当前位置: 首页 > news >正文

算法导论复习——CHP16 贪心算法

定义

        每一步都做出当前看来最优的操作。

问题引入——活动选择问题

         问题描述

        活动选择问题就是对给定的包含n个活动的集合S,在已知每个活动开始时间和结束时间的条件下,从中选出最多可兼容活动的子集合,称为最大兼容活动集合。 不失一般性,设活动已经按照结束时间单调递增排序。

        分析

                这个问题具有最优子结构,可以用动态规划,但用贪心复杂度更低。

                实际上,任何一个可以用贪心解决的问题都可以用动态规划解决。 

                这里的贪心策略为:每次都选择能选择的活动中结束时间最早的活动。

        证明贪心正确性:

                感性上,这样做可以为后面留出最多的时间。

                严格证明,只需证明如下定理:

        考虑任意非空子问题S_k,令a_mS_k中结束时间最早的活动,则a_m必在S_k的某个最大兼容活动子集中。

        证明:

                设A_kS_k的一个最大兼容活动子集,A_k中最早结束的活动为a_j

                若a_j = a_m,则成立。

                若a_j \neq a_m,则设A^{'} = A_k-\{a_m\}\cup \{a_j\},由于A_k中活动兼容,有a_m结束时间比A_k中最早的还早,故A^{'}也是S_k的一个兼容活动子集,又|A_k| =|A^{'}|,故A^{'}也是S_k的一个最大兼容活动子集,故a_mS_k的某个最大兼容活动子集中,也成立。

                证毕。

        实现

                自顶向下

                

                自底向上

                

总结——贪心算法的一般步骤 

        1)确定问题的最优子结构; 

        2)将最优化问题转化为这样的形式:每次对其作出选择后,只剩下一个子问题需要求解;

        3)证明作出贪心选择后,剩余的子问题满足:其最优子解与前面的贪心选择组合即可得到原问题的最优解(具有最优子结构)。 

总结——证明贪心算法正确性

        贪心选择性质最优子结构性是两个关键要素。

        贪心选择性质:可以通过做出局部最优(贪心)选择来构造全局最优解的性质。

        贪心选择性质使得我们进行选择时,只需做出当前看起来最优的选择,而不用考虑子问题的解。

例子——Huffman编码

        Huffman算法

                从 |C| 个叶子结点开始,每次选择频率最低的两个结点合并,将得到的新结点加入集合继续合并,这样执行 |C|-1次 “合并” 后即可构造出一棵编码树——Huffman树。

                (采用以freq为关键字的最小优先队列Q,提取两个最低频率的对象将之合并。) 

                时间复杂度分析

                假设Q使用最小二叉堆实现,则:

                首先,Q的初始化时间复杂度O(n)。

                其次,循环的总代价是O(nlgn):for循环共执行了n-1次,每次从堆中找出当前频率最小的两个结点及把合并得到的新结点插入到堆中均花费O(lgn),所以循环的总代价是O(nlgn)。

                总时间复杂度O(nlgn)。 

                正确性证明

                首先,可以发现,一个最优字符编码方案总对应一棵满 (full) 二叉树, 即每个非叶子结点都有两个孩子结点。

                引理1

                令C为一个字母表,其中每个字符 c∈C 都有一个频率 c.freq。 令 x 和 y 是C中频率最低的两个字符。那么存在C的一个最优前缀码,x和y的码字长度相同,且只有最后一个二进制位不同。

 证:        

                令T是一个最优前缀码所对应的编码树,a和b是T中深度最大的兄弟叶结点。 不失一般性,假设 a.freq ≤ b.freq 且 x.freq ≤ y.freq。

                由于x和y是叶结点中频率最低的两个结点,所以应有 x.freq ≤ a.freq 且y.freq ≤ b.freq。

                若 x.freq = b.freq,则有a.freq = b.freq = x.freq = y.freq,此时引理成立。

                若 x.freq ≠ b.freq,即 x≠ b。则在T中交换 x 和 a,生成一棵 新树T’ ;然后再在T’中交换 b和y,生成另一棵新树T” ,那么在T”中x和y是深度最深的两个兄弟结点

