当前位置: 首页 > news >正文

模式识别与机器学习-SVM(线性支持向量机)

线性支持向量机

  • 线性支持向量机
    • 间隔距离
    • 学习的对偶算法
    • 算法:线性可分支持向量机学习算法
    • 线性可分支持向量机例子

谨以此博客作为复习期间的记录

线性支持向量机

在这里插入图片描述
在以上四条线中,都可以作为分割平面,误差率也都为0。但是那个分割平面效果更好呢?其实可以看出,黑色的线具有更好的性质,因为如果将黑色的线作为分割平面,将会有更大的间隔距离。
其中,分割平面可以用以下式子表示:
w x + b = 0 wx+b = 0 wx+b=0
w 和 b w\text{和}b wb都是有待学习的参数,SVM的核心思想之一就是找到这样的一个平面,使得间隔距离最大。那么该如何表述间隔距离呢?

间隔距离

在分割平面 w x + b = 0 wx+b = 0 wx+b=0确定的情况下,对每一个样本点 x i , ∣ w x i + b ∣ x_i,|wx_i+b| xi,wxi+b可以表示样本点 x i x_i xi到分割平面的距离。而若是二分类, y i ∈ { 1 , − 1 } y_i \in \{1,-1\} yi{1,1},那么 y i ( w x i + b ) y_i(wx_i+b) yi(wxi+b)同样可以表示样本点到分割平面的距离。

对于二分类问题,数据点 x i \mathbf{x}_i xi 到超平面的函数间隔定义为: γ ^ i = y i ( w ⋅ x i + b ) \hat{\gamma}_i = y_i (\mathbf{w} \cdot \mathbf{x}_i + b) γ^i=yi(wxi+b)

函数间隔的正负号表示数据点所属的类别和超平面分割的一致性。当 γ ^ i > 0 \hat{\gamma}_i > 0 γ^i>0 时,数据点 x i \mathbf{x}_i xi 被正确地分类到超平面两侧的区域,而当 γ ^ i < 0 \hat{\gamma}_i < 0 γ^i<0 时,数据点被错误地分类或位于超平面上。若 γ ^ i = 0 \hat{\gamma}_i = 0 γ^i=0,则表示数据点在超平面上。

而这里就可以得出SVM的初步思想:最大化最小函数间隔,公式表述如下
m a x m i n ( γ ^ i ) i = 1... N max \quad min(\hat{\gamma}_i) \qquad i = 1...N maxmin(γ^i)i=1...N
也就是在所有样本点 ( x i , y i ) (x_i,y_i) (xi,yi)中,可以找到离分割平面最近的点,我们想让这些点的距离达到最大。但是有一个问题,但是选择分离超平面时,只有函数间隔还不够.因为只要成比例地改变 w w w b b b ,例如将它们改为 2 w 2w 2w 2 b 2b 2b ,超平面并没有改变,但函数间隔却成为原来的 2 倍.这一事实启示我们,可以对分离超平面的法向量 w w w 加某些约束,如规范化 ∣ ∣ w ∣ ∣ = 1 ||w|| = 1 ∣∣w∣∣=1,这时函数间隔就变为了几何间隔。
几何间隔 对于给定的训练数据集 T T T 和超平面 ( w , b ) (w, b) (w,b), 定义超平面 ( w , b ) (w, b) (w,b) 关于样本点 ( x i , y i ) \left(x_i, y_i\right) (xi,yi) 的几何间隔为
γ i = y i ( w ∥ w ∥ ⋅ x i + b ∥ w ∥ ) \gamma_i=y_i\left(\frac{w}{\|w\|} \cdot x_i+\frac{b}{\|w\|}\right) γi=yi(wwxi+wb)

定义超平面 ( w , b ) (w, b) (w,b) 关于训练数据集 T T T 的几何间隔为超平面 ( w , b ) (w, b) (w,b) 关于 T T T 中所有样本点 ( x i , y i ) \left(x_i, y_i\right) (xi,yi) 的几何间隔之最小值, 即
γ = min ⁡ i = 1 , ⋯ , N γ i \gamma=\min _{i=1, \cdots, N} \gamma_i γ=i=1,,Nminγi

超平面 ( w , b ) (w, b) (w,b) 关于样本点 ( x i , y i ) \left(x_i, y_i\right) (xi,yi) 的几何间隔一般是实例点到超平面的带符号的距离 (signed distance), 当样本点被超平面正确分类时就是实例点到超平面的距离.

