当前位置: 首页 > news >正文

竞赛保研 基于深度学习的人脸识别系统

前言

🔥 优质竞赛项目系列,今天要分享的是

基于深度学习的人脸识别系统

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

机器学习-人脸识别过程

基于传统图像处理和机器学习技术的人脸识别技术,其中的流程都是一样的。

机器学习-人脸识别系统都包括:

  • 人脸检测
  • 人脸对其
  • 人脸特征向量化
  • 人脸识别
    在这里插入图片描述

人脸检测

人脸检测用于确定人脸在图像中的大小和位置,即解决“人脸在哪里”的问题,把真正的人脸区域从图像中裁剪出来,便于后续的人脸特征分析和识别。下图是对一张图像的人脸检测结果:

在这里插入图片描述

人脸对其

同一个人在不同的图像序列中可能呈现出不同的姿态和表情,这种情况是不利于人脸识别的。

所以有必要将人脸图像都变换到一个统一的角度和姿态,这就是人脸对齐。

它的原理是找到人脸的若干个关键点(基准点,如眼角,鼻尖,嘴角等),然后利用这些对应的关键点通过相似变换(Similarity
Transform,旋转、缩放和平移)将人脸尽可能变换到标准人脸。

下图是一个典型的人脸图像对齐过程:
在这里插入图片描述
这幅图就更加直观了:
在这里插入图片描述

人脸特征向量化

这一步是将对齐后的人脸图像,组成一个特征向量,该特征向量用于描述这张人脸。

但由于,一幅人脸照片往往由比较多的像素构成,如果以每个像素作为1维特征,将得到一个维数非常高的特征向量, 计算将十分困难;而且这些像素之间通常具有相关性。

所以我们常常利用PCA技术对人脸描述向量进行降维处理,保留数据集中对方差贡献最大的人脸特征来达到简化数据集的目的

PCA人脸特征向量降维示例代码:

#coding:utf-8
from numpy import *
from numpy import linalg as la
import cv2
import osdef loadImageSet(add):FaceMat = mat(zeros((15,98*116)))j =0for i in os.listdir(add):if i.split('.')[1] == 'normal':try:img = cv2.imread(add+i,0)except:print 'load %s failed'%iFaceMat[j,:] = mat(img).flatten()j += 1return FaceMatdef ReconginitionVector(selecthr = 0.8):# step1: load the face image data ,get the matrix consists of all imageFaceMat = loadImageSet('D:\python/face recongnition\YALE\YALE\unpadded/').T# step2: average the FaceMatavgImg = mean(FaceMat,1)# step3: calculate the difference of avgimg and all image data(FaceMat)diffTrain = FaceMat-avgImg#step4: calculate eigenvector of covariance matrix (because covariance matrix will cause memory error)eigvals,eigVects = linalg.eig(mat(diffTrain.T*diffTrain))eigSortIndex = argsort(-eigvals)for i in xrange(shape(FaceMat)[1]):if (eigvals[eigSortIndex[:i]]/eigvals.sum()).sum() >= selecthr:eigSortIndex = eigSortIndex[:i]breakcovVects = diffTrain * eigVects[:,eigSortIndex] # covVects is the eigenvector of covariance matrix# avgImg 是均值图像,covVects是协方差矩阵的特征向量,diffTrain是偏差矩阵return avgImg,covVects,diffTraindef judgeFace(judgeImg,FaceVector,avgImg,diffTrain):diff = judgeImg.T - avgImgweiVec = FaceVector.T* diffres = 0resVal = inffor i in range(15):TrainVec = FaceVector.T*diffTrain[:,i]if  (array(weiVec-TrainVec)**2).sum() < resVal:res =  iresVal = (array(weiVec-TrainVec)**2).sum()return res+1if __name__ == '__main__':avgImg,FaceVector,diffTrain = ReconginitionVector(selecthr = 0.9)nameList = ['01','02','03','04','05','06','07','08','09','10','11','12','13','14','15']characteristic = ['centerlight','glasses','happy','leftlight','noglasses','rightlight','sad','sleepy','surprised','wink']for c in characteristic:count = 0for i in range(len(nameList)):# 这里的loadname就是我们要识别的未知人脸图,我们通过15张未知人脸找出的对应训练人脸进行对比来求出正确率loadname = 'D:\python/face recongnition\YALE\YALE\unpadded\subject'+nameList[i]+'.'+c+'.pgm'judgeImg = cv2.imread(loadname,0)if judgeFace(mat(judgeImg).flatten(),FaceVector,avgImg,diffTrain) == int(nameList[i]):count += 1print 'accuracy of %s is %f'%(c, float(count)/len(nameList))  # 求出正确率

