当前位置: 首页 > news >正文

机器学习原理到Python代码实现之LinearRegression

Linear Regression 线性回归模型

该文章作为机器学习的第一篇文章,主要介绍线性回归模型的原理和实现方法。

更多相关工作请参考:Github

算法介绍

线性回归模型是一种常见的机器学习模型,用于预测一个连续的目标变量(也称为响应变量)与一个或多个自变量之间的线性关系。

算法原理解析

传统版本

线性回归模型是一种常见的机器学习模型,用于预测一个连续的目标变量(也称为响应变量)与一个或多个自变量之间的线性关系。在该模型中,自变量和目标变量之间的关系可以表示为一条直线的函数。该模型的目标是找到最佳的直线,使得预测结果与实际结果之间的误差最小。 线性回归模型通常使用最小二乘法进行训练,即通过最小化预测值与真实值之间的平方误差来确定最佳拟合直线的参数。

线性回归模型的形式为 y = w ⋅ x + e y = w·x + e y=wx+e,其中e为误差,服从均值为0的正态分布。线性回归模型可以分为一元线性回归分析和多元线性回归分析。在一元线性回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示。在多元线性回归分析中,包括两个或两个以上的自变量,且因变量和自变量之间是线性关系。

线性回归模型有一些限制,例如它只能处理线性关系,对于非线性关系的数据拟合效果不佳。此外,该模型对异常值敏感,如果数据中存在异常值,可能会导致模型的误差较大。

线性回归模型具有简单易用、易于解释和理解等优点,因此在许多实际应用中都表现良好,如房价预测、销售预测等。然而,对于非线性关系的数据拟合问题,可能需要使用其他类型的回归模型,如多项式回归、逻辑回归、岭回归等。

故事版本

想象一下,你有一群朋友,每个朋友都有一个身高和一个体重。你想找到一个公式,能够根据身高预测体重。这个公式可能看起来像这样:体重(W) = 身高(H) + 误差(E)。这里的“误差”就像生活中的小意外,它告诉我们身高并不总是完美预测体重的。

现在,你想使用所有朋友的数据来找到最佳的预测公式。线性回归模型就像一个魔法机器,能够“学习”最佳的预测公式。它通过比较每个朋友的身高和体重,找出最接近所有数据的直线。这条直线就是最佳的预测公式。

为了找到这条直线,线性回归模型使用了一种叫做“最小二乘法”的魔法工具。这个工具能够计算每个朋友与预测直线之间的距离,并找出使所有距离之和最小的直线。

一旦找到了最佳的预测公式,你就可以使用它来预测新朋友的体重了!比如,如果你遇到一个新朋友,只知道他的身高,你就可以用线性回归模型预测他的体重。

这就是线性回归模型的算法原理!它就像一个魔法预测器,能够根据自变量(如身高)预测因变量(如体重)。希望这个简单的比喻能帮助你理解线性回归模型的工作原理!

数学原理

首先,让我们了解一下最小二乘法。简单来说,最小二乘法是一种数学优化技术,它通过最小化误差的平方和来寻找最佳函数匹配。在回归分析中,最小二乘法用于找到最佳拟合直线的参数。

现在,让我们通过一个简单的例子来理解最小二乘法。假设我们有一组数据点,每个点都有一个x坐标和一个y坐标。我们的目标是找到一条直线,使得所有数据点到这条直线的垂直距离之和最小。

假设这条直线的方程是 y = w ⋅ x + e y = w·x + e y=wx+e,其中w是斜率,e是截距。为了找到最佳的w和e,我们可以使用最小二乘法。

具体来说,对于每个数据点 (xi, yi),我们计算它到直线的垂直距离的平方,即 ( y i − ( w x + e ) ) 2 (yi - (wx + e))^2 (yi(wx+e))2。然后,我们将所有这些平方距离加起来,得到一个误差平方和。我们的目标是找到w和e,使得这个误差平方和最小。