从函数间隔和几何间隔的定义 (式(7.3) 式(7.6))可知, 函数间隔和几何间隔有下面的关系:
γ i = γ ^ i ∥ w ∥ γ = γ ^ ∥ w ∥ \begin{gathered} \gamma_i=\frac{\hat{\gamma}_i}{\|w\|} \\ \gamma=\frac{\hat{\gamma}}{\|w\|} \end{gathered} γi=wγ^iγ=wγ^

如果 ∥ w ∥ = 1 \|w\|=1 w=1, 那么函数间隔和几何间隔相等. 如果超平面参数 w w w b b b 成比例地改变 (超平面没有改变),函数间隔也按此比例改变,而几何间隔不变.

那么,优化目标可以等价的表述如下
maximize γ subject to γ ≤ y i ( w ∥ w ∥ ⋅ x i + b ∥ w ∥ ) , i = 1 , 2 , … , n \begin{align*} & \text{maximize} \quad \gamma \\ & \text{subject to} \quad \gamma \leq y_i \left(\frac{\mathbf{w}}{\|\mathbf{w}\|} \cdot \mathbf{x}_i + \frac{b}{\|\mathbf{w}\|}\right), \quad i = 1, 2, \dots, n \end{align*} maximizeγsubject toγyi(wwxi+wb),i=1,2,,n
转化为几何间隔:

maximize γ ^ ∥ w ∥ subject to γ ^ ≤ y i ( w ⋅ x i + b ) , i = 1 , 2 , … , n \begin{align*} & \text{maximize} \quad \frac{\hat{\gamma}}{\|w\|} \\ & \text{subject to} \quad \hat{\gamma} \leq y_i \left(\mathbf{w} \cdot \mathbf{x}_i + b\right), \quad i = 1, 2, \dots, n \end{align*} maximizewγ^subject toγ^yi(wxi+b),i=1,2,,n
可以令 γ ^ = 1 \hat{\gamma} = 1 γ^=1,目标函数变为 m a x i m i z e 1 ∣ ∣ w ∣ ∣ maximize \quad\frac{1}{||w||} maximize∣∣w∣∣1,等价于 m i n i m i z e 1 2 ∣ ∣ w ∣ ∣ minimize\quad \frac{1}{2}||w|| minimize21∣∣w∣∣.原问题可化为以下形式.
minimize 1 2 ∣ ∣ w ∣ ∣ 2 subject to y i ( w ⋅ x i + b ) − 1 ≥ 0 , i = 1 , 2 , … , n \begin{align*} & \text{minimize} \quad \frac{1}{2}||w||^2\\ & \text{subject to} \quad y_i \left(\mathbf{w} \cdot \mathbf{x}_i + b\right) - 1\geq 0, \quad i = 1, 2, \dots, n \end{align*} minimize21∣∣w2subject toyi(wxi+b)10,i=1,2,,n
以上是一个凸优化问题,通过求解上述问题即可得到最终的最优决策平面。
在这里插入图片描述
在决定分离超平面时只有支持向量起作用,而其他实例点并不起作用.如果移动支持向量将改变所求的解;但是如果在间隔边界以外移动其他实例点,甚至去掉这些点,则解是不会改变的.由于支持向量在确定分离超平面中起着决定性作用,所以将这种分类模型称为支持向量机.支持向量的个数一般很少,所以支持向量机由很少的“重要的”训练样本确定.

学习的对偶算法

为了求解上述问题,可以构造拉格朗日函数,通过求解对偶问题得到原始问题的最优解。
这样做的优点,一是对偶问题往往更容易求解;二是自然引入核函数,进而推广到非线性分类问题。
首先构建拉格朗日函数 (Lagrange function). 为此, 对每一个不等式约束引进拉格朗日乘子 (Lagrange multiplier) α i ⩾ 0 , i = 1 , 2 , ⋯ , N \alpha_i \geqslant 0, i=1,2, \cdots, N αi0,i=1,2,,N, 定义拉格朗日函数:
L ( w , b , α ) = 1 2 ∥ w ∥ 2 − ∑ i = 1 N α i y i ( w ⋅ x i + b ) + ∑ i = 1 N α i L(w, b, \alpha)=\frac{1}{2}\|w\|^2-\sum_{i=1}^N \alpha_i y_i\left(w \cdot x_i+b\right)+\sum_{i=1}^N \alpha_i L(w,b,α)=21w2i=1Nαiyi(wxi+b)+i=1Nαi
其中, α = ( α 1 , α 2 , ⋯ , α N ) T \alpha=\left(\alpha_1, \alpha_2, \cdots, \alpha_N\right)^{\mathrm{T}} α=(α1,α2,,αN)T 为拉格朗日乘子向量.
根据拉格朗日对偶性,原始问题的对偶问题是极大极小问题:
max ⁡ α min ⁡ w , b L ( w , b , α ) \max _\alpha \min _{w, b} L(w, b, \alpha) αmaxw,bminL(w,b,α)

所以, 为了得到对偶问题的解, 需要先求 L ( w , b , α ) L(w, b, \alpha) L(w,b,α) w , b w, b w,b 的极小, 再求对 α \alpha α 的极大.