人脸识别

这一步的人脸识别,其实是对上一步人脸向量进行分类,使用各种分类算法。

比如:贝叶斯分类器,决策树,SVM等机器学习方法。

从而达到识别人脸的目的。

这里分享一个svm训练的人脸识别模型:

from __future__ import print_functionfrom time import timeimport loggingimport matplotlib.pyplot as pltfrom sklearn.cross_validation import train_test_splitfrom sklearn.datasets import fetch_lfw_peoplefrom sklearn.grid_search import GridSearchCVfrom sklearn.metrics import classification_reportfrom sklearn.metrics import confusion_matrixfrom sklearn.decomposition import RandomizedPCAfrom sklearn.svm import SVCprint(__doc__)# Display progress logs on stdoutlogging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s')################################################################################ Download the data, if not already on disk and load it as numpy arrayslfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4)# introspect the images arrays to find the shapes (for plotting)n_samples, h, w = lfw_people.images.shape# for machine learning we use the 2 data directly (as relative pixel# positions info is ignored by this model)X = lfw_people.datan_features = X.shape[1]# the label to predict is the id of the persony = lfw_people.targettarget_names = lfw_people.target_namesn_classes = target_names.shape[0]print("Total dataset size:")print("n_samples: %d" % n_samples)print("n_features: %d" % n_features)print("n_classes: %d" % n_classes)################################################################################ Split into a training set and a test set using a stratified k fold# split into a training and testing setX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42)################################################################################ Compute a PCA (eigenfaces) on the face dataset (treated as unlabeled# dataset): unsupervised feature extraction / dimensionality reductionn_components = 80print("Extracting the top %d eigenfaces from %d faces"% (n_components, X_train.shape[0]))t0 = time()pca = RandomizedPCA(n_components=n_components, whiten=True).fit(X_train)print("done in %0.3fs" % (time() - t0))eigenfaces = pca.components_.reshape((n_components, h, w))print("Projecting the input data on the eigenfaces orthonormal basis")t0 = time()X_train_pca = pca.transform(X_train)X_test_pca = pca.transform(X_test)print("done in %0.3fs" % (time() - t0))################################################################################ Train a SVM classification modelprint("Fitting the classifier to the training set")t0 = time()param_grid = {'C': [1,10, 100, 500, 1e3, 5e3, 1e4, 5e4, 1e5],'gamma': [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.1], }clf = GridSearchCV(SVC(kernel='rbf', class_weight='balanced'), param_grid)clf = clf.fit(X_train_pca, y_train)print("done in %0.3fs" % (time() - t0))print("Best estimator found by grid search:")print(clf.best_estimator_)print(clf.best_estimator_.n_support_)################################################################################ Quantitative evaluation of the model quality on the test setprint("Predicting people's names on the test set")t0 = time()y_pred = clf.predict(X_test_pca)print("done in %0.3fs" % (time() - t0))print(classification_report(y_test, y_pred, target_names=target_names))print(confusion_matrix(y_test, y_pred, labels=range(n_classes)))################################################################################ Qualitative evaluation of the predictions using matplotlibdef plot_gallery(images, titles, h, w, n_row=3, n_col=4):"""Helper function to plot a gallery of portraits"""plt.figure(figsize=(1.8 * n_col, 2.4 * n_row))plt.subplots_adjust(bottom=0, left=.01, right=.99, top=.90, hspace=.35)for i in range(n_row * n_col):plt.subplot(n_row, n_col, i + 1)# Show the feature faceplt.imshow(images[i].reshape((h, w)), cmap=plt.cm.gray)plt.title(titles[i], size=12)plt.xticks(())plt.yticks(())# plot the result of the prediction on a portion of the test setdef title(y_pred, y_test, target_names, i):pred_name = target_names[y_pred[i]].rsplit(' ', 1)[-1]true_name = target_names[y_test[i]].rsplit(' ', 1)[-1]return 'predicted: %s\ntrue:      %s' % (pred_name, true_name)prediction_titles = [title(y_pred, y_test, target_names, i)for i in range(y_pred.shape[0])]plot_gallery(X_test, prediction_titles, h, w)# plot the gallery of the most significative eigenfaceseigenface_titles = ["eigenface %d" % i for i in range(eigenfaces.shape[0])]plot_gallery(eigenfaces, eigenface_titles, h, w)plt.show()