数学上,这个问题可以表示为:

S = Σ [ ( y i − ( w ⋅ x i + e ) ) 2 ] S = Σ[(yi - (w·xi + e))^2] S=Σ[(yi(wxi+e))2]

其中Σ表示求和符号。

为了找到最优的m和c,我们可以对误差平方和求关于m和c的偏导数,并令偏导数为零。这样我们就可以得到一个线性方程组,解这个方程组就可以得到w和e的最优解。最小二乘法公式如下:

w = ( X T X ) − 1 X T y w = (\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{y} w=(XTX)1XTy

现在,让我们来谈谈为什么我们要用最小二乘法来求解线性回归模型。线性回归模型是一种预测模型,它通过找到最佳拟合数据的直线(或平面),来预测一个目标变量的值。这个模型基于的假设是目标变量和特征变量之间存在线性关系。

使用最小二乘法的优点是它可以提供一个精确的、无偏的估计,这意味着它能够找到最佳拟合数据的直线,使得预测值与实际值之间的误差最小。此外,最小二乘法还具有一些良好的数学性质,例如它有唯一解并且解是稳定的。

最重要的是,最小二乘法在很多情况下都非常有效且易于计算。通过最小二乘法,我们可以快速地找到线性回归模型的参数,从而进行准确的预测。

数据集介绍

这里我们介绍一个十分经典的数据集——波士顿房价数据集 。该数据集包含506个样本,13个特征,以及一个目标变量——房屋价格中位数。

波士顿房价数据集是一个非常经典的数据集,被广泛用于机器学习和数据分析领域。这个数据集包含了波士顿地区不同社区的房价信息:

参数属性
CRIM–城镇人均犯罪率城镇人均犯罪率
ZN - 占地面积超过25,000平方英尺的住宅用地比例。住宅用地所占比例
INDUS - 每个城镇非零售业务的比例。城镇中非商业用地占比例
CHAS - Charles River虚拟变量(如果是河道,则为1;否则为0查尔斯河虚拟变量,用于回归分析
NOX - 一氧化氮浓度(每千万份)环保指标
RM - 每间住宅的平均房间数每栋住宅房间数
AGE - 1940年以前建造的自住单位比例1940年以前建造的自住单位比例
DIS -波士顿的五个就业中心加权距离与波士顿的五个就业中心加权距离
RAD - 径向高速公路的可达性指数距离高速公路的便利指数
TAX - 每10,000美元的全额物业税率每一万美元的不动产税率
PTRATIO - 城镇的学生与教师比例城镇中教师学生比例
B - 1000(Bk - 0.63)^ 2其中Bk是城镇黑人的比例城镇中黑人比例
LSTAT - 人口状况下降%房东属于低等收入阶层比例
MEDV - 自有住房的中位数报价, 单位1000美元自住房屋房价中位数

这个数据集的主要目的是通过机器学习算法,利用这14个特征预测房价中位数。在数据集中,每个样本包含一个社区的房价信息和相关的特征变量,例如社区的犯罪率、住宅用地比例、非商业用地比例、是否临河、房间数等。机器学习算法将根据这些特征变量预测房价中位数,从而帮助房地产经纪人、投资者或购房者更好地了解市场趋势和预测房价。

波士顿房价数据集是一个非常有价值的数据集,因为它包含了多个与房价相关的特征变量,并且数据来源于一个实际的房地产市场。这个数据集被广泛用于机器学习和数据分析的教学和实践,是入门机器学习和数据分析领域的经典案例之一。

接下来我们将对原始数据集进行处理,并对其进行特征工程,最终得到一个更加适合线性回归模型的数据集。数据集的地址在dataset\housing.data,大家可以直接使用。

代码实现

# 准备好我们需要使用的第三方包
import os
import numpy as np
import pandas as pandas
import matplotlib.pyplot as plt

数据分析

为什么要去做数据分析?许多人并不是很关心数据的分析工作,这是存在极大问题的。

在机器学习中,数据分析是一个非常重要的步骤,主要原因如下:

首先,数据分析可以帮助我们更好地了解数据集的性质和结构,从而确定最佳的数据预处理和特征选择方法。通过数据分析,可以识别出异常值、缺失值等问题,并进行相应的处理,提高数据质量。

其次,数据分析可以帮助我们发现数据的内在规律和模式。例如,通过分析数据的相关性、聚类情况、分布情况等,可以发现数据中存在的有趣模式和关系,这些信息可以帮助我们更好地理解数据,并为后续的模型训练提供有价值的指导和建议。

如何做数据分析

针对不同数据集,数据分析的侧重点会有所不同,但一般而言,数据分析的基本步骤和考虑因素是相似的。以下是针对不同数据集进行分析时可能需要特别关注的几个方面:

  1. 数据探索 :对于任何数据集,首先需要进行探索性数据分析,以了解数据的分布、特征和规律。对于大规模的数据集,可能需要进行抽样调查或使用其他统计方法来初步了解数据。
  2. 数据清洗 :在处理任何数据集时,都需要关注数据的质量和清洁度。这包括处理缺失值、异常值、重复数据等问题,以及进行必要的格式转换和数据转换。
    特征选择:对于不同的数据集,特征的选取和分析也是不同的。例如,对于文本数据,可能需要关注词频、主题模型等特征;对于图像数据,可能需要关注颜色、纹理等特征。
  3. 可视化分析 :对于复杂的数据集,可视化是一种有效的分析方法。通过绘制图表、制作地图或使用其他可视化工具,可以更好地理解和解释数据。
    总之,针对不同数据集进行分析时,需要根据数据的特性和项目需求来选择合适的数据分析方法和侧重点。同时,数据分析师还需要不断学习和探索新的数据分析技术和方法,以更好地应对各种复杂的数据分析任务。

当然,数据分析远不止这些步骤,但这三个是重中之重,可以很好的帮助研究人员发现任务中所存在的问题。

def load_data(file_path):# 读取数据文件names = ["CRIM", "ZN", "INDUS", "CHAS", "NOX", "RM", "AGE", "DIS", "RAD", "TAX", "PTRATIO", "B", "LSTAT", "MEDV"]data = pandas.read_csv(file_path, names=names, delim_whitespace=True)# 删除包含缺失值的数据行data = data.dropna()return datadef preprocess_data(data, func="del"):# 删除有缺失的数据if func == "del":data = data.dropna()# 通过均值的方式填充确实的数据elif func == "fill":data = data.fillna(data.mean())return datadata = load_data("dataset\\housing.data")
data = preprocess_data(data)                 # 该数据不存在缺失值
# 展示每列数据和价格的关系,并以4*4的画布展示,并调整画布大小
def plot_price_relation(data):fig, axes = plt.subplots(nrows=4, ncols=4, figsize=(12, 12))# 控制画布中子图之间的间距plt.tight_layout()for i, col in enumerate(data.columns[:-1]):ax = axes[i // 4, i % 4]ax.scatter(data[col], data["MEDV"])# 设置titile 并控制字体大小# ax.set_title(f"{col} vs MEDV", fontsize=10)ax.set_xlabel(col, fontsize=10)ax.set_ylabel("MEDV", fontsize=10)plt.show()plot_price_relation(data)

在这里插入图片描述

# 将波士顿数据集按照8:2的比例划分成训练集和验证集
def split_data(data, test_ratio):np.random.seed(42)shuffled_indices = np.random.permutation(len(data))test_set_size = int(len(data) * test_ratio)test_indices = shuffled_indices[:test_set_size]train_indices = shuffled_indices[test_set_size:]return data.iloc[train_indices], data.iloc[test_indices]# 划分训练集和验证集
train_set, test_set = split_data(data, 0.2)