拉格朗日函数为:
L ( w , b , α ) = 1 2 ∥ w ∥ 2 − ∑ i = 1 N α i y i ( w ⋅ x i + b ) + ∑ i = 1 N α i L(w, b, \alpha)=\frac{1}{2}\|\mathbf{w}\|^2-\sum_{i=1}^N \alpha_i y_i(\mathbf{w} \cdot \mathbf{x}_i+b)+\sum_{i=1}^N \alpha_i L(w,b,α)=21w2i=1Nαiyi(wxi+b)+i=1Nαi

其中, α = ( α 1 , α 2 , ⋯ , α N ) T \alpha=\left(\alpha_1, \alpha_2, \cdots, \alpha_N\right)^{\mathrm{T}} α=(α1,α2,,αN)T 为拉格朗日乘子向量。

接下来,我们进行极小化 L ( w , b , α ) L(w, b, \alpha) L(w,b,α) w w w b b b的过程。需要对 L ( w , b , α ) L(w, b, \alpha) L(w,b,α) 分别对 w w w b b b 求偏导,并令其等于零:

w w w 的偏导数:
∂ L ∂ w = w − ∑ i = 1 N α i y i x i = 0 \frac{\partial L}{\partial w} = w - \sum_{i=1}^N \alpha_i y_i x_i = 0 wL=wi=1Nαiyixi=0
得到: w = ∑ i = 1 N α i y i x i w = \sum_{i=1}^N \alpha_i y_i x_i w=i=1Nαiyixi

b b b 的偏导数:
∂ L ∂ b = − ∑ i = 1 N α i y i = 0 \frac{\partial L}{\partial b} = -\sum_{i=1}^N \alpha_i y_i = 0 bL=i=1Nαiyi=0
得到: ∑ i = 1 N α i y i = 0 \sum_{i=1}^N \alpha_i y_i = 0 i=1Nαiyi=0

将上述对 w w w b b b 的结果代入拉格朗日函数 L ( w , b , α ) L(w, b, \alpha) L(w,b,α),得到极小化后的结果

这样,对偶问题可以表示为:
min ⁡ α − 1 2 ∑ i = 1 N ∑ j = 1 N α i α j y i y j ( x i ⋅ x j ) + ∑ i = 1 N α i \min_\alpha -\frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N \alpha_i \alpha_j y_i y_j (x_i \cdot x_j) + \sum_{i=1}^N \alpha_i αmin21i=1Nj=1Nαiαjyiyj(xixj)+i=1Nαi
其中, α i ⩾ 0 \alpha_i \geqslant 0 αi0 i = 1 , 2 , ⋯ , N i=1, 2, \cdots, N i=1,2,,N,并且满足 ∑ i = 1 N α i y i = 0 \sum_{i=1}^N \alpha_i y_i = 0 i=1Nαiyi=0
然后,对拉格朗日函数 L ( w , b , α ) L(w, b, \alpha) L(w,b,α) α \alpha α 求极大值,这样就可以得到对偶问题的解。

