Unity中URP下深度图的线性转化
文章目录
- 前言
- 一、_ZBufferParams参数有两组值
- 二、LinearEyeDepth
- 1、使用
- 2、Unity源码推导:
- 3、使用矩阵推导:
- 三、Linear01Depth
- 1、使用
- 2、Unity源码推导
- 3、数学推导:
前言
在之前的文章中,我们实现了对深度图的使用。因为,深度图不是线性的。所以,在使用时,我们使用了 Linear01Depth 函数对其进行了线性转化。
- Unity中URP下开启和使用深度图
但是,对深度图进行线性转化 还有其他函数。
在这篇文章中,我们来看一下深度图线性转化的 Linear01Depth函数 和 LinearEyeDepth 函数 干了什么。
一、_ZBufferParams参数有两组值
-
在OpenGL下
-
在类DirectX下
二、LinearEyeDepth
1、使用
-
对采样的深度图纹理进行线性转化
-
转化后的值,就是原来物体的深度 Z 值
float4 cameraDepthTex = SAMPLE_TEXTURE2D(_CameraDepthTexture,sampler_CameraDepthTexture,uv);
float depthTex = LinearEyeDepth(cameraDepthTex,_ZBufferParams);
- 返回结果全白,效果不明显
- 我们对其取小数部分,使其效果明显一点
frac(depthTex)
2、Unity源码推导:
- 这里使用OpenGL下推导
Z v i e w = 1 1 − f n f d + f n f Z_{view}=\frac{1}{\frac{1-\frac{f}{n}}{f}d+\frac{\frac{f}{n}}{f}} Zview=f1−nfd+fnf1
Z v i e w = 1 ( n n − f n ) 1 f d + 1 n Z_{view}=\frac{1}{(\frac{n}{n}-\frac{f}{n})\frac{1}{f}d+\frac{1}{n}} Zview=(nn−nf)f1d+n11
Z v i e w = 1 ( n − f n ) 1 f d + 1 n Z_{view}=\frac{1}{(\frac{n-f}{n})\frac{1}{f}d+\frac{1}{n}} Zview=(nn−f)f1d+n11
Z v i e w = 1 n − f n f d + 1 n Z_{view}=\frac{1}{\frac{n-f}{nf}d+\frac{1}{n}} Zview=nfn−fd+n11
3、使用矩阵推导:
-
OpenGL
[ 2 n w 0 0 0 0 2 n h 0 0 0 0 n + f n − f 2 n f n − f 0 0 − 1 0 ] \begin{bmatrix} \frac{2n}{w} & 0 & 0 & 0 \\ 0 & \frac{2n}{h} & 0 &0\\ 0 & 0 & \frac{n+f}{n-f} &\frac{2nf}{n-f}\\ 0 & 0 & -1 & 0\\ \end{bmatrix} w2n0000h2n0000n−fn+f−100n−f2nf0 -
DirectX
[ 2 n w 0 0 0 0 2 n h 0 0 0 0 n f − n n f f − n 0 0 − 1 0 ] \begin{bmatrix} \frac{2n}{w} & 0 & 0 & 0 \\ 0 & \frac{2n}{h} & 0 &0\\ 0 & 0 & \frac{n}{f-n} &\frac{nf}{f-n}\\ 0 & 0 & -1 & 0\\ \end{bmatrix} w2n0000h2n0000f−nn−100f−nnf0 -
由观察空间转化到裁剪空间矩阵可得
Z c l i p = n + f n − f Z v i e w + 2 n f n − f W v i e w Z_{clip}=\frac{n+f}{n-f}Z_{view}+\frac{2nf}{n-f}W_{view} Zclip=n−fn+fZview+n−f2nfWview
W c l i p = − Z v i e w W_{clip}=-Z_{view} Wclip=−Zview -
做透视除法可得
Z n d c = Z c l i p W c l i p = n + f n − f Z v i e w + 2 n f n − f − Z v i e w = n + f f − n + 2 n f ( f − n ) Z v i e w Z_{ndc} = \frac{Z_{clip}}{W_{clip}} = \frac{\frac{n+f}{n-f}Z_{view}+\frac{2nf}{n-f}}{-Z_{view}}=\frac{n+f}{f-n}+\frac{2nf}{(f-n)Z_{view}} Zndc=WclipZclip=−Zviewn−fn+fZview+n−f2nf=f−nn+f+(f−n)Zview2nf -
d = 0.5 ⋅ Z n d c + 0.5 d=0.5·Z_{ndc}+0.5 d=0.5⋅Zndc+0.5
d = 0.5 ⋅ ( n + f f − n + 2 n f ( f − n ) Z v i e w ) + 0.5 d = 0.5·(\frac{n+f}{f-n}+\frac{2nf}{(f-n)Z_{view}})+0.5 d=0.5⋅(f−nn+f+(f−n)Zview2nf)+0.5 -
