基于多反应堆的高并发服务器【C/C++/Reactor】(中)Buffer的创建和销毁、扩容、写入数据
TcpConnection:封装的就是建立连接之后得到的用于通信的文件描述符,然后基于这个文件描述符,在发送数据的时候,需要把数据先写入到一块内存里边,然后再把这块内存里边的数据发送给客户端,除了发送数据,剩下的就是接收数据。接收数据,把收到的数据先存储到一块内存里边。也就意味着,无论是发送数据还是接收数据,都需要一块内存。并且这块内存是需要使用者自己去创建的。所以就可以把这块内存做封装成Buffer。
>>>>>>>>>>>>>>>>>>>>>>>>>>>>学习笔记>>>>>>>>>>>>>>>>>>>>>>>>>>>>
1.文件描述符与数据发送:
- 在发送数据时,需要先将数据写入内存缓冲区(buffer)。
- 内存缓冲区可以通过封装成一个Buffer结构体来实现
- Buffer结构体中包含一个指向内存的指针(data)、内存总大小(capacity)、读数据位置(readPos)和写数据位置(writePos)等成员
2.Buffer结构体及其成员说明:
- 指针:指向内存地址(data)
- 总大小:内存块的字节数(capacity)
- 读位置:当前读取数据的位置(readPos)
- 写位置:当前写入数据的位置(writePos)
3.Buffer API函数:
- 提供一系列API函数,以便对buffer中的内存进行操作
- 主要操作包括初始化buffer和进行读写操作
4.初始化Buffer:
- 需要为buffer申请指定大小的堆内存
- 使用malloc函数申请堆内存,并将内存地址返回给调用者
- 初始化buffer结构体中的成员,包括data指针、容量、读位置和写位置
- data指针需要指向一个有效的内存块,因此需要再次申请内存
- 使用memset函数将data指针指向的内存块初始化为零
- 返回buffer指针给调用者
>>>>>>>>>>>>>>>>>>>>>>>>>>>>Buffer的创建和销毁>>>>>>>>>>>>>>>>>>>>>>>>>>>>
- Buffer.h
struct Buffer {// 指向内存的指针char* data;int capacity;int readPos;int writePos;
}
(一)Buffer的初始化
// 初始化
struct Buffer* bufferInit(int size);
// 初始化
struct Buffer* bufferInit(int size) {struct Buffer* buffer = (struct Buffer*)malloc(sizeof(struct Buffer));if(buffer!=NULL) {buffer->data = (char*)malloc(sizeof(char) * size);buffer->capacity = size;buffer->readPos = buffer->writePos = 0;memset(buffer->data, 0, size);}return buffer;
}
(二)Buffer的销毁
// 销毁
void bufferDestroy(struct Buffer* buf);
// 销毁
void bufferDestroy(struct Buffer* buf) {if(buf!=NULL) {if(buf->data!=NULL) { // buf->data指向有效的堆内存free(buf->data); // 释放}}free(buf);
}
>>>>>>>>>>>>>>>>>>>>>>>>>>>>Buffer的扩容>>>>>>>>>>>>>>>>>>>>>>>>>>>
(一)readPos和writePos 相对位置发生变化的三种情况:
(1)Buffer初始时 - 未写入任何数据
(2)Buffer - 写入了部分数据
- 剩余的可写的内存容量 = 可写数据内存大小
// 得到剩余的可写的内存容量
int bufferWriteableSize(struct Buffer* buf);
// 得到剩余的可写的内存容量
int bufferWriteableSize(struct Buffer* buf) {return buf->capacity - buf->writePos;
}
(3)Buffer - 写入了部分数据并读出了部分数据
- 计算已写数据内存(未读)的大小
// 已写数据内存(未读)的大小 --- 得到剩余的可读的内存容量
int bufferReadableSize(struct Buffer* buf);
// 已写数据内存(未读)的大小 --- 得到剩余的可读的内存容量
int bufferReadableSize(struct Buffer* buf) {return buf->writePos - buf->readPos;
}
对于内存数据已读的区域的数据为无效数据,此处的无效指的是内存数据,由于数据已经被读了出来,故这里边的数据已经无效了。对于这个图来说,剩余的可用内存块一共有多大呢?
- 剩余的可写的内存容量 = 内存数据已读大小 + 可写数据内存大小
但这个是理论值,因为这两块内存不是连续的,故即使空间够存储,但是不连续的存放会导致读写麻烦。此时的解决方案是:移动内存实现合并内存
(1)先获取已写数据内存(未读)这块内存的大小,将值赋给readableSize
// 得到已写但未读的内存大小
int readableSize = bufferReadableSize(buf);
(2)然后把这块内存的数据拷贝到前面去,这就实现了合并
// 移动内存实现合并
memcpy(buf->data, buf->data + buf->readPos, readableSize);
(3)更新位置
// 更新位置
buf->readPos = 0;
buf->writePos = readableSize;
(二)Buffer扩容
当往buffer中写入数据时,如果剩余的内存不足以容纳新的数据,需要进行扩容。有三种情况需要考虑:
- 剩余的可写的内存容量够用- 不需要扩容
- 内存需要合并才够用 - 不需要扩容
- 内存不够用 - 需要扩容
// 扩容
void bufferExtendRoom(struct Buffer* buf, int size);
// 扩容
void bufferExtendRoom(struct Buffer* buf, int size) {// 1.内存够用 - 不需要扩容if(bufferWriteableSize(buf)>= size) {return;}// 2.内存需要合并才够用 - 不需要扩容// 剩余的可写的内存 + 已读的内存 >= sizeelse if(bufferWriteableSize(buf) + bufferReadableSize(buf) >= size) {// 得到已写但未读的内存大小int readableSize = bufferReadableSize(buf);// 移动内存实现合并memcpy(buf->data, buf->data + buf->readPos, readableSize);// 更新位置buf->readPos = 0;buf->writePos = readableSize;}// 3.内存不够用 - 需要扩容else{void* temp = realloc(buf->data, buf->capacity + size);if(temp ==NULL) {return;// 失败了} memset(temp + buf->capacity, 0, size);// 只需要对拓展出来的大小为size的内存块进行初始化就可以了// 更新数据buf->data = temp;buf->capacity += size;}