那么求解得到 α \alpha α之后,该如何反求出 w ∗ , b ∗ w^*,b^* w,b呢?
根据KKT条件,有
∇ w L ( w ∗ , b ∗ , α ∗ ) = w ∗ − ∑ i = 1 N α i ∗ y i x i = 0 ∇ b L ( w ∗ , b ∗ , α ∗ ) = − ∑ i = 1 N α i ∗ y i = 0 α i ∗ ( y i ( w ∗ ⋅ x i + b ∗ ) − 1 ) = 0 , i = 1 , 2 , ⋯ , N y i ( w ∗ ⋅ x i + b ∗ ) − 1 ⩾ 0 , i = 1 , 2 , ⋯ , N α i ∗ ⩾ 0 , i = 1 , 2 , ⋯ , N \begin{aligned} & \nabla_w L\left(w^*, b^*, \alpha^*\right)=w^*-\sum_{i=1}^N \alpha_i^* y_i x_i=0 \\ & \nabla_b L\left(w^*, b^*, \alpha^*\right)=-\sum_{i=1}^N \alpha_i^* y_i=0 \\ & \alpha_i^*\left(y_i\left(w^* \cdot x_i+b^*\right)-1\right)=0, \quad i=1,2, \cdots, N \\ & y_i\left(w^* \cdot x_i+b^*\right)-1 \geqslant 0, \quad i=1,2, \cdots, N \\ & \alpha_i^* \geqslant 0, \quad i=1,2, \cdots, N \end{aligned} wL(w,b,α)=wi=1Nαiyixi=0bL(w,b,α)=i=1Nαiyi=0αi(yi(wxi+b)1)=0,i=1,2,,Nyi(wxi+b)10,i=1,2,,Nαi0,i=1,2,,N
由此得
w ∗ = ∑ i α i ∗ y i x i w^*=\sum_i \alpha_i^* y_i x_i w=iαiyixi
其中至少有一个 α j ∗ > 0 \alpha_j^*>0 αj>0 (用反证法, 假设 α ∗ = 0 \alpha^*=0 α=0, 由第一条KKT条件可知 w ∗ = 0 w^*=0 w=0, 而 w ∗ = 0 w^*=0 w=0不是原始最优化问题的解, 产生矛盾), 对此 j j j
y j ( w ∗ ⋅ x j + b ∗ ) − 1 = 0 y_j\left(w^* \cdot x_j+b^*\right)-1=0 yj(wxj+b)1=0
y j 2 = 1 y_j^2 = 1 yj2=1, y j ( w ∗ ⋅ x j + b ∗ ) − y j 2 = 0 y_j\left(w^* \cdot x_j+b^*\right)-y_j^2=0 yj(wxj+b)yj2=0进而得出 w ∗ ⋅ x j + b ∗ − y j = 0 w^* \cdot x_j+b^* - y_j = 0 wxj+byj=0
因此,在求解出 α ∗ \alpha^* α之后,可以得到决策平面的 w ∗ 和 b ∗ w^*和b^* wb
w ∗ = ∑ i α i ∗ y i x i b ∗ = y j − w ∗ ⋅ x j w^*=\sum_i \alpha_i^* y_i x_i\\ b^* = y_j - w^* \cdot x_j w=iαiyixib=yjwxj

算法:线性可分支持向量机学习算法

输入: 线性可分训练集 T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , ⋯ , ( x N , y N ) } T=\left\{\left(x_1, y_1\right),\left(x_2, y_2\right), \cdots,\left(x_N, y_N\right)\right\} T={(x1,y1),(x2,y2),,(xN,yN)}, 其中 x i ∈ X = R n , y i ∈ x_i \in \mathcal{X}=\mathbf{R}^n, y_i \in xiX=Rn,yi Y = { − 1 , + 1 } , i = 1 , 2 , ⋯ , N \mathcal{Y}=\{-1,+1\}, \quad i=1,2, \cdots, N Y={1,+1},i=1,2,,N;
输出: 分离超平面和分类决策函数.
(1)构造并求解约束最优化问题
min ⁡ α 1 2 ∑ i = 1 N ∑ j = 1 N α i α j y i y j ( x i ⋅ x j ) − ∑ i = 1 N α i s.t.  ∑ i = 1 N α i y i = 0 α i ⩾ 0 , i = 1 , 2 , ⋯ , N \begin{aligned} & \min _\alpha \quad \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N \alpha_i \alpha_j y_i y_j\left(x_i \cdot x_j\right)-\sum_{i=1}^N \alpha_i \\ & \text { s.t. } \quad \sum_{i=1}^N \alpha_i y_i=0 \\ & \alpha_i \geqslant 0, \quad i=1,2, \cdots, N \end{aligned} αmin21i=1Nj=1Nαiαjyiyj(xixj)i=1Nαi s.t. i=1Nαiyi=0αi0,i=1,2,,N

求得最优解 α ∗ = ( α 1 ∗ , α 2 ∗ , ⋯ , α N ∗ ) T \alpha^*=\left(\alpha_1^*, \alpha_2^*, \cdots, \alpha_N^*\right)^{\mathrm{T}} α=(α1,α2,,αN)T.
(2) 计算
w ∗ = ∑ i = 1 N α i ∗ y i x i w^*=\sum_{i=1}^N \alpha_i^* y_i x_i w=i=1Nαiyixi