构建线性回归模型

构建一个机器学习模型,通常我们需要包含以下几个部分:模型的训练、模型的评估、模型的推理,以及模型的代价函数等。在该部分,我会以线性回归模型为例,讲解如何构建一个完整的机器学习模型。同时,现有的sklearn库中已经提供了线性回归模型的实现,因此,我们平时仅需要调用sklearn库中的线性回归模型即可。

基础实现

这里我们将构建MyLinearRegression类作为线性回归模型的基类。在这个类中,我们需要有以下几个函数:

  1. __init__:初始化模型参数。
  2. fit:使用训练数据来训练模型参数。
  3. predict:使用训练好的模型参数来进行预测。
  4. loss:计算模型的损失函数。

而需要注意的是,为了提升模型的性能,我们还需要对数据做一些处理,保证模型的稳定性。例如,我们可以使用标准化(standardization)或归一化(normalization)来对数据进行预处理。

# 通过最小二乘法求解线性回归class MyLinearRegression:def __init__(self):self.mean, self.std = None, Noneself.w, self.b = None, Nonedef fit(self, X, y):X = self.data_preprocess(X)self.w = np.linalg.inv(X.T.dot(X)).dot(X.T).dot(y)self.b = np.mean(y - X.dot(self.w))def data_preprocess(self, X):if self.mean is None:self.mean = np.mean(X, axis=0)self.std = np.std(X, axis=0)return (X - self.mean) / self.stddef loss(self, y, y_pred):return np.mean((y - y_pred) ** 2)def predict(self, X):X = (X - self.mean) / self.stdreturn np.dot(X, self.w) + self.b
# 训练波士顿数据,并验证
def main(train_set, test_set):X_train = train_set.drop("MEDV", axis=1)y_train = train_set["MEDV"]X_test = test_set.drop("MEDV", axis=1)y_test = test_set["MEDV"]model = MyLinearRegression()model.fit(X_train, y_train)w, b = model.w, model.by_pred = model.predict(X_test)mse = model.loss(y_test, y_pred)print("w:%s b:%7.5f 均方误差:%7.5f" % (w, b, mse))
main(train_set, test_set)
w:[-1.00106928  0.71053112  0.26395035  0.71843347 -1.99922398  3.13938815-0.1673871  -3.07870731  2.26939584 -1.79124484 -2.03043684  1.12760396-3.60788753] b:22.79309 均方误差:24.39683
基于sklearn模型的实现方式

sklearn作为机器学习中经典的库,提供了线性回归的实现。我们可以通过sklearn.linear_model.LinearRegression来使用sklearn的线性回归模型。以下是通过sklearn实现线性回归的代码示例:

# 通过sklearn的方式来求解
from sklearn.linear_model import LinearRegressiondef sklearn_main(train_set, test_set):X_train = train_set.drop("MEDV", axis=1)y_train = train_set["MEDV"]X_test = test_set.drop("MEDV", axis=1)y_test = test_set["MEDV"]model = LinearRegression()model.fit(X_train, y_train)y_pred = model.predict(X_test)mse = np.mean((y_test - y_pred) ** 2)print("w:%s b:%7.5f 均方误差:%7.5f" % (model.coef_, model.intercept_, mse))
sklearn_main(train_set, test_set)
w:[-1.13053410e-01  3.07557545e-02  3.83750160e-02  2.78643336e+00-1.70055351e+01  4.43604743e+00 -5.98876791e-03 -1.44796060e+002.64769508e-01 -1.08061172e-02 -9.13265214e-01  1.23437822e-02-5.08514822e-01] b:30.14522 均方误差:24.39683

总结一下

在机器学习算法中,线性回归是一种常用的算法,它通过拟合一个线性模型来预测目标变量。在实现线性回归算法时,可以使用自己编写的代码或者使用现有的库函数来实现。自己编写代码可以更好地理解线性回归算法的原理和实现细节,而使用库函数可以简化代码编写的过程,提高开发效率。因此,选择合适的实现方式是实现线性回归算法的重要一步。