我们由 d d d 公式化简,即可得到 Z v i e w Z_{view} Zview
Z v i e w = 1 f − n n f d − 1 n Z_{view} = \frac{1}{\frac{f-n}{nf}d-\frac{1}{n}} Zview=nff−nd−n11 -
为了得到正的Z值,需要取反
Z v i e w = − 1 f − n n f d − 1 n Z_{view} =- \frac{1}{\frac{f-n}{nf}d-\frac{1}{n}} Zview=−nff−nd−n11
Z v i e w = 1 n − f n f d + 1 n Z_{view}=\frac{1}{\frac{n-f}{nf}d+\frac{1}{n}} Zview=nfn−fd+n11
三、Linear01Depth
1、使用
-
对采样的深度图纹理进行线性转化
-
转化后的值,是Z值在[0,1]区间的值
float4 cameraDepthTex = SAMPLE_TEXTURE2D(_CameraDepthTexture,sampler_CameraDepthTexture,uv);
float depthTex = Linear01Depth(cameraDepthTex,_ZBufferParams);
- 返回结果
2、Unity源码推导
- OpenGL下推导:
Z v i e w = 1 ( 1 − f n ) d + f n Z_{view}= \frac{1}{(1-\frac{f}{n})d+\frac{f}{n}} Zview=(1−nf)d+nf1
3、数学推导:
-
这是LinearEyeDepth下推导出来的
Z v i e w = 1 n − f n f d + 1 n Z_{view}=\frac{1}{\frac{n-f}{nf}d+\frac{1}{n}} Zview=nfn−fd+n11 -
Z v i e w Z_{view} Zview的取值范围 [ n e a r , f a r ] [near,far] [near,far]
-
使其除以一个 f f f得到 Linear01Depth函数的结果
Z v i e w = 1 n − f n f d + 1 n ⋅ 1 f = 1 n − f n f d f + f n = 1 ( 1 − f n ) d + f n Z_{view}=\frac{1}{\frac{n-f}{nf}d+\frac{1}{n}}·\frac{1}{f}=\frac{1}{\frac{n-f}{nf}df+\frac{f}{n}}=\frac{1}{(1-\frac{f}{n})d+\frac{f}{n}} Zview=nfn−fd+n11⋅f1=nfn−fdf+nf1=(1−nf)d+nf1
相关文章:
Unity中URP下深度图的线性转化
文章目录 前言一、_ZBufferParams参数有两组值二、LinearEyeDepth1、使用2、Unity源码推导:3、使用矩阵推导: 三、Linear01Depth1、使用2、Unity源码推导3、数学推导: 前言 在之前的文章中,我们实现了对深度图的使用。因为&#…...
Low Poly Cartoon House Interiors
400个独特的低多边形预制件的集合,可以轻松创建高质量的室内场景。所有模型都已准备好放入场景中,并使用一个纹理创建,以提高性能!包含演示场景! 模型分类: - 墙壁(79件) - 地板(28块) - 浴室(33个) - 厨房(36件) - 厨房道具(68件) - 房间道具(85件) - 灯具(…...
[算法与数据结构][c++]:左值、右值、左值引用、右值引用和std::move()
左值、右值、左值引用、右值引用和std::move 1. 什么是左值、右值2. 什么是左值引用、右值引用3. **右值引用和std::move的应用场景**3.1 实现移动语义3.2 **实例:vector::push_back使用std::move提高性能** **4. 完美转发 std::forward**5. Reference 写在前面&…...
【QT】day3
1.登陆界面 2.登陆失败 3.登陆成功弹窗 4.点击OK后跳转 #include "mainwindow.h" #include "ui_mainwindow.h"MainWindow::MainWindow(QWidget *parent): QMainWindow(parent), ui(new Ui::MainWindow) {ui->setupUi(this); }MainWindow::~MainWindow…...
c++ fork, execl 参数 logcat | grep
Linux进程编程(PS: exec族函数、system、popen函数)_linux popen函数会新建进程吗-CSDN博客 execvp函数详解_如何在C / C 中使用execvp()函数-CSDN博客 C语言的多进程fork()、函数exec*()、system()与popen()函数_c语言 多进程-CSDN博客 Linux---fork…...
QT:单例
单例的定义 官方定义:单例是指确保一个类在任何情况下都绝对只有一个实例,并提供一个全局访问点。 单例的写法 抓住3点: 构造函数私有化(确保只有一个实例)提供一个可以获取构造实例的接口(提供唯一的实…...