深度学习-人脸识别过程

不同于机器学习模型的人脸识别,深度学习将人脸特征向量化,以及人脸向量分类结合到了一起,通过神经网络算法一步到位。

深度学习-人脸识别系统都包括:

  • 人脸检测
  • 人脸对其
  • 人脸识别

人脸检测

深度学习在图像分类中的巨大成功后很快被用于人脸检测的问题,起初解决该问题的思路大多是基于CNN网络的尺度不变性,对图片进行不同尺度的缩放,然后进行推理并直接对类别和位置信息进行预测。另外,由于对feature
map中的每一个点直接进行位置回归,得到的人脸框精度比较低,因此有人提出了基于多阶段分类器由粗到细的检测策略检测人脸,例如主要方法有Cascade CNN、
DenseBox和MTCNN等等。

MTCNN是一个多任务的方法,第一次将人脸区域检测和人脸关键点检测放在了一起,与Cascade
CNN一样也是基于cascade的框架,但是整体思路更加的巧妙合理,MTCNN总体来说分为三个部分:PNet、RNet和ONet,网络结构如下图所示。

在这里插入图片描述

人脸识别

人脸识别问题本质是一个分类问题,即每一个人作为一类进行分类检测,但实际应用过程中会出现很多问题。第一,人脸类别很多,如果要识别一个城镇的所有人,那么分类类别就将近十万以上的类别,另外每一个人之间可获得的标注样本很少,会出现很多长尾数据。根据上述问题,要对传统的CNN分类网络进行修改。

我们知道深度卷积网络虽然作为一种黑盒模型,但是能够通过数据训练的方式去表征图片或者物体的特征。因此人脸识别算法可以通过卷积网络提取出大量的人脸特征向量,然后根据相似度判断与底库比较完成人脸的识别过程,因此算法网络能不能对不同的人脸生成不同的特征,对同一人脸生成相似的特征,将是这类embedding任务的重点,也就是怎么样能够最大化类间距离以及最小化类内距离。

Metric Larning

深度学习中最先应用metric
learning思想之一的便是DeepID2了。其中DeepID2最主要的改进是同一个网络同时训练verification和classification(有两个监督信号)。其中在verification
loss的特征层中引入了contrastive loss。

Contrastive
loss不仅考虑了相同类别的距离最小化,也同时考虑了不同类别的距离最大化,通过充分运用训练样本的label信息提升人脸识别的准确性。因此,该loss函数本质上使得同一个人的照片在特征空间距离足够近,不同人在特征空间里相距足够远直到超过某个阈值。(听起来和triplet
loss有点像)。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

相关文章:

竞赛保研 基于深度学习的人脸识别系统

前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 基于深度学习的人脸识别系统 该项目较为新颖&#xff0c;适合作为竞赛课题方向&#xff0c;学长非常推荐&#xff01; &#x1f9ff; 更多资料, 项目分享&#xff1a; https://gitee.com/dancheng-senior/…...

9.建造者模式

文章目录 一、介绍二、代码三、实际使用总结 一、介绍 建造者模式旨在将一个复杂对象的构建过程和其表示分离&#xff0c;以便同样的构建过程可以创建不同的表示。这种模式适用于构建对象的算法&#xff08;构建过程&#xff09;应该独立于对象的组成部分以及它们的装配方式的…...

简单的MOV转MP4方法

1.下载腾讯的QQ影音播放器, 此播放器为绿色视频播放器, 除了播放下载好的视频外没有臃肿无用功能 官网 QQ影音 百度网盘链接&#xff1a;https://pan.baidu.com/s/1G0kSC-844FtRfqGnIoMALA 提取码&#xff1a;dh4w 2.用QQ影音打开MOV文件 3.右下角打开影音工具箱 , 选择截取…...

YOLOv8改进 | Neck篇 | 利用ASF-YOLO改进特征融合层(适用于分割和目标检测)

一、本文介绍 本文给大家带来的改进机制是ASF-YOLO(发布于2023.12月份的最新机制),其是特别设计用于细胞实例分割。这个模型通过结合空间和尺度特征,提高了在处理细胞图像时的准确性和速度。在实验中,ASF-YOLO在2018年数据科学竞赛数据集上取得了卓越的分割准确性和速度,…...