线性回归模型作为机器学习中经典的算法之一,广泛应用于各种数据分析和预测任务中。其基本的原理是通过拟合一个线性模型来预测目标变量。数学推导证明了,我们可以通过最小化损失函数来求解线性回归模型的参数,从而实现对目标变量的预测。其方法便是经典的最小二乘法。在实际应用中,线性回归算法可以通过各种方式进行改进和优化,例如正则化、特征选择、集成学习等。这些方法可以提高模型的预测精度和泛化能力,使线性回归算法在各种数据分析和预测任务中更有效地应用。

更好地理解线性回归算法的原理和实现细节,而使用库函数可以简化代码编写的过程,提高开发效率。因此,选择合适的实现方式是实现线性回归算法的重要一步。

线性回归模型作为机器学习中经典的算法之一,广泛应用于各种数据分析和预测任务中。其基本的原理是通过拟合一个线性模型来预测目标变量。数学推导证明了,我们可以通过最小化损失函数来求解线性回归模型的参数,从而实现对目标变量的预测。其方法便是经典的最小二乘法。在实际应用中,线性回归算法可以通过各种方式进行改进和优化,例如正则化、特征选择、集成学习等。这些方法可以提高模型的预测精度和泛化能力,使线性回归算法在各种数据分析和预测任务中更有效地应用。

相关文章:

机器学习原理到Python代码实现之LinearRegression

Linear Regression 线性回归模型 该文章作为机器学习的第一篇文章,主要介绍线性回归模型的原理和实现方法。 更多相关工作请参考:Github 算法介绍 线性回归模型是一种常见的机器学习模型,用于预测一个连续的目标变量(也称为响应变…...

Hive SQL / SQL

1. 建表 & 拉取表2. 插入数据 insert select3. 查询3.1 查询语句语法/顺序3.2 关系操作符3.3 聚合函数3.4 where3.5 分组聚合3.6 having 筛选分组后结果3.7 显式类型转换 & select产生指定值的列 4. join 横向拼接4.1 等值连接 & 不等值连接4.2 两表连接4.2.1 内连…...

程序媛的mac修炼手册--MacOS系统更新升级史

啊,我这个口罩三年从未感染过新冠的天选免疫王,却被支原体击倒😷大意了,前几天去医院体检,刚检查完出医院就摘口罩了🤦大伙儿还是要注意戴口罩,保重身体啊!身体欠恙,就闲…...

【数据库原理】(9)SQL简介

一.SQL 的发展历史 起源:SQL 起源于 1970 年代,由 IBM 的研究员 Edgar F. Codd 提出的关系模型概念演化而来。初期:Boyce 和 Chamberlin 在 IBM 开发了 SQUARE 语言的原型,后发展成为 SQL。这是为了更好地利用和管理关系数据库。…...

第二百五十二回

文章目录 概念介绍实现方法示例代码 我们在上一章回中介绍了如何在页面中添加图片相关的内容,本章回中将介绍如何给组件添加阴影.闲话休提,让我们一起Talk Flutter吧。 概念介绍 我们在本章回中介绍的阴影类似影子,只是它不像影子那么明显&a…...

Leetcode 3701 · Find Nearest Right Node in Binary Tree (遍历和BFS好题)

3701 Find Nearest Right Node in Binary TreePRE Algorithms This topic is a pre-release topic. If you encounter any problems, please contact us via “Problem Correction”, and we will upgrade your account to VIP as a thank you. Description Given a binary t…...

