直方图与均衡化
直方图
统计图像中相同像素点的数量。
使用cv2.calcHist(images, channels, mask, histSize, ranges)函数
images:原图像图像格式为uint8或float32,当传入函数时应用[]括起来,例如[img]。
channels:同样用中括号括起来,告诉我们统幅图像的直方图,如果图像是灰度图就是[0],如果是彩色图可以是[0],[1],[2],分别对应BGR。
mask:掩膜图像,统幅图像使用None,若使用一部分需要自行制作。
histSize:BIN的数目,也要中括号。
ranges:像素值范围一般为[0,256]
灰度图
img = cv2.imread('deppb.jpg', 0)
show.cv_show('img', img)
hist = cv2.calcHist([img], [0], None, [256], [0, 256])
h1 = hist.shape
plt.hist(img.ravel(), 256)
plt.show()
灰度图

直方图

彩色图
img2 = cv2.imread('deppb.jpg')
show.cv_show('img2', img2)
color = ('b', 'g', 'r')
for i, col in enumerate(color):histr = cv2.calcHist([img2], [i], None, [256], [0, 256])plt.plot(histr, color=col)plt.xlim([0, 256])
plt.show()
彩色图

直方图

图为三通道的直方图
mask操作
mask,在指定区域置为255,其余区域置为0,与原图相与,最后得到指定区域的像素点个数统计,绘制直方图。
# 创建mask
show.cv_show('img2', img2) # 原图
mask = np.zeros(img2.shape[:2], np.uint8)
print(mask.shape)
mask[200: 600, 100: 427] = 255
show.cv_show('mask', mask) # mask图masked_img2 = cv2.bitwise_and(img2, img2, mask=mask)
show.cv_show('masked_img2', masked_img2) # 原图与maskhist_full = cv2.calcHist([img2], [0], None, [256], [0, 256])
hist_mask = cv2.calcHist([img2], [0], mask, [256], [0, 256])
plt.plot(hist_full), plt.plot(hist_mask) # [0]通道直方图对比
plt.show()
mask图

mask与原图相与

[0]通道直方图对比

蓝色为整体直方图,橙色为特定区域直方图。
均衡化
将一副图像的直方图分布通过累积分布函数变成近似均匀分布,从而增强图像的对比度。

根据像素点个数得到概率值,再算出累积概率类似于分布函数,再由累积概率映射出新的像素值,最后取整。
img3 = cv2.imread('deppb.jpg', 0)
plt.hist(img3.ravel(), 256) # 原图直方图
plt.show()equ = cv2.equalizeHist(img3)
plt.hist(equ.ravel(), 256) # 均衡化后直方图
plt.show()res = np.hstack((img3, equ))
show.cv_show('res', res) # 图像对比



可以看到整体均衡化可能导致部分信息丢失。
自适应均衡化
其实是分区域进行均衡化,减少信息丢失。
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8)) # 方法
res_clahe = clahe.apply(img3)
plt.hist(res_clahe.ravel(), 256) # 自适应均衡化后直方图
plt.show()
res = np.hstack((img3, equ, res_clahe)) # 与原图和整体均衡化对比
show.cv_show('res', res)
自适应均衡化的直方图

