算法——队列+宽搜(BFS)
队列这种数据结构大都服务于一个算法——宽搜(BFS)。宽搜还可以运用到二叉树、图、迷宫最短路径问题、拓扑排序等等
N叉数的层序遍历
N叉树的层序遍历
题目解析
- 给定一个 N 叉树,返回其节点值的_层序遍历_。(即从左到右,逐层遍历)。
- 树的序列化输入是用层序遍历,每组子节点都由 null 值分隔(参见示例)。
算法原理
层序遍历(BFS宽度优先遍历):当我们遍历完 1、3、2、4时,要回过头看拓展3的子节点情况。这一过程属于先进先出的——队列这一数据结构可以解决,以二维数组的形式返回。
- 搞一个队列,如果根节点不为空,先让根节点入队。然后开始while循环,当队列不空的时候,把队头元素1拿出来,让队头元素的子节点2、3、4入队。接着继续将队头元素拿出来,让队头元素2的子节点5、6入队.接着将队头元素3拿出来,7入队,4拿出来,8入队。。继续拿出5、6、7、8(他们都没有子节点,就直接拿出即可)
·
- 这里还有一个问题,在一次访问遍历节点时,如果出现不同层的节点元素进入,该怎样统计呢?我们这里只需要设置一个变量,统计元素个数。即当1进入队列时,计数为1;当1出队列时,2、3、4进入。此时个数为3就令变量为3。第二层出完时。第三层四个元素已经全部进入,令变量为4。
代码实现
/*
// Definition for a Node.
class Node {
public:int val;vector<Node*> children;Node() {}Node(int _val) {val = _val;}Node(int _val, vector<Node*> _children) {val = _val;children = _children;}
};
*/class Solution
{
public:vector<vector<int>> levelOrder(Node* root) {vector<vector<int>> ret; // 记录最终结果queue<Node*> q; // 层序遍历需要的队列if(root == nullptr) return ret;q.push(root);while(q.size()){int sz = q.size(); // 先求出本层元素的个数vector<int> tmp; // 统计本层的节点for(int i = 0; i < sz; i++){Node* t = q.front(); //拿出队头元素q.pop();tmp.push_back(t->val); //将节点加入到最终返回的数组中for(Node* child : t->children) // 遍历它的子节点,让下⼀层结点⼊队{if(child != nullptr)q.push(child);}}ret.push_back(tmp);}return ret;}
};
二叉树的锯齿形层序遍历
二叉树的锯齿形层序遍历
题目解析
算法原理
解法:层序遍历
在层序遍历的结果存到最终返回结果之前,奇数行直接存入要返回的ret里,偶数行多执行一个逆序返回到ret里面即可。
代码实现
/*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution
{
public:vector<vector<int>> zigzagLevelOrder(TreeNode* root) {vector<vector<int>> ret;if(root == nullptr) return ret;queue<TreeNode*> q;q.push(root);int level = 1;while(q.size()){int sz = q.size();vector<int> tmp;for(int i = 0; i < sz; i++){auto t = q.front();q.pop();tmp.push_back(t->val);if(t->left) q.push(t->left);if(t->right) q.push(t->right);}// 判断是否逆序if(level % 2 == 0) reverse(tmp.begin(), tmp.end());ret.push_back(tmp);level++;}return ret;}
};
二叉树最大宽度
二叉树最大宽度
题目解析
- 给你一棵二叉树的根节点 root ,返回树的 最大宽度 。
- 树的 最大宽度 是所有层中最大的 宽度 。