网站被攻击了,接入CDN对比直接使用高防服务器有哪些优势

网站是互联网行业中经常被攻击的目标之一。攻击是许多站长最害怕遇到的情况。当用户访问一个网站,页面半天打不开,响应缓慢,或者直接打不开,多半是会直接走开,而不是等待继续等待相应。针对网站攻击的防护,…...

location常用属性和方法

目录 Location 对象 Location 对象属性 Location 对象方法 location.assign() location.replace() location.reload() Location 对象 Location 对象包含有关当前 URL 的信息。Location 对象是 Window 对象的一个部分,可通过 window.location 属性来访问。 L…...

二分图

目录 二分图 染色法判定二分图 匈牙利算法 二分图 二分图,又叫二部图,将所有点分成两个集合,使得所有边只出现在集合之间的点之间,而集合内部的点之间没有边。二分图当且仅当图中没有奇数环。只要图中环的边数没奇数个数的&am…...

[VUE]3-路由

目录 路由 Vue-Router1、Vue-Router 介绍2、路由配置3、嵌套路由3.1、简介3.2、实现步骤3.3、⭐注意事项 4、⭐router-view标签详解 ​🍃作者介绍:双非本科大三网络工程专业在读,阿里云专家博主,专注于Java领域学习,擅…...

Kafka(六)消费者

目录 Kafka消费者1 配置消费者bootstrap.serversgroup.idkey.deserializervalue.deserializergroup.instance.idfetch.min.bytes1fetch.max.wait.msfetch.max.bytes57671680 (55 mebibytes)max.poll.record500max.partition.fetch.bytessession.timeout.ms45000 (45 seconds)he…...

RK3399平台入门到精通系列讲解(实验篇)共享工作队列的使用

🚀返回总目录 文章目录 一、工作队列相关接口函数1.1、初始化函数1.2、调度/取消调度工作队列函数二、信号驱动 IO 实验源码2.1、Makefile2.2、驱动部分代码工作队列是实现中断下半部分的机制之一,是一种用于管理任务的数据结构或机制。它通常用于多线程,多进程或分布式系统…...

STM32 基于 MPU6050 的飞行器姿态控制设计与实现

基于STM32的MPU6050姿态控制设计是无人机、飞行器等飞行器件开发中的核心技术之一。在本文中,我们将介绍如何利用STM32和MPU6050实现飞行器的姿态控制,并提供相应的代码示例。 1. 硬件连接及库配置 首先,我们需要将MPU6050连接到STM32微控制…...

大数据平台Bug Bash大扫除最佳实践

一、背景 随着越来越多的"新人"在日常工作以及大促备战中担当大任,我们发现仅了解自身系统业务已不能满足日常系统开发运维需求。为此,大数据平台部门组织了一次Bug Bash活动,既能提升自己对兄弟产品的理解和使用,又能…...

JavaScript 中的数组过滤

在构建动态和交互式程序时,您可能需要添加一些交互式功能。例如,用户单击按钮以筛选一长串项目。 您可能还需要处理大量数据,以仅返回与指定条件匹配的项目。 在本文中,您将学习如何使用两种主要方法在 JavaScript 中过滤数组。…...

随机森林(Random Forest)

随机森林(Random Forest)是一种集成学习方法,通过组合多个决策树来提高模型的性能和鲁棒性。随机森林在每个决策树的训练过程中引入了随机性,包括对样本和特征的随机选择,以提高模型的泛化能力。以下是随机森林的基本原…...

本地引入Element UI后导致图标显示异常

引入方式 npm 安装 推荐使用 npm 的方式安装&#xff0c;它能更好地和 webpack 打包工具配合使用。 npm i element-ui -SCDN 目前可以通过 unpkg.com/element-ui 获取到最新版本的资源&#xff0c;在页面上引入 js 和 css 文件即可开始使用。 <!-- 引入样式 --> <…...

UE5.1_UMG序列帧动画制作

UE5.1_UMG序列帧动画制作 UMG序列帧动画制作相对比较简单&#xff0c;不像视频帧需要创建媒体播放器那么复杂&#xff0c;以下简要说明&#xff1a; 1. 事件函数 2. 准备序列帧装入数组 3. 构造调用事件函数 4. 预览 序列帧UMG0105 5. 完成&#xff01;按需配置即可。...