}
>>>>>>>>>>>>>>>>>>>>>>>>>>>>往Buffer里写入数据>>>>>>>>>>>>>>>>>>>>>>>>>>>
(1)直接写
// 写内存 1.直接写
int bufferAppendData(struct Buffer* buf, const char* data, int size); int bufferAppendString(struct Buffer* buf, const char* data);
// 写内存 1.直接写
int bufferAppendData(struct Buffer* buf, const char* data, int size) {// 判断传入的buf是否为空,data指针指向的是否为有效内存,以及数据大小是否大于零if(buf == NULL || data == NULL || size <= 0) {return -1;}// 扩容(试探性的)bufferExtendRoom(buf,size);// 数据拷贝memcpy(buf->data + buf->writePos, data, size);// 更新写位置buf->writePos += size;return 0;
}int bufferAppendString(struct Buffer* buf, const char* data) {int size = strlen(data);int ret = bufferAppendData(buf, data, size);return ret;
}
实现bufferAppendData函数重点:
1. 实现写内存函数时,需要判断传入的buf是否为空,data指针指向的是否为有效内存,以及数据大小是否大于零
2. 在写数据之前,需要进行内存扩容(试探性的,可能剩余的可写容量就够写入那就不必扩容)
3. 写数据时,需要从上次写入的writePos位置开始
4. 数据写入完成后,需要更新writePos的位置
总结:在实现bufferAppendData函数时,需要考虑如何处理内存的写入和接收数据的情况。在写数据之前,可能需要进行内存扩容以确保有足够的空间。写数据时,需要从上次写入的writePos位置开始。完成写入后,需要再次更新writePos的位置。
(2)接收套接字数据
#include <sys/uio.h>
ssize_t readv(int fd, const struct iovec *iov, int iovcnt);
struct iovec {void *iov_base; /* Starting address */size_t iov_len; /* Number of bytes to transfer */
};功能:readv函数从文件描述符(包括TCP Socket)中读取数据,并将读取的数据存储到指定的多个缓冲区中。
-> 成功时返回接收的字节数,失败时返回-1filedes 传递接收数据的文件(套接字)描述符
iov 包含数据保存位置和大小的iovec结构体数组的地址值
iovcnt 第二个参数中数组的长度fd:要读取数据的文件描述符,可以是TCP Socket。
iov:存储读取数据的多个缓冲区的数组。
iovcnt:缓冲区数组的长度。
返回值:成功时返回实际读取的字节数,失败时返回-1,并设置errno变量来指示错误的原因。
read/recv/readv 在接收数据的时候,
- read/recv 只能指定一个数组
- readv 能指定多个数组(也就是说第一个用完,用第二个...)
readv函数可以一次接收多个缓冲区中的数据,并在内核中减少了多次系统调用的开销。
// 写内存 2.接收套接字数据
int bufferSocketRead(struct Buffer* buf,int fd);
- bufferSocketRead函数实现功能:当调用这个bufferSocketRead函数之后,一共接收到了多少个字节
- bufferSocketRead函数具体细节:在这个函数里边,通过malloc申请了一块临时的堆内存(tmpbuf),这个堆内存是用来接收套接字数据的。当buf里边的数组容量不够了,那么就使用这块临时内存来存储数据,还需要把tmpbuf这块堆内存里边的数据再次写入到buf中。当用完了之后,需要释放内存。
注意事项
- 使用者在调用readv函数时需要准备结构体的数组
- 在接收数据时,如果内存已满,数据将被写入下一个结构体中的内存
- 计算buf里边的数组中剩余的写操作内存
内存的扩展和拷贝
- 调用bufferAppendData函数来实现
// 写内存 2.接收套接字数据
int bufferSocketRead(struct Buffer* buf,int fd) {struct iovec vec[2]; // 根据自己的实际需求来// 初始化数组元素int writeableSize = bufferWriteableSize(buf); // 得到剩余的可写的内存容量// 0号数组里的指针指向buf里边的数组,记得 要加writePos,防止覆盖数据vec[0].iov_base = buf->data + buf->writePos;vec[0].iov_len = writeableSize;char* tmpbuf = (char*)malloc(40960); // 申请40k堆内存vec[1].iov_base = buf->data + buf->writePos;vec[1].iov_len = 40960;// 至此,结构体vec的两个元素分别初始化完之后就可以调用接收数据的函数了int result = readv(fd, vec, 2);// 表示通过调用readv函数一共接收了多少个字节if(result == -1) {return -1;// 失败了}else if (result <= writeableSize) { // 说明在接收数据的时候,全部的数据都被写入到vec[0]对应的数组里边去了,全部写入到// buf对应的数组里边去了,直接移动writePos就好buf->writePos += result;}else {// 进入这里,说明buf里边的那块内存是不够用的,// 所以数据就被写入到我们申请的40k堆内存里边,还需要把tmpbuf这块// 堆内存里边的数据再次写入到buf中。// 先进行内存的扩展,再进行内存的拷贝,可调用bufferAppendData函数// 注意一个细节:在调用bufferAppendData函数之前,通过调用readv函数// 把数据写进了buf,但是buf->writePos没有被更新,故在调用bufferAppendData函数// 之前,需要先更新buf->writePosbuf->writePos = buf->capacity; // 需要先更新buf->writePosbufferAppendData(buf, tmpbuf, result - writeableSize);}free(tmpbuf);return result;
}
>>总结: 在实现内存扩容函数时,需要考虑如何处理内存的写入和接收数据的情况。写数据之前可能需进行内存扩容,并从上次写入的writePos位置开始,完成写入后再次更新writePos的位置。
写内存的方式
- 直接写入:将数据存储到buf结构体对应的内存空间
- 基于套接字接收数据:使用readv等函数
写内存函数的考虑因素
- 判断指针指向的是否为有效内存
- 数据大小是否大于零
内存扩容的必要性
- 在写数据之前,需要进行内存扩容以确保有足够的空间
数据写入的过程
- 从上次写入的writePos位置开始
- 数据写入完成后,再次更新writePos的位置
相关文章:

基于多反应堆的高并发服务器【C/C++/Reactor】(中)Buffer的创建和销毁、扩容、写入数据
TcpConnection:封装的就是建立连接之后得到的用于通信的文件描述符,然后基于这个文件描述符,在发送数据的时候,需要把数据先写入到一块内存里边,然后再把这块内存里边的数据发送给客户端,除了发送数据,剩下…...

【Linux】常用的基本命令指令①
前言:从今天开始,我们逐步的学习Linux中的内容,和一些网络的基本概念,各位一起努力呐! 💖 博主CSDN主页:卫卫卫的个人主页 💞 👉 专栏分类:数据结构 👈 💯代码…...
活动运营常用的ChatGPT通用提示词模板
活动目标确定:如何明确活动的目标,确保活动策划与执行的方向性? 活动主题选择:如何选择吸引人的活动主题,提高用户的参与度和兴趣? 活动形式策划:如何根据活动目标和主题,选择适合…...
SpringBoot 中实现订单30分钟自动取消的策略
简介 在电商和其他涉及到在线支付的应用中,通常需要实现一个功能:如果用户在生成订单后的一定时间内未完成支付,系统将自动取消该订单。 本文将详细介绍基于Spring Boot框架实现订单30分钟内未支付自动取消的几种方案,并提供实例…...