                计算代价差:

                

                同理有B(T')\ge B(T'') 

                因此B(T'')\le B(T),又B(T)为最优编码,故B(T'') = B(T)

                即得证:T” 也是最优解,且 x 和 y 是其中深度最大的两个兄弟结点,x和y的码字长度相同,且只有最后一个二进制位不同。

                引理2

                令C为一个给定的字母表,其中每个字符c∈C都有一 个频率c.freq。x和y是C中频率最低的两个字符。

                令C'为C去掉字符x和y,并加入一个新字符z后得到的字母表, 即C' = C - {x, y}∪{z},z.freq= x.freq + y.freq。 令T'为字母表C'的任意一个最优前缀码对应的编码树。

                则有:可以将T'中叶子结点 z 替换为一个以x和y为孩子的内部结点,得到树T,而T表示字母表C的一个最优前缀码。

                由引理1、2可得Huffman算法的正确性。 

        

                 

                

相关文章:

算法导论复习——CHP16 贪心算法

定义 每一步都做出当前看来最优的操作。 问题引入——活动选择问题 问题描述 活动选择问题就是对给定的包含n个活动的集合S,在已知每个活动开始时间和结束时间的条件下,从中选出最多可兼容活动的子集合,称为最大兼容活动集合。 不失一般性&a…...

【霹雳吧啦】手把手带你入门语义分割の番外12:U2-Net 源码讲解(PyTorch)—— 网络的搭建

目录 前言 Preparation 一、U2-Net 网络结构图 二、U2-Net 网络源代码 1、model.py (1)ConvBNReLU 类 (2)DownConvBNReLU 类 (3)UpConvBNReLU 类 (4)RSU 类 & RSU4F 类…...

phpstudy面板Table ‘mysql.proc‘ doesn‘t exist解决办法

原因分析:误删了mysql数据库 解决办法如下: 1、停止服务 2、先把mysql文件夹下的data文件夹备份,因为data文件里存有数据库文件。然后再删除data文件。 3、cmd管理员命令进入到mysql中的bin目录下 ,执行mysqld --initialize-…...

网安入门09-Sql注入(绕过方法梳理)

ByPass SQL注入ByPass是指攻击者通过各种手段绕过应用程序中已经实施的SQL注入防御措施,例如输入恶意数据、修改请求头等方式,绕过过滤、转义、限制等操作,从而成功地执行恶意SQL语句。攻击者使用SQL注入ByPass技术可以让应用程序的防御措施…...

本地计算机 上的 My5OL808 服务启动后停止,某些服务在未由其他服务或程序使用时将自动停止

客户反馈说mysql启动不了,报错信息: 本地计算机 上的 My5OL808 服务启动后停止,某些服务在未由其他服务或程序使用时将自动停止。 查了不少资料,最后分析问题是这样的,手动或者重复安装mysql时,创建了多个…...

2023机器人行业总结,2024机器人崛起元年(具身智能)

2023总结: 1.Chatgpt引爆了通用人工智能,最大的受益者或是机器人,2023年最热门的创业赛道便是人形机器人,优必选更是成为人形机器人上市第一股, 可以说2023年是机器人开启智能化的元年,而2024则将成为机器…...

go 语言中的类型判断

_. ok : interface{}(a).(B)此语句用于判断对象a是否是B类型 也可以判断对象a是否实现了B接口 package mainimport "fmt"type Pet interface {SetName(name string)Name() stringCategory() string } type Dog struct {name string }func (dog *Dog) SetName(name …...

java基于ssm的房源管理系统+vue论文

目 录 目 录 I 摘 要 III ABSTRACT IV 1 绪论 1 1.1 课题背景 1 1.2 研究现状 1 1.3 研究内容 2 2 系统开发环境 3 2.1 vue技术 3 2.2 JAVA技术 3 2.3 MYSQL数据库 3 2.4 B/S结构 4 2.5 SSM框架技术 4 3 系统分析 5 3.1 可行性分析 5 3.1.1 技术可行性 5 3.1.2 操作可行性 5 3…...