总结HarmonyOS的技术特点

HarmonyOS是华为自主研发的面向全场景的分布式操作系统。它的技术特点主要体现在以下几个方面&#xff1a; 分布式架构&#xff1a;HarmonyOS采用了分布式架构设计&#xff0c;通过组件化和小型化等方法&#xff0c;支持多种终端设备按需弹性部署&#xff0c;能够适配不同类别的…...

从0到1入门C++编程——04 类和对象之封装、构造函数、析构函数、this指针、友元

文章目录 一、封装二、项目文件拆分三、构造函数和析构函数1.构造函数的分类及调用2.拷贝函数调用时机3.构造函数调用规则4.深拷贝与浅拷贝5.初始化列表6.类对象作为类成员7.静态成员 四、C对象模型和this指针1.类的对象大小计算2.this指针3.空指针访问成员函数4.const修饰成员…...

Robot Operating System 2: Design, Architecture, and Uses In The Wild

Robot Operating System 2: Design, Architecture, and Uses In The Wild (机器人操作系统 2&#xff1a;设计、架构和实际应用) 摘要&#xff1a;随着机器人在广泛的商业用例中的部署&#xff0c;机器人革命的下一章正在顺利进行。即使在无数的应用程序和环境中&#xff0c;也…...

TinyEngine 服务端正式开源啦!!!

背景介绍 TinyEngine 低代码引擎介绍 随着企业对于低代码开发平台的需求日益增长&#xff0c;急需一个通用的解决方案来满足各种低代码平台的开发需求。正是在这种情况下&#xff0c;低代码引擎应运而生。它是一种通用的开发框架&#xff0c;通过对低代码平台系统常用的功能进…...

网页设计与制作web前端设计html+css+js成品。电脑网站制作代开发。vscodeDrea 【企业公司宣传网站(HTML静态网页项目实战)附源码】

网页设计与制作web前端设计htmlcssjs成品。电脑网站制作代开发。vscodeDrea 【企业公司宣传网站&#xff08;HTML静态网页项目实战&#xff09;附源码】 https://www.bilibili.com/video/BV1Hp4y1o7RY/?share_sourcecopy_web&vd_sourced43766e8ddfffd1f1a1165a3e72d7605...

Avalonia学习(二十)-登录界面演示

今天开始继续Avalonia练习。 本节&#xff1a;演示实现登录界面 在网上看见一个博客&#xff0c;展示Avalonia实现&#xff0c;仿照GGTalk&#xff0c;我实现了一下&#xff0c;感觉是可以的。将测试的数据代码效果写下来。主要是样式使用&#xff0c;图片加载方式。 只有前…...

Spring依赖注入的魔法:深入DI的实现原理【beans 五】

欢迎来到我的博客&#xff0c;代码的世界里&#xff0c;每一行都是一个故事 Spring依赖注入的魔法&#xff1a;深入DI的实现原理【beans 五】 前言DI的基本概念基本概念&#xff1a;为什么使用依赖注入&#xff1a; 构造器注入构造器注入的基本概念&#xff1a;示例&#xff1a…...

【学习笔记】1、数字逻辑概论

1.1 数字信号 数字信号&#xff0c;在时间和数值上均是离散的。数字信号的表达方式&#xff1a;二值数字逻辑和逻辑电平描述的数字波形。 &#xff08;1&#xff09; 数字波形的两种类型 数值信号又称为“二值信号”。数字波形又称为“二值位形图”。 什么是一拍 一定的时…...

设置代理IP地址对网络有什么影响?爬虫代理IP主要有哪些作用?

在互联网的广泛应用下&#xff0c;代理IP地址成为了一种常见的网络技术。代理IP地址可以改变用户的上网行为&#xff0c;进而影响网络访问的速度和安全性。本篇文章将探讨设置代理IP地址对网络的影响&#xff0c;以及爬虫代理IP的主要作用。 首先&#xff0c;让我们来了解一下代…...