- 每一层的 宽度 被定义为该层最左和最右的非空节点(即,两个端点)之间的长度。将这个二叉树视作与满二叉树结构相同,两端点间会出现一些延伸到这一层的 null 节点,这些 null 节点也计入长度。
算法原理
解法一:硬来层序遍历
统计每⼀层的最⼤宽度,我们优先想到的就是利⽤层序遍历,把当前层的结点全部存在队列⾥⾯,利⽤队列的⻓度来计算每⼀层的宽度,统计出最⼤的宽度。但是,由于空节点也是需要计算在内的。因此,我们可以选择将空节点也存在队列⾥⾯。
当遍历到最后一层时,最后一层宽度为7。可以定义一个empty(统计null个数),从最后一层第一个位置开始扫描,遇到null节点+1,直至遇到下一个有效数字。停止,计算出宽度。然后再将empty置空为0,然后继续向后遍历,因为后面没有真实数字节点,所以最后一个null不计入宽度里。
但是这里会超时,会有一种极端情况。将3000个节点平均分(题中给的数据范围为3000),如果还按照我们上述计算宽度的算法,那么最后一层将达到21000,这样是大大超出内存的。
解法二:利用数组存储二叉树,给节点编号
树我们不仅有链式存储,还有顺序存储。我们可以通过给二叉树节点编号,通过公式计算给他的子节点编号(两个公式区别就是头结点从1开始计数还是从0开始计数)
-
创建一个队列,此时队列里就不仅仅存储节点,我们即存他的节点,也存他的编号。计算宽度方法就是拿出这个队的队头,拿出这个队的对尾,下标相减+1即可;这样就不需要处理空节点了。(有的容器只能访问队头,不能访问队尾,这对于计算宽度就有些麻烦,我们可以用数组模拟队列)
-
细节问题:下标有可能溢出。再次回到解法一遇到的极端情况,在那种情况下,最后一层的最后一个节点编号为21500-1.这个数字是任何一个数据类型都存不下的。但是当我们相减之后算出最后结果也是正确的。因为我们的数据存储是一个环形存储,我们最终计算的是距离(绿色部分),这个距离是不会溢出的,所以结果是正确的。我们C++用unsigned int存储就不会报错了
代码实现
/*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution
{
public:int widthOfBinaryTree(TreeNode* root) {vector<pair<TreeNode*, unsigned int>> q; // ⽤数组模拟队列q.push_back({root, 1});unsigned int ret = 0;while(q.size()){// 先更新这⼀层的宽度auto& [x1, y1] = q[0];auto& [x2, y2] = q.back();ret = max(ret, y2 - y1 + 1);// 让下⼀层进队vector<pair<TreeNode*, unsigned int>> tmp; // 让下⼀层进⼊这个队列for(auto& [x, y] : q){if(x->left) tmp.push_back({x->left, y * 2});if(x->right) tmp.push_back({x->right, y * 2 + 1});}q = tmp;}
return ret;}
};
在每个树行中找最大值
在每个树行中找最大值
题目解析
给定一棵二叉树的根节点 root ,请找出该二叉树中每一层的最大值。
算法原理
利用层序遍历,统计出每一层的最大值。
代码实现
/*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution
{
public:vector<int> largestValues(TreeNode* root) {vector<int> ret;if(root == nullptr) return ret;queue<TreeNode*> q;q.push(root);while(q.size()){int sz = q.size();int tmp = INT_MIN; //初始化为无穷小,让数字与tmp比较for(int i = 0; i < sz; i++){auto t = q.front(); //拿出队头元素q.pop(); //干掉队头元素tmp = max(tmp, t->val); //更新这一层最大值if(t->left) q.push(t->left); //让其子节点入队if(t->right) q.push(t->right);}ret.push_back(tmp);}return ret;}
};
相关文章:

算法——队列+宽搜(BFS)
队列这种数据结构大都服务于一个算法——宽搜(BFS)。宽搜还可以运用到二叉树、图、迷宫最短路径问题、拓扑排序等等 N叉数的层序遍历 N叉树的层序遍历 题目解析 给定一个 N 叉树,返回其节点值的_层序遍历_。(即从左到右&#…...

前端八股文(CSS篇)二
目录 1.css中可继承与不可继承属性有哪些 2.link和import的区别 3.transition和animation的区别 4.margin和padding的使用场景 5.::before和:after的双冒号和单冒号有什么区别? 6.display:inline-block什么时候会显示间隙 7…...

系统架构设计师笔记
第1章计算机组成与体系结构 1.1.1计算机硬件的组成 (1)控制器。控制器是分析和执行指令的部件,也是统一指挥并控制计算机各部件协调工作的中心部件,所依据的是机器指令。控制器的组成包含如下。 ①程序计数器PC:存储下…...

Livox-Mid-360 固态激光雷达ROS格式数据分析
前言: Livox-Mid-360 官方采用livox_ros_driver2ROS功能包发布ROS格式的数据,livox_ros_driver2可以把Livox原始雷达数据转化成ROS格式并以话题的形式发布出去。 下面列举一些雷达的基本概念: 点云帧:雷达驱动每次向外发送的一…...

如何恢复 iPhone 上永久删除的照片?
2007年,苹果公司推出了一款惊天动地的智能手机,也就是后来的iPhone。你会惊讶地发现,迄今为止,苹果公司已经售出了 7 亿部 iPhone 设备。根据最新一项调查数据,智能手机利润的 95% 都进了苹果公司的腰包。 如此受欢迎…...
基于单片机的公交车站自动报站器设计与实现
一、摘要 随着城市交通的快速发展,公交车作为城市公共交通的主要工具,其便捷性和高效性得到了广泛的认可。然而,由于公交车站的广播系统存在一定的局限性,如人工报站容易出现失误、音量大小不一等问题,给乘客带来了不…...

python之Selenium WebDriver安装与使用
首先把python下载安装后,再添加到环境变量中,再打开控制台输入: pip install selenium 正常情况下是安装好的,检查一下“pip show selenium”命令,出现版本号就说明安装好了。 1:如果出现安装错误: 那就用“…...

基于Java+Vue+uniapp微信小程序国产动漫论坛系统设计和实现
博主介绍:✌全网粉丝30W,csdn特邀作者、博客专家、CSDN新星计划导师、Java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和学生毕业项目实战,高校老师/讲师/同行交流合作✌ 主要内容:SpringBoot、Vue、SSM、HLM…...
奇因子之和(C语言)
题意: 一个整数的因子,就是所有可以整除这个数的数。奇数指在整数中,不能被 2 整除的数。所谓整数 Z 的奇因子,就是可以整除 Z 的奇数。 给定 N 个正整数,请你求出它们的第二大奇因子的和。当然,如果该数只…...

简单FTP客户端软件开发——VMware安装Linux虚拟机(命令行版)
VMware安装包和Linux系统镜像: 链接:https://pan.baidu.com/s/1UwF4DT8hNXp_cV0NpSfTww?pwdxnoh 提取码:xnoh 这个学期做计网课程设计【简单FTP客户端软件开发】需要在Linux上配置 ftp服务器,故此用VMware安装了Linux虚拟机&…...

ArkTS开发实践
声明式UI基本概念 应用界面是由一个个页面组成,ArkTS是由ArkUI框架提供,用于以声明式开发范式开发界面的语言。 声明式UI构建页面的过程,其实是组合组件的过程,声明式UI的思想,主要体现在两个方面: 描述…...

vue项目中实现预览pdf
vue项目中实现预览pdf 1. iframe <iframe :src"pdfSrc"></iframe> data() {return {pdfSrc: http://192.168.0.254:19000/trend/2023/12/27/5635529375174c7798b5fabc22cbec45.pdf,}},iframe {width: 100%;height: calc(100vh - 132px - 2 * 20px -…...

【Vulnhub 靶场】【Looz: 1】【简单】【20210802】
1、环境介绍 靶场介绍:https://www.vulnhub.com/entry/looz-1,732/ 靶场下载:https://download.vulnhub.com/looz/Looz.zip 靶场难度:简单 发布日期:2021年08月02日 文件大小:2.1 GB 靶场作者:mhz_cyber &…...

计算机基础面试题 |03.精选计算机基础面试题
🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云…...
SQL最消耗性能查询错误用法示例
查询性能的消耗主要取决于查询的复杂度、表的大小以及使用的索引等因素。以下是一些查询中常见的错误用法示例,它们可能导致性能问题: 全表扫描: 错误用法示例: SELECT * FROM your_table;这种查询会检索表中的所有行,…...
Python学习笔记(六)面向对象编程
最近准备HCIE的考试,用空余时间高强度学习python 介绍了Python中面向对象编程的基本概念,包括类、类的属性、类的方法、类的方法中实例方法、类方法、静态方法,在类与对象中动态添加属性和方法,以及继承、类变量、多态等概念 类…...

