Unity | Shader基础知识番外(向量数学知识速成)
目录
一、向量定义
二、计算向量
三、向量的加法(连续行走)
四、向量的长度
五、单位向量
六、向量的点积
1 计算
2 作用
七、向量的叉乘
1 承上启下
2 叉乘结论
3 叉乘的计算(这里看不懂就百度叉乘计算)
八、欢迎收看Shader专栏
一、向量定义
向量:从一个点到另一个点的箭头。
例:假如现在有两个点,A(0,0)和B点(4,5)。
假如从A走向B(如图1),箭头为:
假如从B走向A(如图2),箭头为:
我们会用A(0,0)表示点A,
我们会用B(4,5)表示点B,
问题,我们用什么表示和区分这两个箭头?
答:如果从A走向B,我们就写成
,如果从B走向A,就写成
(是不是很形象)。
字母确定了,可数字怎么办?
答:因为横坐标x是向左为正,纵坐标y是向上为正。
我们从A(0,0)走向B(4,5)等于向右走4格,向上走5格,所以是
(4,5),
反之,如果从B(4,5)走向A(0,0)等于向左走4格,向下走5格,所以是
(-4,-5),
所以在表达向量时,写的是箭头起点到箭头终点是如何走过去。
二、计算向量
(如图3)如果我们随意画出两个点A(1,3),B(4,5)
通过数格子,我们可以得出(3,2),但这个数字,我们也可以算出来,通过终点的B(4,5)中的x减去A(1,3)的x:4-1=3,通过终点的B(4,5)中的y减去A(1,3)的y:5-3=2
也可以得出:(3,2)
所以:终点的坐标,减去起点的坐标,就是向量的数值
三、向量的加法(连续行走)
(如图4)我们画两个连着的向量(1,3)和
(3,2):
从图中(如图5)我们可以看出,我们从A走到B,又从B走到C,这种连着走的向量我们可以相加,实际上两个向量就是从A走到了C,横着向右走了4格,向上走了5格。
(1,3)+
(3,2)=
(1+3,3+2)=
(4,5)
四、向量的长度
(如图6)假如我希望计算(4,5)的长度,通过我们学过的勾股定理就得出
AC =
所以:向量的长度为
五、单位向量
单位向量:向量长度是1
把任何一个向量变成单位向量,只需要除以向量的长度。
例:向量(3,4),长度是5,希望长度变为1,就直接集体除以5。
所以,向量(3,4)的单位向量就是(3/5,4/5)。
六、向量的点积
1 计算
设向量a(1,2)和向量b(3,4)点乘
算法1:
算法2:
算法2算到这一步就停了,因为不知道cosθ,
可是算法1和算法2的结果是相同的。
所以,可以算出
最后θ≈11.5°
2 作用
为啥要算点积?(我们把上面的向量a和向量b画出来)(如图7)
我原本面向A(向量a),现在我想面向B,我应该旋转多少度?
答:刚才算过了:11.5°
备注(以下结论的推导过程自己百度):
>0 a和b的夹角0-90度之间
=0 a和b的夹角为90度
<0 a和b的夹角大于90度
七、向量的叉乘
1 承上启下
第六部分我们知道了旋转角度,不知道聪明的你有没有发现,其实,你只知道了角度,不知道是顺时针旋转还是逆时针旋转。叉乘就事帮助我们判断是哪个方向的旋转的。
2 叉乘结论
当叉乘结果<0 顺时针旋转
当叉乘结果>0 逆时针旋转
叉乘结果=0 不用旋转
3 叉乘的计算(这里看不懂就百度叉乘计算)
我们还是计算向量a(1,2)和向量b(3,4)叉乘,因为叉乘需要x,y,z才能计算,此时相当于我们的z是0,所以我们的向量为a(1,2,0)和向量b(3,4,0)。
此时是-2<0所以,我们只需要逆时针旋转11.5°,就可以从向量a的方向变成向量b的方向。
八、欢迎收看Shader专栏
https://blog.csdn.net/weixin_49427945/category_12525804.html
相关文章:
Unity | Shader基础知识番外(向量数学知识速成)
目录 一、向量定义 二、计算向量 三、向量的加法(连续行走) 四、向量的长度 五、单位向量 六、向量的点积 1 计算 2 作用 七、向量的叉乘 1 承上启下 2 叉乘结论 3 叉乘的计算(这里看不懂就百度叉乘计算) 八、欢迎收…...
一个小白的微不足道的见解关于未来
随着科技的不断发展,IT行业日益壮大,运维工程师在其中扮演着至关重要的角色。他们负责维护和管理企业的技术基础设施,确保系统的正常运行。然而,随着技术的进步和行业的变化,运维工程师的未来将面临着一系列挑战和机遇…...