聊聊jvm的mapped buffer的统计

序 本文主要研究一下jvm的mapped buffer的统计 示例 private void writeDirectBuffer() {// 分配一个256MB的直接缓冲区ByteBuffer buffer ByteBuffer.allocateDirect(256 * 1024 * 1024);// 填充数据Random random new Random();while (buffer.remaining() > 4) {buff…...

matrix-breakout-2-morpheus 靶场 练习思路

arp-scan -l 获取目标机器的IP nmap -sV -A IP 查看目标机器开放的端口 gobuster dir -u http://192.168.29.130 -x php,txt,jsp,asp -w /usr/share/wordlists/dirbuster/directory-list-2.3-medium.txt 爆破目标机器的文件目录,找到可以访问的文件路径 http://192.168…...

【Flutter 开发实战】Dart 基础篇:从了解背景开始

想要学会用 Flutter 开发 App&#xff0c;就不可避免的要学习另一门很有意思的编程语言 —— Dart。很多小伙伴可能在学习 Flutter 之前可能都没听说过这门编程语言&#xff0c;我也是一样&#xff0c;还以为 Dart 是为了 Flutter 而诞生的&#xff1b;然而&#xff0c;当我们去…...

网页制作个人主页图片/seo超级外链工具

什么是子网掩码一、 子网掩码不能单独存在&#xff0c;它必须结合IP地址一起使用。二、 子网掩码只有一个作用&#xff0c;就是将某个IP地址划分成网络地址和主机地址两部分。三、 对于A类地址来说&#xff0c;默认的子网掩码是255.0.0.0&#xff1b;对于B类地址来说默…...

dw做单页网站教程/seo托管服务

Flink作为流批统一的计算框架&#xff0c;在1.10中完成了大量batch相关的增强与改进。1.10可以说是第一个成熟的生产可用的Flink Batch SQL版本&#xff0c;它一扫之前Dataset的羸弱&#xff0c;从功能和性能上都有大幅改进&#xff0c;以下我从架构、外部系统集成、实践三个方…...

阿里巴巴企业网站怎么做/网站广告费一般多少钱

前段时间&#xff0c;一同事写得代码惨不忍睹&#xff0c;核心是自定义公式&#xff0c;他的实现方式是“纯手工”打造... 以下代码仅作参考&#xff1a; View Code class Express { DataTable TmpDt;public Express() { TmpDt new DataTable(); …...

河南公司网站制作咨询/网站建设有哪些公司

本文为瑞典皇家理工学院&#xff08;作者&#xff1a;YUANJUN SONG&#xff09;的硕士论文&#xff0c;共34页。 物联网&#xff08;IoT&#xff09;正在兴起&#xff0c;互联网和其它具有无线技术的网络使各种物理对象在线交互。近年来&#xff0c;随着无线通信和微电子技术的…...

昆明seo网站建设费用/宣传推广方式有哪些

&#x1f530; 学习视频 &#x1f530; 尚硅谷SpringCloud框架开发教程(SpringCloudAlibaba微服务分布式架构丨Spring Cloud) 集数&#xff1a;15—27 &#x1f530; 学习格言 &#x1f530; 不在能知&#xff0c;乃在能行。 &#x1f530; 学习笔记 &#x1f530; 【Java】…...

网站建设哪种品牌好/网站设计公司

第一章 MySQL入门与初步 1.1 MYSQL 简介 1.2 关系数据库管理系统 1.3 MYSQL 使用的 SQL 语言 1.4 MYSQL 数据处理 第二章 MySQL的安装 2.1 MYSQL 系统的安装布局 2.2 安装 MYSQL 系统的分发 2.3 安装后期的的设置与测试 2.4 系统的升级 2.5 在同一台机器上运行多个 MYSQL 服务…...