IPv6路由协议---IPv6动态路由(OSPFv3-4)
OSPFv3的链路状态通告LSA类型 链路状态通告是OSPFv3进行路由计算的关键依据,链路状态通告包含链路状态类型、链路状态ID、通告路由器三元组唯一地标识了一个LSA。 OSPFv3的LSA头仍然保持20字节,但是内容变化了。在LSA头中,OSPFv2的LS age、Advertising Router、LS Sequence…...
移动通信原理与关键技术学习(4)
1.小尺度衰落 Small-Scale Fading 由于收到的信号是由通过不同的多径到达的信号的总和,接收信号的增强有一定的减小。 小尺度衰落的特点: 信号强度在很小的传播距离或时间间隔内的快速变化;不同多径信号多普勒频移引起的随机调频ÿ…...
第二百五十八回
文章目录 1. 概念介绍2. 思路与方法2.1 实现思路2.2 实现方法 3. 示例代码4. 内容总结 我们在上一章回中介绍了"模拟对话窗口的页面"相关的内容,本章回中将介绍如何创建一个可以输入内容的对话框.闲话休提,让我们一起Talk Flutter吧。 1. 概念…...
freesurfer-reconall后批量提取TIV(颅内总体积)
#提取TIV #singleline=$(grep Estimated Total Intracranial Volume /usr/local/freesurfer/subjects/bect-3d+bold-wangjingchen-4.9y-2/stats/aseg.sta...
【GO】如何用 Golang 的 os/exec 执行 pipe 替换文件
背景 主要记录一下怎么用 Golang 的 os/exec 去执行一个 cmd 的 pipeline,就是拿 cmdA 的输出作为 cmdB 的输入,这里记录了两种方法去替换文件里面的字符串。 pipe 那个逻辑在 demo1 里。 另外一种是直接读文件做替换,一不小心两个都放进来了…...
基于Spring-boot-websocket的聊天应用开发总结
目录 1.概述 1.1 Websocket 1.2 STOMP 1.3 源码 2.Springboot集成WS 2.1 添加依赖 2.2 ws配置 2.2.1 WebSocketMessageBrokerConfigurer 2.2.2 ChatController 2.2.3 ChatInRoomController 2.2.4 ChatToUserController 2.3 前端聊天配置 2.3.1 index.html和main.j…...
2023年度总结 - 职业生涯第一个十年
2023年只剩下最后一周,又到了一年一度该做年末总结的时候了。 回想起去年,还有人专门建立了一个关于年度总结文章汇总的仓库。读了很多篇别人写的,给了我很多的触动和感想。这里的每篇文章都是关于某个人这一整年的生活和工作的轨迹啊。即使你…...
setup 语法糖
只有vue3.2以上版本可以使用 优点: 更少的样板内容,更简洁的代码 能够使用纯 Typescript 声明props 和抛出事件 更好的运行时性能 更好的IDE类型推断性能 在sciprt标识上加上setup 顶层绑定都可以使用 不需要return ,可以直接使用 使用组件…...
Javaweb之Mybatis的基础操作的详细解析
1. Mybatis基础操作 学习完mybatis入门后,我们继续学习mybatis基础操作。 1.1 需求 需求说明 通过分析以上的页面原型和需求,我们确定了功能列表: 查询 根据主键ID查询 条件查询 新增 更新 删除 根据主键ID删除 根据主键ID批量删除 …...
知名开发者社区Stack Overflow发布《2023 年开发者调查报告》
Stack Overflow成立于2008年,最知名的是它的公共问答平台,每月有超过 1 亿人访问该平台来提问、学习和分享技术知识。是世界上最受欢迎的开发者社区之一。每年都会发布一份关于开发者的调查报告,来了解不断变化的开发人员现状、正在兴起或衰落…...
vue element plus Form 表单
表单包含 输入框, 单选框, 下拉选择, 多选框 等用户输入的组件。 使用表单,您可以收集、验证和提交数据。 TIP Form 组件已经从 2. x 的 Float 布局升级为 Flex 布局。 典型表单# 最基础的表单包括各种输入表单项,比如input、select、radio、checkbo…...
zmq_connect和zmq_poll
文章内容: 介绍函数zmq_connect和zmq_poll的使用 zmq_connect zmq_connect函数是ZeroMQ库中的一个函数,用于在C语言中创建一个与指定地址的ZeroMQ套接字的连接。该函数的原型如下: int zmq_connect(void *socket, const char *endpoint);其…...