CCNP课程实验-05-Comprehensive_Experiment
目录 实验条件网络拓朴 基础配置实现IGP需求:1. 根据拓扑所示,配置OSPF和EIGRP2. 在R3上增加一个网段:33.33.33.0/24 (用Loopback 1模拟) 宣告进EIGRP,并在R3上将EIGRP重分布进OSPF。要求重分布进OSPF后的路由Tag值设置为666&…...

第3课 使用FFmpeg获取并播放音频流
本课对应源文件下载链接: https://download.csdn.net/download/XiBuQiuChong/88680079 FFmpeg作为一套庞大的音视频处理开源工具,其源码有太多值得研究的地方。但对于大多数初学者而言,如何快速利用相关的API写出自己想要的东西才是迫切需要…...

Java 动态树的实现思路分析
Java 动态树的实现 目录概述需求: 设计思路实现思路分析1. 简单Java实现:2.建立父子表存储3.前端的对应的json 字符串方式 参考资料和推荐阅读 Survive by day and develop by night. talk for import biz , show your perfect code,full busy࿰…...

太阳系三体模拟器
介绍 《三体》是刘慈欣创作的长篇科幻小说,文中提到的三体问题比较复杂和无解。 该项目代码就是利用 Python 来模拟三体的运行,此项目代码完全共享,欢迎下载。 我们可以自己通过调整天体的初始坐标、质量和矢量速度等等参数来自定义各种场景…...
【杂谈】-递归进化:人工智能的自我改进与监管挑战
递归进化:人工智能的自我改进与监管挑战 文章目录 递归进化:人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管?3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...

黑马Mybatis
Mybatis 表现层:页面展示 业务层:逻辑处理 持久层:持久数据化保存 在这里插入图片描述 Mybatis快速入门 
Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility
Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...

MMaDA: Multimodal Large Diffusion Language Models
CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构…...
Python爬虫(二):爬虫完整流程
爬虫完整流程详解(7大核心步骤实战技巧) 一、爬虫完整工作流程 以下是爬虫开发的完整流程,我将结合具体技术点和实战经验展开说明: 1. 目标分析与前期准备 网站技术分析: 使用浏览器开发者工具(F12&…...
Unit 1 深度强化学习简介
Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库,例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体,比如 SnowballFight、Huggy the Do…...

ABAP设计模式之---“简单设计原则(Simple Design)”
“Simple Design”(简单设计)是软件开发中的一个重要理念,倡导以最简单的方式实现软件功能,以确保代码清晰易懂、易维护,并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计,遵循“让事情保…...

springboot 日志类切面,接口成功记录日志,失败不记录
springboot 日志类切面,接口成功记录日志,失败不记录 自定义一个注解方法 import java.lang.annotation.ElementType; import java.lang.annotation.Retention; import java.lang.annotation.RetentionPolicy; import java.lang.annotation.Target;/***…...
用鸿蒙HarmonyOS5实现中国象棋小游戏的过程
下面是一个基于鸿蒙OS (HarmonyOS) 的中国象棋小游戏的实现代码。这个实现使用Java语言和鸿蒙的Ability框架。 1. 项目结构 /src/main/java/com/example/chinesechess/├── MainAbilitySlice.java // 主界面逻辑├── ChessView.java // 游戏视图和逻辑├──…...

CSS3相关知识点
CSS3相关知识点 CSS3私有前缀私有前缀私有前缀存在的意义常见浏览器的私有前缀 CSS3基本语法CSS3 新增长度单位CSS3 新增颜色设置方式CSS3 新增选择器CSS3 新增盒模型相关属性box-sizing 怪异盒模型resize调整盒子大小box-shadow 盒子阴影opacity 不透明度 CSS3 新增背景属性ba…...