并选择 α ∗ \alpha^* α 的一个正分量 α j ∗ > 0 \alpha_j^*>0 αj>0, 计算
b ∗ = y j − ∑ i = 1 N α i ∗ y i ( x i ⋅ x j ) b^*=y_j-\sum_{i=1}^N \alpha_i^* y_i\left(x_i \cdot x_j\right) b=yji=1Nαiyi(xixj)

(3) 求得分离超平面
w ∗ ⋅ x + b ∗ = 0 w^* \cdot x+b^*=0 wx+b=0

分类决策函数:
f ( x ) = sign ⁡ ( w ∗ ⋅ x + b ∗ ) f(x)=\operatorname{sign}\left(w^* \cdot x+b^*\right) f(x)=sign(wx+b)

在线性可分支持向量机中, w ∗ w^* w b ∗ b^* b 只依赖于训练数据中对应于 α i ∗ > 0 \alpha_i^*>0 αi>0 的样本点 ( x i , y i ) \left(x_i, y_i\right) (xi,yi), 而其他样本点对 w ∗ w^* w b ∗ b^* b 没有影响. 我们将训练数据中对应于 α i ∗ > 0 \alpha_i^*>0 αi>0 的实例点 x i ∈ R n x_i \in \mathbf{R}^n xiRn 称为支持向量.

线性可分支持向量机例子

在这里插入图片描述
带入
min ⁡ α 1 2 ∑ i = 1 N ∑ j = 1 N α i α j y i y j ( x i ⋅ x j ) − ∑ i = 1 N α i s.t.  ∑ i = 1 N α i y i = 0 α i ⩾ 0 , i = 1 , 2 , ⋯ , N \begin{aligned} & \min _\alpha \quad \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N \alpha_i \alpha_j y_i y_j\left(x_i \cdot x_j\right)-\sum_{i=1}^N \alpha_i \\ & \text { s.t. } \quad \sum_{i=1}^N \alpha_i y_i=0 \\ & \alpha_i \geqslant 0, \quad i=1,2, \cdots, N \end{aligned} αmin21i=1Nj=1Nαiαjyiyj(xixj)i=1Nαi s.t. i=1Nαiyi=0αi0,i=1,2,,N
解 根据所给数据, 对偶问题是
min ⁡ α 1 2 ∑ i = 1 N ∑ j = 1 N α i α j y i y j ( x i ⋅ x j ) − ∑ i = 1 N α i = 1 2 ( 18 α 1 2 + 25 α 2 2 + 2 α 3 2 + 42 α 1 α 2 − 12 α 1 α 3 − 14 α 2 α 3 ) − α 1 − α 2 − α 3 s.t.  α 1 + α 2 − α 3 = 0 α i ⩾ 0 , i = 1 , 2 , 3 \begin{array}{ll} \min _\alpha & \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N \alpha_i \alpha_j y_i y_j\left(x_i \cdot x_j\right)-\sum_{i=1}^N \alpha_i \\ & =\frac{1}{2}\left(18 \alpha_1^2+25 \alpha_2^2+2 \alpha_3^2+42 \alpha_1 \alpha_2-12 \alpha_1 \alpha_3-14 \alpha_2 \alpha_3\right)-\alpha_1-\alpha_2-\alpha_3 \\ \text { s.t. } & \alpha_1+\alpha_2-\alpha_3=0 \\ & \alpha_i \geqslant 0, \quad i=1,2,3 \end{array} minα s.t. 21i=1Nj=1Nαiαjyiyj(xixj)i=1Nαi=21(18α12+25α22+2α32+42α1α212α1α314α2α3)α1α2α3α1+α2α3=0αi0,i=1,2,3

解这一最优化问题. 将 α 3 = α 1 + α 2 \alpha_3=\alpha_1+\alpha_2 α3=α1+α2 代入目标函数并记为
s ( α 1 , α 2 ) = 4 α 1 2 + 13 2 α 2 2 + 10 α 1 α 2 − 2 α 1 − 2 α 2 s\left(\alpha_1, \alpha_2\right)=4 \alpha_1^2+\frac{13}{2} \alpha_2^2+10 \alpha_1 \alpha_2-2 \alpha_1-2 \alpha_2 s(α1,α2)=4α12+213α22+10α1α22α12α2