RH850P1X芯片学习笔记-A/D Converter (ADCF)

文章目录 Features of RH850/P1x-C ADCFNumber of UnitsRegister Base AddressClock SupplyInterrupts and DMAHardware ResetExternal Input/Output SignalsVirtual Channel OverviewFunctional OverviewBlock DiagramPhysical Channels, Virtual Channels and Scan Groups Re…...

38 调优kafka

操作系统调优 1.禁止atime更新,减少文件系统的写操作。 mount -o noatime 2.选择高性能的文件系统,如ext4或者XFS 3.swap空间设置,将swappniness设置成很小的一个值比如1~10,防止linux OOM Killer 开启随意杀掉进程。…...

java推荐系统:好友推荐思路

1.表的设计 表里面就两个字段,一个字段是用户id,另外一个字段是好友id,假如A跟B互为好友,那在数据库里面就会有两条数据 2.推荐好友思路 上面的图的意思是:h跟a的互为好友,a跟b,c&am…...

java: 写入数据到HBase

一、添加依赖 <dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-client</artifactId><version>2.6.0</version></dependency><dependency><groupId>org.apache.hbase</groupId><art…...

机器学习-基于Word2vec搜狐新闻文本分类实验

机器学习-基于Word2vec搜狐新闻文本分类实验 实验介绍 Word2vec是一群用来产生词向量的相关模型&#xff0c;由Google公司在2013年开放。Word2vec可以根据给定的语料库&#xff0c;通过优化后的训练模型快速有效地将一个词语表达成向量形式&#xff0c;为自然语言处理领域的应…...

5.vue学习笔记(数组变化的侦测+计算属性+Class绑定)

文章目录 1.数组变化的侦测1.1.变更方法1.2.替换一个数组 2.计算属性计算属性缓存vs方法 3.Class绑定3.1.绑定对象3.2.多个对象的绑定形式3.3.绑定数组3.4.数组与对象 1.数组变化的侦测 1.1.变更方法 vue能够侦听响应式数组的变更方法&#xff0c;并在它们被调用时出发相关的…...

Java十种经典排序算法详解与应用

数组的排序 前言 排序概念 排序是将一组数据&#xff0c;依据指定的顺序进行排列的过程。 排序是算法中的一部分&#xff0c;也叫排序算法。算法处理数据&#xff0c;而数据的处理最好是要找到他们的规律&#xff0c;这个规律中有很大一部分就是要进行排序&#xff0c;所以需…...

git常用命令及概念对比

查看日志 git config --list 查看git的配置 git status 查看暂存区和工作区的变化内容&#xff08;查看工作区和暂存区有哪些修改&#xff09; git log 查看当前分支的commit 记录 git log -p commitID详细查看commitID的具体内容 git log -L :funcName:fileName 查看file…...

57、python 环境搭建[for 计算机视觉从入门到调优项目]

从本节开始,进入到代码实战部分,在开始之前,先简单进行一下说明。 代码实战部分,我会默认大家有一定的编程基础,不需要对编程很精通,但是至少要会 python 的基础语法、python 环境搭建、pip 的使用;C++ 要熟悉基础知识和基础语法,会根据文章中的步骤完成 C++ 的环境搭…...

K8S-应用访问

1 service对象定位 2 Service 实践 手工创建Service 根据应用部署资源对象&#xff0c;创建SVC对象 kubectl expose deployment nginx --port80 --typeNodePortyaml方式创建Service nginx-web的service资源清单文件 apiVersion: v1 kind: Service metadata:name: sswang-ngi…...

商智C店H5性能优化实战

前言 商智C店&#xff0c;是依托移动低码能力搭建的一个应用&#xff0c;产品面向B端商家。随着应用体量持续增大&#xff0c;考虑产品定位及用户体验&#xff0c;我们针对性能较差页面做了一次优化&#xff0c;并取得了不错的效果&#xff0c;用户体验值&#xff08;UEI&…...