基于模块自定义扩展字段的后端逻辑实现(一)

目录 一&#xff1a;背景介绍 二&#xff1a;实现过程 三&#xff1a;字段标准化 四&#xff1a;数据存储 五&#xff1a;数据扩展 六&#xff1a;表的设计 一&#xff1a;背景介绍 最近要做一个系统&#xff0c;里面涉及一个模块是使用拖拉拽的形式配置模块使用的字段表…...

力扣:18.四数之和

一、做题链接&#xff1a;18. 四数之和 - 力扣&#xff08;LeetCode&#xff09; 二、题目分析 1.做这一道题之前本博主建议先看上一篇《三数之和》 2.题目分析 给你一个由 n 个整数组成的数组 nums &#xff0c;和一个目标值 target 。请你找出并返回满足下述全部条件且不重…...

.netcore 6 ioc注入的三种方式

1、定义接口 public interface MyInterceptorInterface 2、实现接口 public class MyInterceptorImpl : MyInterceptorInterface 在构造中增加以下代码&#xff0c;便于观察 static ConcurrentDictionary<string, string> keyValues new ConcurrentDictionary<s…...

Python轴承故障诊断 (十)基于VMD+CNN-Transfromer的故障分类

目录 1 变分模态分解VMD的Python示例 2 轴承故障数据的预处理 2.1 导入数据 2.2 故障VMD分解可视化 3 基于VMDCNN-Transformer的轴承故障诊断分类 3.1 定义VMD-CNN-Transformer分类网络模型 3.2 设置参数&#xff0c;训练模型 3.3 模型评估 代码、数据如下&#xff1a…...

【复习】人工智能 第7章 专家系统与机器学习

专家系统就是让机器人当某个领域的专家&#xff0c;但这章专家系统不咋考&#xff0c;主要靠书上没有的机器学习。 一、专家系统的基本组成 二、专家系统与传统程序的比较 &#xff08;1&#xff09;编程思想&#xff1a; 传统程序 数据结构 算法 专家系统 知识 推理 &…...

使用 Apache PDFBox 操作PDF文件

简介 Apache PDFBox库是一个开源的Java工具&#xff0c;专门用于处理PDF文档。它允许用户创建全新的PDF文件&#xff0c;编辑现有的PDF文档&#xff0c;以及从PDF文件中提取内容。此外&#xff0c;Apache PDFBox还提供了一些命令行实用工具。 Apache PDFBox提供了创建、渲染、…...

【Python 常用脚本及命令系列 3.2 -- 检测到弹框跳出然后关掉它--脚本实现】

文章目录 简介脚本实现 简介 在Python中&#xff0c;你可以使用第三方库如pyautogui和pygetwindow来检测屏幕上的弹框并关闭它。这些库可以模拟鼠标和键盘操作&#xff0c;也可以获取窗口信息。 首先&#xff0c;需要安装这些库&#xff08;如果你还没有安装的话&#xff09;&…...

junit单元测试:使用@ParameterizedTest 和 @CsvSource注解简化单元测试方法

在平常的开发工作中&#xff0c;我们经常需要写单元测试。比如&#xff0c;我们有一个校验接口&#xff0c;可能会返回多种错误信息。我们可以针对这个接口&#xff0c;写多个单元测试方法&#xff0c;然后将其场景覆盖全。那么&#xff0c;怎么才能写一个测试方法&#xff0c;…...

C# winform判断自身程序是否已运行,如果已运行则激活窗体

C# winform判断自身程序是否已运行&#xff0c;如果已运行则激活窗体 using System; using System.Collections.Generic; using System.Diagnostics; using System.Linq; using System.Reflection; using System.Runtime.InteropServices; using System.Threading; using Syst…...

超维空间M1无人机使用说明书——21、基于opencv的人脸识别

引言&#xff1a;M1型号无人机不仅提供了yolo进行物体识别&#xff0c;也增加了基于opencv的人脸识别功能包&#xff0c;仅需要启动摄像头和识别节点即可 链接: 源码链接 一、一键启动摄像头和人脸识别节点 roslaunch robot_bringup bringup_face_detect.launch无报错&#…...