α 1 , α 2 \alpha_1, \alpha_2 α1,α2 求偏导数并令其为 0 , 易知 s ( α 1 , α 2 ) s\left(\alpha_1, \alpha_2\right) s(α1,α2) 在点 ( 3 2 , − 1 ) T \left(\frac{3}{2},-1\right)^{\mathrm{T}} (23,1)T 取极值, 但该点不满足约束条件 α 2 ⩾ 0 \alpha_2 \geqslant 0 α20, 所以最小值应在边界上达到.
α 1 = 0 \alpha_1=0 α1=0 时, 最小值 s ( 0 , 2 13 ) = − 2 13 s\left(0, \frac{2}{13}\right)=-\frac{2}{13} s(0,132)=132; 当 α 2 = 0 \alpha_2=0 α2=0 时, 最小值 s ( 1 4 , 0 ) = − 1 4 s\left(\frac{1}{4}, 0\right)=-\frac{1}{4} s(41,0)=41. 于是 s ( α 1 , α 2 ) s\left(\alpha_1, \alpha_2\right) s(α1,α2) α 1 = 1 4 , α 2 = 0 \alpha_1=\frac{1}{4}, \alpha_2=0 α1=41,α2=0 达到最小, 此时 α 3 = α 1 + α 2 = 1 4 \alpha_3=\alpha_1+\alpha_2=\frac{1}{4} α3=α1+α2=41.

这样, α 1 ∗ = α 3 ∗ = 1 4 \alpha_1^*=\alpha_3^*=\frac{1}{4} α1=α3=41 对应的实例点 x 1 , x 3 x_1, x_3 x1,x3 是支持向量. 计算得
w 1 ∗ = w 2 ∗ = 1 2 b ∗ = − 2 \begin{gathered} w_1^*=w_2^*=\frac{1}{2} \\ b^*=-2 \end{gathered} w1=w2=21b=2

分离超平面为
1 2 x ( 1 ) + 1 2 x ( 2 ) − 2 = 0 \frac{1}{2} x^{(1)}+\frac{1}{2} x^{(2)}-2=0 21x(1)+21x(2)2=0

分类决策函数为
f ( x ) = sign ⁡ ( 1 2 x ( 1 ) + 1 2 x ( 2 ) − 2 ) f(x)=\operatorname{sign}\left(\frac{1}{2} x^{(1)}+\frac{1}{2} x^{(2)}-2\right) f(x)=sign(21x(1)+21x(2)2)

相关文章:

模式识别与机器学习-SVM(线性支持向量机)

线性支持向量机 线性支持向量机间隔距离学习的对偶算法算法:线性可分支持向量机学习算法线性可分支持向量机例子 谨以此博客作为复习期间的记录 线性支持向量机 在以上四条线中&#xff0c;都可以作为分割平面&#xff0c;误差率也都为0。但是那个分割平面效果更好呢&#xff1…...

【并行计算】GPU,CUDA

一、CUDA层次结构 1.kernel核函数 一个CUDA程序是一个kernel核函数被GPU的多个计算单元并行执行的过程&#xff0c;CUDA给了如下抽象 dim3 threadsPerBlock(4, 3, 1); dim3 numBlocks(3, 2, 1); matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C); 2.G…...

计算机网络教案——计算机网络设备章节

第五章 计算机网络设备 一、教学目标: 1. 了解计算机网络的主要设备 2. 了解计算机网络设备的主要原理 3. 掌握计算机网络设备的基本用途 4. 掌握计算机网络设备的使用常识 二、教学重点、难点 计算机网络设备的主要原理 三、技能培训重点、难点 计算机网络设备的使用…...

什么是SLAM中的回环检测,如果没有回环检测会怎样

目录 什么是回环检测 如果没有回环检测 SLAM&#xff08;Simultaneous Localization and Mapping&#xff0c;即同时定位与地图构建&#xff09;是一种使机器人或自动驾驶汽车能够在未知环境中建立地图的同时定位自身位置的技术。回环检测&#xff08;Loop Closure Detectio…...

ubuntu 通过文件设置静态IP、DNS、网关

1. 确定网络接口名称 首先&#xff0c;使用 ip a 命令确定您要配置的网络接口名称。 2. 编辑 Netplan 配置文件 使用文本编辑器&#xff08;如 nano&#xff09;打开或创建 Netplan 配置文件&#xff1a; sudo nano /etc/netplan/01-netcfg.yaml3. 输入 Netplan 配置 在编…...

mapboxgl 中热力图的实现以及给热力图点增加鼠标移上 popup 效果

文章目录 概要效果预览技术思路技术细节小结 概要 本篇文章还是关于最近做到的 mapboxgl 地图展开的。 借鉴官方示例&#xff1a;https://iclient.supermap.io/examples/mapboxgl/editor.html#heatMapLayer 效果预览 技术思路 将接口数据渲染到地图中形成热力图。还需要将热…...

golang并发安全-sync.map

sync.map解决的问题 golang 原生map是存在并发读写的问题&#xff0c;在并发读写时候会抛出异常 func main() {mT : make(map[int]int)g1 : []int{1, 2, 3, 4, 5, 6}g2 : []int{4, 5, 6, 7, 8, 9}go func() {for i : range g1 {mT[i] i}}()go func() {for i : range g2 {mT[…...