Unity 使用 Plastic 同步后,正常工程出现错误

class Newtonsoft.Json.Linq.JToken e CS0433:类型"JToken"同时存在于"Newtonsoft.Json.Net20,Version3.5.0.0,Cultureneutral,,PublicKeyToken30ad4fe6b2a6aeed"和"Newtonsoft.Json, Version12.0.0.0,Cultureneutral,PublicKeyToken30ad4fe6b2a6aeed…...

观成科技:隐蔽隧道工具Ligolo-ng加密流量分析

1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具&#xff0c;该工具基于TUN接口实现其功能&#xff0c;利用反向TCP/TLS连接建立一条隐蔽的通信信道&#xff0c;支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式&#xff0c;适应复杂网…...

C++实现分布式网络通信框架RPC(3)--rpc调用端

目录 一、前言 二、UserServiceRpc_Stub 三、 CallMethod方法的重写 头文件 实现 四、rpc调用端的调用 实现 五、 google::protobuf::RpcController *controller 头文件 实现 六、总结 一、前言 在前边的文章中&#xff0c;我们已经大致实现了rpc服务端的各项功能代…...

FFmpeg 低延迟同屏方案

引言 在实时互动需求激增的当下&#xff0c;无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作&#xff0c;还是游戏直播的画面实时传输&#xff0c;低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架&#xff0c;凭借其灵活的编解码、数据…...

SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现

摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序&#xff0c;以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务&#xff0c;提供稳定高效的数据处理与业务逻辑支持&#xff1b;利用 uniapp 实现跨平台前…...

Ascend NPU上适配Step-Audio模型

1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统&#xff0c;支持多语言对话&#xff08;如 中文&#xff0c;英文&#xff0c;日语&#xff09;&#xff0c;语音情感&#xff08;如 开心&#xff0c;悲伤&#xff09;&#x…...

项目部署到Linux上时遇到的错误(Redis,MySQL,无法正确连接,地址占用问题)

Redis无法正确连接 在运行jar包时出现了这样的错误 查询得知问题核心在于Redis连接失败&#xff0c;具体原因是客户端发送了密码认证请求&#xff0c;但Redis服务器未设置密码 1.为Redis设置密码&#xff08;匹配客户端配置&#xff09; 步骤&#xff1a; 1&#xff09;.修…...

C++ 设计模式 《小明的奶茶加料风波》

&#x1f468;‍&#x1f393; 模式名称&#xff1a;装饰器模式&#xff08;Decorator Pattern&#xff09; &#x1f466; 小明最近上线了校园奶茶配送功能&#xff0c;业务火爆&#xff0c;大家都在加料&#xff1a; 有的同学要加波霸 &#x1f7e4;&#xff0c;有的要加椰果…...

逻辑回归暴力训练预测金融欺诈

简述 「使用逻辑回归暴力预测金融欺诈&#xff0c;并不断增加特征维度持续测试」的做法&#xff0c;体现了一种逐步建模与迭代验证的实验思路&#xff0c;在金融欺诈检测中非常有价值&#xff0c;本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...

深入浅出Diffusion模型:从原理到实践的全方位教程

I. 引言&#xff1a;生成式AI的黎明 – Diffusion模型是什么&#xff1f; 近年来&#xff0c;生成式人工智能&#xff08;Generative AI&#xff09;领域取得了爆炸性的进展&#xff0c;模型能够根据简单的文本提示创作出逼真的图像、连贯的文本&#xff0c;乃至更多令人惊叹的…...

Ubuntu系统复制(U盘-电脑硬盘)

所需环境 电脑自带硬盘&#xff1a;1块 (1T) U盘1&#xff1a;Ubuntu系统引导盘&#xff08;用于“U盘2”复制到“电脑自带硬盘”&#xff09; U盘2&#xff1a;Ubuntu系统盘&#xff08;1T&#xff0c;用于被复制&#xff09; &#xff01;&#xff01;&#xff01;建议“电脑…...