图的遍历(搜索)算法(深度优先算法DFS和广度优先算法BFS)
一、图的遍历的定义: 从图的某个顶点出发访问遍图中所有顶点,且每个顶点仅被访问一次。(连通图与非连通图) 二、深度优先遍历(DFS); 1、访问指定的起始顶点; 2、若当前访问的顶点…...
抖店做不起来?新手常见起店失败问题总结,看下你中了几条?
我是王路飞。 能看到这篇文章的,肯定是处境符合标题内容了。 抖店的门槛很低,运营思路其实也不算难,但就是很多新手做不起来。 这中间,可能跟平台、项目没什么关系,而是跟你自己有关系,走错了方向&#…...
【每日面试题】精选java面试题之redis
Redis是什么?为什么要使用Redis? Redis是一个开源的高性能键值对存储数据库。它提供了多种数据结构,包括字符串、列表、集合、有序集合、哈希表等。Redis具有快速、可扩展、持久化、支持多种数据结构等特点,适用于缓存、消息队列…...
OSCP 靶场 - Vault
端口扫描 nmap nmap -O 192.168.162.172 smb枚举 smbmap(kali自带) //枚举GUEST用户可以使用的目录 smbmap -u GUEST -H 192.168.162.172 NTLMrelay—smbrelay 1.制作钓鱼文件 使用GitHub - xct/hashgrab: generate payloads that force authentication against an attacker…...
uniapp子组件向父组件传值
目录 子组件向父组件传值子组件1子组件2 父组件最后 子组件向父组件传值 子组件1 <template><view class"content"><view v-for"(item,index) in list" :key"index">{{item}}</view></view> </template>&…...
过滤特殊 微信昵称
$nickName preg_replace(/[\xf0-\xf7].{3}/, , $userData[nickName]);...
LLM、AGI、多模态AI 篇一:开源大语言模型简记
文章目录 系列开源大模型LlamaChinese-LLaMA-AlpacaLlama2-ChineseLinlyYaYiChatGLMtransformersGPT-3(未完全开源)BERTT5QwenBELLEMossBaichuan...
微信小程序中获取用户当前位置的解决方案
微信小程序中获取用户当前位置的解决方案 1 概述 微信小程序有时需要获取用户当前位置,以便为用户提供基于位置信息的服务(附近美食、出行方案等)。 获取用户当前位置的前提是用户手机需要打开 GPS 定位开关;其次,微…...
Vue3-35-路由-路由守卫的简单认识
什么是路由守卫 路由守卫,就是在 路由跳转 的过程中, 可以进行一些拦截,做一些逻辑判断, 控制该路由是否可以正常跳转的函数。常用的路由守卫有三个 : beforeEach() : 前置守卫,在路由 跳转前 就会被拦截&…...
制药企业符合CSV验证需要注意什么?
在制药行业中,计算机化系统验证(CSV)是确保生产过程的合规性和数据完整性的关键要素。通过CSV验证,制药企业可以保证其计算机化系统的可靠性和合规性,从而确保产品质量和患者安全。然而,符合CSV验证并不是一…...
再谈动态SQL
专栏精选 引入Mybatis Mybatis的快速入门 Mybatis的增删改查扩展功能说明 mapper映射的参数和结果 Mybatis复杂类型的结果映射 Mybatis基于注解的结果映射 Mybatis枚举类型处理和类型处理器 再谈动态SQL Mybatis配置入门 Mybatis行为配置之Ⅰ—缓存 Mybatis行为配置…...
【数据结构】树
一.二叉树的基本概念和性质: 1.二叉树的递归定义: 二叉树或为空树,或是由一个根结点加上两棵分别称为左子树和右子树的、互不相交的二叉树组成 2.二叉树的特点: (1)每个结点最多只有两棵子树࿰…...
【Midjourney】AI绘画新手教程(一)登录和创建服务器,生成第一幅画作
一、登录Discord 1、访问Discord官网 使用柯學尚网(亲测非必须,可加快响应速度)访问Discord官方网址:https://discord.com 选择“在您的浏览器中打开Discord” 然后,注册帐号、购买套餐等,在此不做缀述。…...
对比 PyTorch 和 TensorFlow:选择适合你的深度学习框架
目录 引言 深度学习在各行业中的应用 PyTorch 和 TensorFlow 简介 PyTorch:简介与设计理念 发展历史和背景 主要特点和设计理念 TensorFlow:简介与设计理念 发展历史和背景 主要特点和设计理念 PyTorch 和 TensorFlow 的重要性 Pytorch对比Te…...
Oracle笔记-查看表已使用空间最大空间
目前以Oracle18c为例,主要是查这个表USER_SEGMENTS。 在 Oracle 18c 数据库中,USER_SEGMENTS 是一个系统表,用于存储当前用户(当前会话)拥有的所有段的信息。段是 Oracle 中分配存储空间的逻辑单位,用于存…...