对比图

可以看到对比度加强而且信息丢失得到改善。
相关文章:
直方图与均衡化
直方图 统计图像中相同像素点的数量。 使用cv2.calcHist(images, channels, mask, histSize, ranges)函数 images:原图像图像格式为uint8或float32,当传入函数时应用[]括起来,例如[img]。 channels:同样用中括号括起来ÿ…...
Java——猫猫图鉴微信小程序(前后端分离版)
目录 一、开源项目 二、项目来源 三、使用框架 四、小程序功能 1、用户功能 2、管理员功能 五、使用docker快速部署 六、更新信息 审核说明 一、开源项目 猫咪信息点-ruoyi-cat: 1、一直想做点项目进行学习与练手,所以做了一个对自己来说可以完成的…...
PiflowX组件-ReadFromKafka
ReadFromKafka组件 组件说明 从kafka中读取数据。 计算引擎 flink 有界性 Unbounded 组件分组 kafka 端口 Inport:默认端口 outport:默认端口 组件属性 名称展示名称默认值允许值是否必填描述例子kafka_hostKAFKA_HOST“”无是逗号分隔的Ka…...
Ubuntu 安装MySQL以及基本使用
前言 MySQL是一个开源数据库管理系统,通常作为流行的LAMP(Linux,Apache,MySQL,PHP / Python / Perl)堆栈的一部分安装。它使用关系数据库和SQL(结构化查询语言)来管理其数据。 安装…...
基于Freeswitch实现的Volte网视频通知应用
现在运营商的Volte网络已经很好的支持视频通话了,因此在原来的电话语音通知的基础上,可以更进一步实现视频的通知,让用户有更好的体验,本文就从技术角度,基于Freeswitch来实现此类应用(本文假设读者已对Fre…...
怎么实现Servlet的自动加载
在实际开发时,有时候会希望某些Servlet程序可以在Tomcat启动时随即启动。但在默认情况下,第一次访问servlet的时候,才创建servlet对象。 如果servlet构造函数里面的代码或者init方法里面的代码比较多,就会导致用户第一次访问serv…...
15. Mysql 变量的使用
目录 变量的概述自定义变量系统变量查看系统变量系统变量赋值 局部变量总结参考资料 变量的概述 MySQL支持不同类型的变量,包括自定义变量、系统变量和局部变量。自定义变量是在会话中定义的变量,用于存储临时数据。系统变量是MySQL服务器提供的全局变量…...
为什么ChatGPT采用SSE协议而不是Websocket?
在探索ChatGPT的使用过程中,我们发现GPT采用了流式数据返回的方式。理论上,这种情况可以通过全双工通信协议实现持久化连接,或者依赖于基于EventStream的事件流。然而,ChatGPT选择了后者,也就是本文即将深入探讨的SSE&…...
Elasticsearch:使用 ELSER v2 文本扩展进行语义搜索
Elastic 提供了一个强大的 ELSER 供我们进行语义搜索。ELSER 是一种稀疏向量的搜索方法。我们无需对它做任何的微调及训练。它是一种 out-of-domain 的模型。目前它仅对英文进行支持。希望将来它能对其它的语言支持的更好。更多关于 ELSER 的知识,请参阅文章 “Elas…...
Matlab:BP神经网络算法,二叉决策树
1、BP神经网络算法 (1)步骤 1.准备训练数据和目标值 2.创建并配置BP神经网络模型 3.训练BP神经网络模型 4.用BP神经网络模型预测数据 例:某企业第一年度营业额为132468,第二年度为158948,第三年度为183737,预测第四年度的营…...
Python实现员工管理系统(Django页面版 ) 七
各位小伙伴们好久不见,2024年即将到来,小编在这里提前祝大家新的一年快快乐乐,能够事业有成,学习顺心,家庭和睦,事事顺利。 今天我们本篇要实现的是一个登录界面的实现,其实登录界面的实现看着挺…...
听GPT 讲Rust源代码--src/tools(34)
File: rust/src/tools/clippy/clippy_lints/src/collection_is_never_read.rs 文件"collection_is_never_read.rs"位于Rust源代码中的clippy_lints工具中,其作用是检查在集合类型(如Vec、HashMap等)的实例上执行的操作是否被忽略了…...
k8s的陈述式资源管理(命令行操作)
(一)k8s的陈述式资源管理 1、命令行:kubectl命令行工具——用于一般的资源管理 (1)优点:90%以上ce场景都可以满足 (2)特点:对资源的增、删、查比较方便,对…...
uniapp uview裁剪组件源码修改(u-avatar-cropper),裁出可自定义固定大小图片
u-avatar-cropper修改后 <template><view class"index"><!-- {{userinfo}} --><view class"top"><view class"bg"><image src"../../static/electronic_card/bg.png"></image></view&g…...
【机器学习前置知识】Beta分布
Beta分布与二项分布的关系 Beta分布与二项分布密切相关,由二项分布扩展而来,它是用来描述一个连续型随机变量出现的概率的概率密度分布,表示为 X X X~ B e t a ( a , b ) Beta(a,b) Beta(a,b) , a 、 b a、b a、b 是形状参数。Beta分布本质上也是一个概率密度函数,只是这…...
Notepad++批量更改文件编码格式及文档格式