开发第一个SpringBoot程序

使用命令创建Maven工程 mvn archetype:generate -DgroupIdorg.sang -DartifactIdchapter01 -DarchetypeArtifactIdmaven-archetype-quickstart -DinteractiveModefalse 参数说明&#xff1a; -DgroupId 组织Id&#xff08;项目包名&#xff09; -DartifactId 项目名称或模块…...

2023年度总结—你是你的年度MVP吗?

这段年度总结其实我之前就想写了&#xff0c;大概就是市赛比完之后18号的样子把&#xff0c;但是因为太懒了就一直拖到了现在哈哈&#xff0c;我思来想去&#xff0c;翻来覆去&#xff0c;彻夜难眠&#xff0c;想了想&#xff0c;还是决定把它写了吧&#xff01;毕竟&#xff0…...

Linux基础知识学习3

vim编辑器 其分为四种模式 1.普通(命令)模式 2.编辑模式 3.底栏模式 4.可视化模式 vim编辑器被称为编辑器之神&#xff0c;而Emacs更是神之编辑器 普通模式&#xff1a; 1.光标移动 ^ 移动到行首 w 跳到下一个单词的开头…...

Leetcode5-在长度2N的数组中找出重复N次的元素(961)

1、题目 给你一个整数数组 nums &#xff0c;该数组具有以下属性&#xff1a; nums.length 2 * n. nums 包含 n 1 个 不同的 元素 nums 中恰有一个元素重复 n 次 找出并返回重复了 n 次的那个元素。 示例 1&#xff1a; 输入&#xff1a;nums [1,2,3,3] 输出&#xff1a…...

openssl的 openssl.cnf配置文件详解

背景&#xff1a;在上一篇文中&#xff0c;提到要写一篇openssl 配置文件详解的&#xff0c;这就来了~~~ find / -name openssl.cnf /etc/pki/tls/openssl.cnf /etc/pki/tls/openssl.cnf&#xff0c;该文件主要设置了证书请求、签名、crl相关的配置。主要相关的伪命令为ca和req…...

SpringBoot集成支付宝,看这一篇就够了。

前 言 在开始集成支付宝支付之前&#xff0c;我们需要准备一个支付宝商家账户&#xff0c;如果是个人开发者&#xff0c;可以通过注册公司或者让有公司资质的单位进行授权&#xff0c;后续在集成相关API的时候需要提供这些信息。 下面我以电脑网页端在线支付为例&#xff0c;介…...

数据结构程序设计——哈希表的应用(2)->哈希表解决冲突的方法

目录 实验须知 代码实现 实验报告 一&#xff1a;问题分析 二、数据结构 1.逻辑结构 2.物理结构 三、算法 &#xff08;一&#xff09;主要算法描述 1.用除留余数法构造哈希函数 2.线性探测再散列法 &#xff08;一&#xff09;主要算法实现代码 四、上机调试 实…...

微信小程序开发系列-07组件

微信小程序开发系列目录 《微信小程序开发系列-01创建一个最小的小程序项目》《微信小程序开发系列-02注册小程序》《微信小程序开发系列-03全局配置中的“window”和“tabBar”》《微信小程序开发系列-04获取用户图像和昵称》《微信小程序开发系列-05登录小程序》《微信小程序…...

JavaScript 中 Set 和 Map 的区别

JavaScript 中的 Set 和 Map 都是用来存储数据的数据结构&#xff0c;它们之间的区别如下&#xff1a; Set 是一组唯一值的集合&#xff0c;而 Map 是一组键值对的集合。Set 中的值是唯一的&#xff0c;不允许重复&#xff1b;Map 中的键是唯一的&#xff0c;值可以重复。Set …...

web前端之JavaScript

MENU JavaScript之设计模式、单例、代理、装饰者、中介者、观察者、发布订阅、策略JavaScript之数组静态方法的实现、reduce、forEach、map、push、every JavaScript之设计模式、单例、代理、装饰者、中介者、观察者、发布订阅、策略 单例模式 概念 保证一个类仅有一个实例&am…...