像专家一样使用TypeScript映射类型
掌握TypeScript的映射类型,了解TypeScript内置的实用类型是如何工作的。 您是否使用过Partial、Required、Readonly和Pick实用程序类型? 你知道他们内部是怎么运作的吗? 如果您想彻底掌握它们并创建自己的实用程序类型,那么不要错过本文所涵盖的内容。…...
Golang 结构体
前言 在 Go 语言中,结构体(struct)是一种自定义的数据类型,将多个不同类型的字段(fields)组合在一起 结构体通常用于模拟真实世界对象的属性和行为 定义结构体 可以使用 type 关键字和 struct 关键字来定…...

服务器运行状况监控工具
服务器运行状况监视提供了每个服务器状态和性能的广泛概述,通过监控服务器指标,如 CPU 使用率、内存消耗、I/O、磁盘使用率、进程等,服务器运行状况监控可以避免服务器停机。 服务器性能监控指标 服务器是网络中最重要的组件之一࿰…...
2022年全国职业院校技能大赛软件测试赛题卷②—自动化测试解析报告(含术语)
2022年全国职业院校技能大赛软件测试任务四 自动化测试 目录 第一题:按照以下步骤在PyCharm中进行自动化测试脚本编写,并执行脚本。...

497 蓝桥杯 成绩分析 简单
497 蓝桥杯 成绩分析 简单 //C风格解法1,*max_element()与*min_element()求最值 //时间复杂度O(n),通过率100% #include <bits/stdc.h> using namespace std;using ll long long; const int N 1e4 …...

一、HTML5简介
一、简介 超文本标记语言(英语:HyperText Markup Language,简称:HTML)是一种用于创建网页的标准标记语言。可以使用 HTML 来建立自己的 WEB 站点,HTML 运行在浏览器上,由浏览器来解析。 <!…...

视频云存储/视频智能分析平台EasyCVR在麒麟系统中无法启动该如何解决?
安防视频监控/视频集中存储/云存储/磁盘阵列EasyCVR平台可拓展性强、视频能力灵活、部署轻快,可支持的主流标准协议有国标GB28181、RTSP/Onvif、RTMP等,以及支持厂家私有协议与SDK接入,包括海康Ehome、海大宇等设备的SDK等。平台既具备传统安…...

前端性能优化之图像优化
图像优化问题主要可以分为两方面:图像的选取和使用,图像的加载和显示。 图像基础 HTTP Archive上的数据显示,网站传输的数据中,60%的资源都是由各种图像文件组成的,当然这些是将各类型网站平均的结果,单独…...

微信小程序封装vant 下拉框select 单选组件
先上效果图: 主要是用vant 小程序组件封装的:vant 小程序ui网址:vant-weapp 主要代码如下: 先封装子组件: select-popup 放在 components 文件夹里面 select-popup.wxml: <!--pages/select-popup/select-popup.wxml--> &…...
c语言试卷
江西财经大学IT帮 2020-2021第一学期期末C语言模拟考试试卷 课程名称:C语言程序设计(软件)(主干课程) 适用对象:21级本科 试卷命题人 钟芳盛 游天悦 李俊贤 万军豪 张位 试卷审核人 钟芳盛 一、单项…...

文献阅读:Sparse Low-rank Adaptation of Pre-trained Language Models
文献阅读:Sparse Low-rank Adaptation of Pre-trained Language Models 1. 文章简介2. 具体方法介绍 1. SoRA具体结构2. 阈值选取考察 3. 实验 & 结论 1. 基础实验 1. 实验设置2. 结果分析 2. 细节讨论 1. 稀疏度分析2. rank分析3. 参数位置分析4. 效率考察 4.…...

NCC基础开发技能培训
YonBuilder for NCC 是一个带插件的eclipse工具,跟eclipse没什么区别 NC Cloud2021.11版本开发环境搭建改动 https://nccdev.yonyou.com/article/detail/495 不管是NC Cloud 新手还是老NC开发,在开发NC Cloud时开发环境搭建必看!ÿ…...

Flink中的状态管理
一.Flink中的状态 1.1 概述 在Flink中,算子任务可以分为有状态和无状态两种状态。 无状态的算子任务只需要观察每个独立事件,根据当前输入的数据直接转换输出结果。例如Map、Filter、FlatMap都是属于无状态算子。 而有状态的算子任务,就…...

