比较少&#xff0c;没有什么消息爆出来&#xff0c;特此记录下这几天的阿里云处理过程&#xff0c;不免让人怀疑阿里云整体都外包出去了&#xff0c;反应迟钝&#xff0c;水平业余&a…...

城市分站优化系统源码:提升百度关键排名 附带完整的搭建教程

城市分站优化已成为企业网络营销的重要手段&#xff0c;今天来给大家分享一款城市分站优化系统源码。 以下是部分代码示例&#xff1a; 系统特色功能一览&#xff1a; 1.多城市分站管理&#xff1a;该系统支持多个城市分站的管理&#xff0c;用户可以根据业务需求&#xff0c;…...

【华为OD题库-107】编码能力提升计划-java

题目 为了提升软件编码能力&#xff0c;小王制定了刷题计划&#xff0c;他选了题库中的n道题&#xff0c;编号从0到n-1&#xff0c;并计划在m天内按照题目编号顺序刷完所有的题目(注意&#xff0c;小王不能用多天完成同一题) 在小王刷题计划中&#xff0c;小王需要用time[i]的时…...

使用pytorch进行图像预处理的常用方法的详细解释

一般来说&#xff0c;我们在使用pytorch进行图像分类任务时都会对训练集数据做必要的格式转换和增广处理&#xff0c;对测试集做格式处理。 以下是常用的数据集处理函数&#xff1a; data_transform { "train": transforms.Compose([transforms.RandomResizedCro…...

天线根据什么进行分类

天线是信息化时代的一个标准&#xff0c;广播信号塔&#xff0c;通信基站塔&#xff0c;卫星天线还有每天都要用到的手机&#xff0c;都是含有天线的&#xff0c;只是各种天线的作用不同&#xff0c;大小不同。今天给大家说一下&#xff0c;天线是如何分类的。 1.按工作性质可…...

JavaScript:正则表达式

JavaScript&#xff1a;正则表达式 什么是正则表达式正则表达式语法定义正则表达式判断是否有匹配的字符串查找匹配的字符串 正则表达式匹配法则元字符边界符量词字符类 什么是正则表达式 正则表达式用于匹配字符串中字符的组合模式。 正则表达式会依据其自身语法&#xff0c;…...

【Linux】深挖进程地址空间

> 作者简介&#xff1a;დ旧言~&#xff0c;目前大二&#xff0c;现在学习Java&#xff0c;c&#xff0c;c&#xff0c;Python等 > 座右铭&#xff1a;松树千年终是朽&#xff0c;槿花一日自为荣。 > 目标&#xff1a;熟悉【Linux】进程地址空间 > 毒鸡汤&#xff…...

SVM(支持向量机)-机器学习

支持向量机&#xff08;Support Vector Machine&#xff0c;SVM&#xff09;是一种用于分类和回归分析的监督学习算法。它属于机器学习中的一类强大而灵活的模型&#xff0c;广泛应用于模式识别、图像分类、自然语言处理等领域。 基本原理: SVM的基本原理是通过找到能够有效分…...

解决生成的insert语句内有单引号的情况

背景 因为Mybatis-Plus的saveBatch()方法的批量插入其实也是循环插入&#xff0c;而不是真正的一个SqlSession完成的批插&#xff0c;效率很低。所以我们在写批量插入的时候是自己实现了一个工具类去生成批量插入的sql再去执行&#xff0c;但是会遇到有些文本里有单引号导致插…...

【Linux 程序】1. 程序构建

文章目录 【 1. 配置 】【 2. 编译 】makefile编写的要点makefile中的全局自变量CMake编译依赖的库g编译 【 3. 安装 】 一般源代码提供的程序安装需要通过配置、编译、安装三个步骤&#xff1b; 配置。检查当前环境是否满足要安装软件的依赖关系&#xff0c;以及设置程序安装所…...

织梦网站广告代码教程/肇庆seo

1. 效果示例图 2. 创建方法 &#xff08;1&#xff09;第一种方法与ListView等普通控件一样&#xff0c;直接在布局文件中添加ExpandableListView控件即可。 &#xff08;2&#xff09;第二种方法则是创建一个Activity继承自ExpandableListActivity&#xff0c;而后通过getExpa…...

郫县做网站/搜狗推广登录平台官网

ESP8266和ESP32之间的主要区别在于性能。ESP8266具有低功耗&#xff0c;但性能较低&#xff0c;而ESP32具有更高的性能&#xff0c;但功耗更高。此外&#xff0c;ESP8266支持802.11b / g / n Wi-Fi&#xff0c;而ESP32支持802.11b / g / n / ac Wi-Fi。...

wordpress 图片 主题/萌新seo

语法结构 do{ <code to be looped>; }while(<test>);<test>返回的是一个bool值(循环的条件判断) 使用循环输出1-9 int index 1;do{Console.WriteLine(index);index;} while (index < 9);//do while循环会首先执行一次循环体,然后进行条件判断 循环体的执…...

东莞模具网站建设/网络推广公司联系方式

文章目录 前言I 金字塔大纲秒变成文章II 用SCQA的故事逻辑写序言2.1 写序言的故事模板,也就是制造起伏的模板:2.2 怎么制造冲突?---“反义词”套路,制造冲突2.3 如何把握分享故事的尺度?see also前言 “情境、冲突、问题、回答”,这四大要素中的“问题”,可以省略,并且…...

广州营销型网站建设公司哪家靠谱/上海seo优化公司 kinglink

第一种思路就是生成所以的翻转&#xff0c;然后比较是否和s2匹配&#xff0c;这个时间复杂度过高。 第二种思路就是在生成的时候&#xff0c;边比较。这里采用分治的方法&#xff08;超时&#xff09; class Solution { public:bool isScramble(string s1, string s2) {if(s1 …...

南宁做网站哪家公司好/北京网站优化快速排名

2019独角兽企业重金招聘Python工程师标准>>> EvoSuite是由Sheffield等大学联合开发的一种开源工具&#xff0c;用于自动生成测试用例集&#xff0c;生成的测试用例均符合Junit的标准&#xff0c;可直接在Junit中运行。得到了Google和Yourkit的支持。 随着单元测试的…...