背景: 在项目中遇到Windows平台VS的MSVC编译不识别Unix下UTF-8编码导致的编译失败问题。需要将Unix下的UTF-8转为UTF-8-BOM格式。网上找了些方式,之后又深入探究了下文档转换的可能性,共享给大家。(当然Windows和Unix平台代码格式…...
Linux驱动开发学习笔记6《蜂鸣器实验》
目录 一、蜂鸣器驱动原理 二、硬件原理分析 三、实验程序编写 1、 修改设备树文件 (1)添加pinctrl节点 (2)添加BEEP设备节点 (3)检查PIN 是否被其他外设使用 2、蜂鸣器驱动程序编写 3、编写测试AP…...
鸿蒙(HarmonyOS 3.1) DevEco Studio 3.1开发环境汉化
鸿蒙(HarmonyOS 3.1) DevEco Studio 3.1开发环境汉化 一、安装环境 操作系统: Windows 10 专业版 IDE:DevEco Studio 3.1 SDK:HarmonyOS 3.1 二、设置过程 打开IDE,在第一个菜单File 中找到Settings...菜单 在Setting...中找到Plugins…...
毫米波雷达:从 3D 走向 4D
1 毫米波雷达已广泛应用于汽车 ADAS 系统 汽车智能驾驶需要感知层、决策层、执行层三大核心系统的高效配合,其中感知层通过传感器探知周围的环境。汽车智能驾驶感知层将真实世界的视觉、物理、事件等信息转变成数字信号,为车辆了解周边环境、制定驾驶操…...
CENTOS docker拉取私服镜像
概述 docker的应用越来越多,安装部署越来越方便,批量自动化的镜像生成和发布都需要docker镜像的拉取。 centos6版本太老,docker的使用过程中问题较多,centos7相对简单容易。 本文档主要介绍centos系统安装docker和拉取docker私…...
在软件开发中正确使用MySQL日期时间类型的深度解析
在日常软件开发场景中,时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志,到供应链系统的物流节点时间戳,时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库,其日期时间类型的…...
7.4.分块查找
一.分块查找的算法思想: 1.实例: 以上述图片的顺序表为例, 该顺序表的数据元素从整体来看是乱序的,但如果把这些数据元素分成一块一块的小区间, 第一个区间[0,1]索引上的数据元素都是小于等于10的, 第二…...
云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地
借阿里云中企出海大会的东风,以**「云启出海,智联未来|打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办,现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...
蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练
前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1):从基础到实战的深度解析-CSDN博客,但实际面试中,企业更关注候选人对复杂场景的应对能力(如多设备并发扫描、低功耗与高发现率的平衡)和前沿技术的…...
oracle与MySQL数据库之间数据同步的技术要点
Oracle与MySQL数据库之间的数据同步是一个涉及多个技术要点的复杂任务。由于Oracle和MySQL的架构差异,它们的数据同步要求既要保持数据的准确性和一致性,又要处理好性能问题。以下是一些主要的技术要点: 数据结构差异 数据类型差异ÿ…...
Java线上CPU飙高问题排查全指南
一、引言 在Java应用的线上运行环境中,CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时,通常会导致应用响应缓慢,甚至服务不可用,严重影响用户体验和业务运行。因此,掌握一套科学有效的CPU飙高问题排查方法&…...
九天毕昇深度学习平台 | 如何安装库?
pip install 库名 -i https://pypi.tuna.tsinghua.edu.cn/simple --user 举个例子: 报错 ModuleNotFoundError: No module named torch 那么我需要安装 torch pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple --user pip install 库名&#x…...
AI病理诊断七剑下天山,医疗未来触手可及
一、病理诊断困局:刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断",医生需通过显微镜观察组织切片,在细胞迷宫中捕捉癌变信号。某省病理质控报告显示,基层医院误诊率达12%-15%,专家会诊…...
Yolov8 目标检测蒸馏学习记录
yolov8系列模型蒸馏基本流程,代码下载:这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中,**知识蒸馏(Knowledge Distillation)**被广泛应用,作为提升模型…...
基于Java+MySQL实现(GUI)客户管理系统
客户资料管理系统的设计与实现 第一章 需求分析 1.1 需求总体介绍 本项目为了方便维护客户信息为了方便维护客户信息,对客户进行统一管理,可以把所有客户信息录入系统,进行维护和统计功能。可通过文件的方式保存相关录入数据,对…...