Redis 持久化——AOF

文章目录 为什么需要AOF?概念持久化查询和设置1. 查询AOF启动状态2. 开启AOF持久化2.1 命令行启动AOF2.2 配置文件启动 AOF 3. 触发持久化3.1 自动触发3.3 手动触发 4. AOF 文件重写4.1 什么是AOF重写&#xff1f;4.2 AOF 重写实现4.3 AOF 重写流程 5. 配置说明6. 数据恢复6.1…...

华为云服务介绍(二)

在 华为云服务介绍(一) 中我们看到华为云提供了一系列的云服务,包括计算、存储、网络、数据库、安全等方面的解决方案。通过灵活的系统架构设计,可以充分利用这些云服务技术,从而更好地满足用户的需求。 本文从系统架构的角度出发,通过充分利用华为云提供的各种云服务技…...

mysql列题

mysql列题 1.查询学过「张三」老师授课的同学的信息2.查询没有学全所有课程的同学的信息3.查询没学过"张三"老师讲授的任一门课程的学生姓名4.查询两门及其以上不及格课程的同学的学号&#xff0c;姓名及其平均成绩5.检索" 01 "课程分数小于 60&#xff0c…...

cpu缓存一致性

文章目录 cpu缓存一致性缓存的出现&#xff1a;多核之后带来的缓存一致性问题&#xff0c;如何解决LOCK 指令&#xff08;刚好可以实现上述的目标&#xff09;LOCK 指令特性内存屏障特性编译器屏障的作用MESI协议为什么有了 MESI协议 还需要 内存屏障问题&#xff1a;总结&…...

Android Framework 常见解决方案(25-1)定制CPUSET解决方案-framework部分修改

1 原理说明 这个方案有如下基本需求&#xff1a; 构建自定义CPUSET&#xff0c;/dev/cpuset中包含一个全新的cpuset分组。且可以通过set_cpuset_policy和set_sched_policy接口可以设置自定义CPUSET。开机启动后可以通过zygote判定来对特定的应用进程设置CPUSET&#xff0c;并…...

PyTorch 参数化深度解析:自定义、管理和优化模型参数

目录 torch.nn子模块parametrize parametrize.register_parametrization 主要特性和用途 使用场景 参数和关键字参数 注意事项 示例 parametrize.remove_parametrizations 功能和用途 参数 返回值 异常 使用示例 parametrize.cached 功能和用途 如何使用 示例…...

自承载 Self-Host ASP.NET Web API 1 (C#)

本教程介绍如何在控制台应用程序中托管 Web API。 ASP.NET Web API不需要 IIS。 可以在自己的主机进程中自托管 Web API。 创建控制台应用程序项目 启动 Visual Studio&#xff0c;然后从“开始”页中选择“新建项目”。 或者&#xff0c;从“ 文件 ”菜单中选择“ 新建 ”&a…...

Vue2-子传父和父传子的基本用法

在Vue 2中&#xff0c;可以使用props和$emit来实现子组件向父组件传值&#xff08;子传父&#xff09;和父组件向子组件传值&#xff08;父传子&#xff09;。 子传父&#xff08;子组件向父组件传值&#xff09;的基本用法如下&#xff1a; 在父组件中定义一个属性&#xff…...

使用numpy处理图片——镜像翻转和旋转

在《使用numpy处理图片——基础操作》一文中&#xff0c;我们介绍了如何使用numpy修改图片的透明度。本文我们将介绍镜像翻转和旋转。 镜像翻转 上下翻转 from PIL import Image import numpy as np img Image.open(example.png) data np.array(img)# axis0 is vertical, a…...

HTML5 article标签,<time>...</time>标签和pubdate属性的运用

1、<article>...</article>标签的运用 article标签代表文档、页面或应用程序中独立的、完整的、可以独自被外部引用的内容。它可以是一篇博客或报竟杂志中的文章、一篇论坛帖子、一段用户评论或一个独立的插件&#xff0c;或者其他任何独立的内容。把文章正文放在h…...

Amazing OpenAI API:把非 OpenAI 模型都按 OpenAI API 调用

分享一个有趣的小工具&#xff0c;10MB 身材的小工具&#xff0c;能够将各种不同的模型 API 转换为开箱即用的 OpenAI API 格式。 让许多依赖 OpenAI API 的软件能够借助开发者能够接触到的&#xff0c;非 OpenAI 的 API 私有部署和使用起来。 写在前面 这个小工具软件写于两…...