【linux】线程互斥
线程互斥 1.线程互斥2.可重入VS线程安全3.常见锁的概念 喜欢的点赞,收藏,关注一下把! 1.线程互斥 到目前为止我们学了线程概念,线程控制接下来我们进行下一个话题,线程互斥。 有没有考虑过这样的一个问题,…...

机器学习原理到Python代码实现之LinearRegression
Linear Regression 线性回归模型 该文章作为机器学习的第一篇文章,主要介绍线性回归模型的原理和实现方法。 更多相关工作请参考:Github 算法介绍 线性回归模型是一种常见的机器学习模型,用于预测一个连续的目标变量(也称为响应变…...
Hive SQL / SQL
1. 建表 & 拉取表2. 插入数据 insert select3. 查询3.1 查询语句语法/顺序3.2 关系操作符3.3 聚合函数3.4 where3.5 分组聚合3.6 having 筛选分组后结果3.7 显式类型转换 & select产生指定值的列 4. join 横向拼接4.1 等值连接 & 不等值连接4.2 两表连接4.2.1 内连…...

使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式
一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明:假设每台服务器已…...

C++实现分布式网络通信框架RPC(3)--rpc调用端
目录 一、前言 二、UserServiceRpc_Stub 三、 CallMethod方法的重写 头文件 实现 四、rpc调用端的调用 实现 五、 google::protobuf::RpcController *controller 头文件 实现 六、总结 一、前言 在前边的文章中,我们已经大致实现了rpc服务端的各项功能代…...

BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践
6月5日,2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席,并作《智能体在安全领域的应用实践》主题演讲,分享了在智能体在安全领域的突破性实践。他指出,百度通过将安全能力…...

【C++进阶篇】智能指针
C内存管理终极指南:智能指针从入门到源码剖析 一. 智能指针1.1 auto_ptr1.2 unique_ptr1.3 shared_ptr1.4 make_shared 二. 原理三. shared_ptr循环引用问题三. 线程安全问题四. 内存泄漏4.1 什么是内存泄漏4.2 危害4.3 避免内存泄漏 五. 最后 一. 智能指针 智能指…...
Webpack性能优化:构建速度与体积优化策略
一、构建速度优化 1、升级Webpack和Node.js 优化效果:Webpack 4比Webpack 3构建时间降低60%-98%。原因: V8引擎优化(for of替代forEach、Map/Set替代Object)。默认使用更快的md4哈希算法。AST直接从Loa…...
多模态图像修复系统:基于深度学习的图片修复实现
多模态图像修复系统:基于深度学习的图片修复实现 1. 系统概述 本系统使用多模态大模型(Stable Diffusion Inpainting)实现图像修复功能,结合文本描述和图片输入,对指定区域进行内容修复。系统包含完整的数据处理、模型训练、推理部署流程。 import torch import numpy …...
PostgreSQL——环境搭建
一、Linux # 安装 PostgreSQL 15 仓库 sudo dnf install -y https://download.postgresql.org/pub/repos/yum/reporpms/EL-$(rpm -E %{rhel})-x86_64/pgdg-redhat-repo-latest.noarch.rpm# 安装之前先确认是否已经存在PostgreSQL rpm -qa | grep postgres# 如果存在࿰…...
华为OD最新机试真题-数组组成的最小数字-OD统一考试(B卷)
题目描述 给定一个整型数组,请从该数组中选择3个元素 组成最小数字并输出 (如果数组长度小于3,则选择数组中所有元素来组成最小数字)。 输入描述 行用半角逗号分割的字符串记录的整型数组,0<数组长度<= 100,0<整数的取值范围<= 10000。 输出描述 由3个元素组成…...
Modbus RTU与Modbus TCP详解指南
目录 1. Modbus协议基础 1.1 什么是Modbus? 1.2 Modbus协议历史 1.3 Modbus协议族 1.4 Modbus通信模型 🎭 主从架构 🔄 请求响应模式 2. Modbus RTU详解 2.1 RTU是什么? 2.2 RTU物理层 🔌 连接方式 ⚡ 通信参数 2.3 RTU数据帧格式 📦 帧结构详解 🔍…...

沙箱虚拟化技术虚拟机容器之间的关系详解
问题 沙箱、虚拟化、容器三者分开一一介绍的话我知道他们各自都是什么东西,但是如果把三者放在一起,它们之间到底什么关系?又有什么联系呢?我不是很明白!!! 就比如说: 沙箱&#…...