C# 图标标注小工具-查看重复文件

目录 效果 项目 代码 下载 效果 项目 代码 using System; using System.Collections.Generic; using System.Data; using System.IO; using System.Linq; using System.Security.Cryptography; using System.Windows.Forms;namespace ImageDuplicate {public partial clas…...

浅谈冯诺依曼体系和操作系统

&#x1f30e;冯诺依曼体系结构 文章目录 冯诺依曼体系结构 认识冯诺依曼体系结构       硬件分类       各个硬件的简单认识         输入输出设备         中央处理器         存储器 关于内存 对冯诺依曼体系的理解 操作系统 操作系统…...

Good Bye 2023

Good Bye 2023 Good Bye 2023 A. 2023 题意&#xff1a;序列a中所有数的乘积应为2023&#xff0c;现在给出序列中的n个数&#xff0c;找到剩下的k个数并输出&#xff0c;报告不可能。 思路&#xff1a;把所有已知的数字乘起来&#xff0c;判断是否整除2023&#xff0c;不够…...

[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?

&#x1f9e0; 智能合约中的数据是如何在区块链中保持一致的&#xff1f; 为什么所有区块链节点都能得出相同结果&#xff1f;合约调用这么复杂&#xff0c;状态真能保持一致吗&#xff1f;本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里&#xf…...

【WiFi帧结构】

文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成&#xff1a;MAC头部frame bodyFCS&#xff0c;其中MAC是固定格式的&#xff0c;frame body是可变长度。 MAC头部有frame control&#xff0c;duration&#xff0c;address1&#xff0c;address2&#xff0c;addre…...

Qt Widget类解析与代码注释

#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码&#xff0c;写上注释 当然可以&#xff01;这段代码是 Qt …...

为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?

在建筑行业&#xff0c;项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升&#xff0c;传统的管理模式已经难以满足现代工程的需求。过去&#xff0c;许多企业依赖手工记录、口头沟通和分散的信息管理&#xff0c;导致效率低下、成本失控、风险频发。例如&#…...

手机平板能效生态设计指令EU 2023/1670标准解读

手机平板能效生态设计指令EU 2023/1670标准解读 以下是针对欧盟《手机和平板电脑生态设计法规》(EU) 2023/1670 的核心解读&#xff0c;综合法规核心要求、最新修正及企业合规要点&#xff1a; 一、法规背景与目标 生效与强制时间 发布于2023年8月31日&#xff08;OJ公报&…...

【Veristand】Veristand环境安装教程-Linux RT / Windows

首先声明&#xff0c;此教程是针对Simulink编译模型并导入Veristand中编写的&#xff0c;同时需要注意的是老用户编译可能用的是Veristand Model Framework&#xff0c;那个是历史版本&#xff0c;且NI不会再维护&#xff0c;新版本编译支持为VeriStand Model Generation Suppo…...

rknn toolkit2搭建和推理

安装Miniconda Miniconda - Anaconda Miniconda 选择一个 新的 版本 &#xff0c;不用和RKNN的python版本保持一致 使用 ./xxx.sh进行安装 下面配置一下载源 # 清华大学源&#xff08;最常用&#xff09; conda config --add channels https://mirrors.tuna.tsinghua.edu.cn…...

xmind转换为markdown

文章目录 解锁思维导图新姿势&#xff1a;将XMind转为结构化Markdown 一、认识Xmind结构二、核心转换流程详解1.解压XMind文件&#xff08;ZIP处理&#xff09;2.解析JSON数据结构3&#xff1a;递归转换树形结构4&#xff1a;Markdown层级生成逻辑 三、完整代码 解锁思维导图新…...

动态规划-1035.不相交的线-力扣(LeetCode)

一、题目解析 光看题目要求和例图&#xff0c;感觉这题好麻烦&#xff0c;直线不能相交啊&#xff0c;每个数字只属于一条连线啊等等&#xff0c;但我们结合题目所给的信息和例图的内容&#xff0c;这不就是最长公共子序列吗&#xff1f;&#xff0c;我们把最长公共子序列连线起…...

Linux中INADDR_ANY详解

在Linux网络编程中&#xff0c;INADDR_ANY 是一个特殊的IPv4地址常量&#xff08;定义在 <netinet/in.h> 头文件中&#xff09;&#xff0c;用于表示绑定到所有可用网络接口的地址。它是服务器程序中的常见用法&#xff0c;允许套接字监听所有本地IP地址上的连接请求。 关…...