大数据HCIE成神之路之特征工程——特征选择
特征选择 1.1 特征选择 - Filter方法1.1.1 实验任务1.1.1.1 实验背景1.1.1.2 实验目标1.1.1.3 实验数据解析1.1.1.4 实验思路 1.1.2 实验操作步骤 1.2 特征选择 - Wrapper方法1.2.1 实验任务1.2.1.1 实验背景1.2.1.2 实验目标1.2.1.3 实验数据解析1.2.1.4 实验思路 1.2.2 实验操…...
python 正则-常见题目
1、邮箱 print(re.findall(r[\w-][\w-]\.[\w-], weidianqq.com))2、身份证号 xxxxxx yyyy MM dd 375 0 十八位 print(re.findall(r(?:18|19|(?:[23]\d))\d{2}, 2010)) # 年print(re.findall(r(?:0[1-9])|10|11|12, 11)) # 月print(re.findall(r(?:[0-2][1-9])|10|20|30|3…...
解析:Eureka的工作原理
Eureka是Netflix开源的一个基于REST的的服务发现注册框架,它遵循了REST协议,提供了一套简单的API来完成服务的注册和发现。Eureka能够帮助分布式系统中的服务提供者自动将自身注册到注册中心,同时也能够让服务消费者从注册中心发现服务提供者…...
【杂谈】-递归进化:人工智能的自我改进与监管挑战
递归进化:人工智能的自我改进与监管挑战 文章目录 递归进化:人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管?3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...
HTML 列表、表格、表单
1 列表标签 作用:布局内容排列整齐的区域 列表分类:无序列表、有序列表、定义列表。 例如: 1.1 无序列表 标签:ul 嵌套 li,ul是无序列表,li是列表条目。 注意事项: ul 标签里面只能包裹 li…...
云原生玩法三问:构建自定义开发环境
云原生玩法三问:构建自定义开发环境 引言 临时运维一个古董项目,无文档,无环境,无交接人,俗称三无。 运行设备的环境老,本地环境版本高,ssh不过去。正好最近对 腾讯出品的云原生 cnb 感兴趣&…...
SiFli 52把Imagie图片,Font字体资源放在指定位置,编译成指定img.bin和font.bin的问题
分区配置 (ptab.json) img 属性介绍: img 属性指定分区存放的 image 名称,指定的 image 名称必须是当前工程生成的 binary 。 如果 binary 有多个文件,则以 proj_name:binary_name 格式指定文件名, proj_name 为工程 名&…...
莫兰迪高级灰总结计划简约商务通用PPT模版
莫兰迪高级灰总结计划简约商务通用PPT模版,莫兰迪调色板清新简约工作汇报PPT模版,莫兰迪时尚风极简设计PPT模版,大学生毕业论文答辩PPT模版,莫兰迪配色总结计划简约商务通用PPT模版,莫兰迪商务汇报PPT模版,…...
Vite中定义@软链接
在webpack中可以直接通过符号表示src路径,但是vite中默认不可以。 如何实现: vite中提供了resolve.alias:通过别名在指向一个具体的路径 在vite.config.js中 import { join } from pathexport default defineConfig({plugins: [vue()],//…...
Qemu arm操作系统开发环境
使用qemu虚拟arm硬件比较合适。 步骤如下: 安装qemu apt install qemu-system安装aarch64-none-elf-gcc 需要手动下载,下载地址:https://developer.arm.com/-/media/Files/downloads/gnu/13.2.rel1/binrel/arm-gnu-toolchain-13.2.rel1-x…...
BLEU评分:机器翻译质量评估的黄金标准
BLEU评分:机器翻译质量评估的黄金标准 1. 引言 在自然语言处理(NLP)领域,衡量一个机器翻译模型的性能至关重要。BLEU (Bilingual Evaluation Understudy) 作为一种自动化评估指标,自2002年由IBM的Kishore Papineni等人提出以来,…...
Python 高效图像帧提取与视频编码:实战指南
Python 高效图像帧提取与视频编码:实战指南 在音视频处理领域,图像帧提取与视频编码是基础但极具挑战性的任务。Python 结合强大的第三方库(如 OpenCV、FFmpeg、PyAV),可以高效处理视频流,实现快速帧提取、压缩编码等关键功能。本文将深入介绍如何优化这些流程,提高处理…...
[拓扑优化] 1.概述
常见的拓扑优化方法有:均匀化法、变密度法、渐进结构优化法、水平集法、移动可变形组件法等。 常见的数值计算方法有:有限元法、有限差分法、边界元法、离散元法、无网格法、扩展有限元法、等几何分析等。 将上述数值计算方法与拓扑优化方法结合&#…...