RK3568平台开发系列讲解(驱动篇)pinctrl 函数操作集结构体讲解

🚀返回专栏总目录 文章目录 一、pinctrl_ops二、pinmux_ops三、pinconf_ops沉淀、分享、成长,让自己和他人都能有所收获!😄 pinctrl_ops:提供有关属于引脚组的引脚的信息。pinmux_ops:选择连接到该引脚的功能。pinconf_ops:设置引脚属性(上拉,下拉,开漏,强度等)。…...

vue购物车案例,v-model 之 lazy、number、trim,与后端交互

购物车案例 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>Title</title><script src"./js/vue.js"></script> </head> <body> <div id"d1"&…...

云原生Kubernetes: Kubeadm部署K8S 1.29版本 单Master架构

目录 一、实验 1.环境 2.K8S master节点环境准备 3.K8S master节点安装kubelet、kubeadm、kubectl 3.K8S node节点环境准备与软件安装 4.K8S master节点部署服务 5.K8S node节点部署 6.K8S master节点查看集群 7.容器网络&#xff08;CNI&#xff09;部署 8.K8S 集群…...

C++协程操作

什么是C++协程 C++中的协程是一种用户态轻量级线程,它拥有自己的上下文和栈,并且协程的切换和调度由用户定义,不需要陷入内核。如同一个进程可以拥有多个线程,一个线程也可以拥有多个协程。协程的优点在于极高的执行效率,因为协程切换不需要陷入内核,而是由用户程序定义切…...

计算机配件杂谈-鼠标

目录 基础知识鼠标的发展鼠标的左右手鼠标的显示样式鼠标的移动和可见性移动可见性 现在的我们的生活工作都基本上离不开电脑了&#xff0c;不管是你平时玩玩游戏&#xff0c;上班工作等等&#xff1b; 今天将关于鼠标的一些小的技巧分享出来&#xff0c;共勉&#xff01; 基础…...

个人做网站怎么盈利/爱营销电信版下载app最新版

win10系统使用久了&#xff0c;好多网友反馈说关于对win10系统桌面图标显示和背景修改设置的方法&#xff0c;在使用win10系统的过程中经常不知道如何去对win10系统桌面图标显示和背景修改进行设置&#xff0c;有什么好的办法去设置win10系统桌面图标显示和背景修改呢&#xff…...

黄岩城乡住房和建设局网站/网络推广产品要给多少钱

1、字符串判断 str1 str2     当两个串有相同内容、长度时为真 str1 ! str2    当串str1和str2不等时为真 -n str1       当串的长度大于0时为真(串非空&#xff0c;变量) -z str1       当串的长度为0时为真(空串) str1        当串str1为非空时…...

西部数码注册域名/快手seo软件下载

【Arclist 标记】 这个标记是DedeCms最常用的一个标记&#xff0c;也叫自由列表标记&#xff0c;其中 hotart、coolart、likeart、artlist、imglist、imginfolist、specart、autolist 这些标记都是由这个标记所定义的不同属性延伸出来的别名标记。 功能说明&#xff1a;获取指定…...

做网站用什么/企业邮箱怎么开通注册

MySQL数据字典相关的sql查询和navicat的一个导出ER图功能##mysql 查看表结构SELECTCOLUMN_NAME Field,COLUMN_TYPE Type,IS_NULLABLE Null,COLUMN_KEY Key,COLUMN_DEFAULT Default,COLUMN_COMMENT CommentFROMINFORMATION_SCHEMA.COLUMNSWHEREtable_schema dbname ##数据库名A…...

wordpress get_currentuserinfo/seo站内优化和站外优化

windows 自动部署数据库软件相关脚本整体思路是开启windows的telnet功能&#xff0c;本机telnet远程windows执行相关的数据库命令。telnet 相关服务这三个服务是windows telnet相关的三个服务&#xff0c;需要事先开启。sc config seclogon start demandsc config RpcSs start …...

网站排行榜/口碑营销经典案例

svn安装&#xff1a; SVN1.6.11安装过程概述一.安装1.将subversion-1.6.11.tar.gz和subversion-deps-1.6.11.tar.gz传到服务器。tar xfvz subversion-1.6.11.tar.gztar xfvz subversion-deps-1.6.11.tar.gzchown -R root.root subversion-1.6.11cd subversion-1.6.11./configur…...