TinyLog iOS v3.0接入文档
1.背景 为在线教育部提供高效、安全、易用的日志组件。 2.功能介绍 2.1 日志格式化 目前输出的日志格式如下: 日志级别/[YYYY-MM-DD HH:MM:SS MS] TinyLog-Tag: |线程| 代码文件名:行数|函数名|日志输出内容触发flush到文件的时机: 每15分钟定时触发…...
react-native 配置@符号绝对路径配置和绝对路径没有提示的问题
这里需要用到vscode的包 yarn add babel-plugin-module-resolver 找到根目录里的babel.config.js 在页面添加plugins配置 直接替换 module.exports {presets: [module:metro-react-native-babel-preset],plugins: [[module-resolver,{root: [./src],alias: {/utils: ./src/…...
element的Table表格组件树形数据与懒加载简单使用
目录 1. 代码实现2. 效果图3. 解决新增、删除、修改之后树节点不刷新问题。([参考文章](https://blog.csdn.net/weixin_41549971/article/details/135504471)) 1. 代码实现 <template><div><!-- lazy 是否懒加载子节点数据 --><!-…...
游戏、设计选什么内存条?光威龙武系列DDR5量大管饱
如果你是一位PC玩家或者创作者,日常工作娱乐中,确实少不了大容量高频内存的支持,这样可以获得更高的工作效率,光威龙武系列DDR5内存条无疑是理想之选。它可以为计算机提供强劲的性能表现和稳定的运行体验,让我们畅玩游…...
linux磁盘清理_docker/overlay2爆满
问题:无意间发现linux服务器登陆有问题,使用df命令发现目录满了。 1. 确定哪里占用了大量内存。 cd / du -sh * | sort -rh经过一段时间后,显示如下: // 474G home // 230G var // 40G usr // 10G snap // --- 根据实际情…...
Redis过期清理策略和内存淘汰机制
目录 Redis过期清理策略Redis内存淘汰机制 Redis过期清理策略 Redis 通过设置键的过期时间来实现自动删除过期键。当键的过期时间到达时,Redis 会自动将该键删除。Redis 过期清理策略主要有以下两种: 惰性删除:Redis 在获取键时会检查键是否…...
2_并发编程同步锁(synchronized)
并发编程带来的安全性同步锁(synchronized) 1.他的背景 当多个线程同时访问,公共共享资源的时候,这时候就会出现线程安全,代码如: public class AtomicDemo {int i0;//排他锁、互斥锁public void incr(){ //synchronizedi; …...
Python 常用模块pickle
Python 常用模块pickle pickle序列化模块 【一】定义 序列化:将数据结构或对象转换为可存储或传输的格式反序列化:将序列化后的数据恢复为开始的数据结构或者对象 【二】目的 数据持久化存储远程通信缓存进程间通信 【三】序列化 将对象转换为字节…...
CentOS 6 制作openssh 9.6 p1 rpm包(含ssh-copy-id、openssl) —— 筑梦之路
openssh 9.6 需要openssl 1.1.1 以上版本,因此需要先安装openssl 1.1.1,可阅读这篇升级更新openssl版本到1.1.1w CentOS 6 制作openssl 1.1.1w rpm包 —— 筑梦之路-CSDN博客 CentOS 6很久都停止更新和支持,关于此版本的写的不多ÿ…...
Tomcat Notes: Deployment File
This is a personal study notes of Apache Tomcat. Below are main reference material. - YouTube Apache Tomcat Full Tutorial,owed by Alpha Brains Courses. https://www.youtube.com/watch?vrElJIPRw5iM&t801s 1、Tomcat deployment1.1、Two modes of …...
某邦通信股份有限公司IP网络对讲广播系统挖矿检测脚本
目录 1.漏洞概述 2.影响版本 3.危害等级 4.挖矿程序检测 5.Nuclei自动化检测...
uniapp点击跳转传对象
目录 传对象传对象传送组件接受组件 最后 传对象 传对象 传送组件 点击传给组件 <view class"dki-tit-edit" click"gotificatedit(item)">编辑 </view>gotificatedit(item){console.log(item,item);let options JSON.stringify(item);uni.…...
手机网站如何建站/营销计划怎么写
汇智网 H Solidity 官方文档中文版导读以太坊是什么?以太坊是一个全新开放的区块链平台,它允许任何人在平台中建立和使用通过区块链技术运行的去中心化应用。就像比特币一样,以太坊丌受任何人控制,也丌归任何人所有——它是一个开…...
爱站网挖掘工具/治疗腰椎间盘突出的特效药
git基础介绍 这是git操作的基础篇,是以前的写的操作文档,就没有进行手打,直接把图片贴进来了,你们担待哈,有不正确的地方可以指正出来,我将在第一时间去修改,多谢哈! 一、文件状态&a…...
去掉wordpress页面的分类归档/页面优化
2019独角兽企业重金招聘Python工程师标准>>> 转载于:https://my.oschina.net/suotree/blog/28029...
建网站平台哪家好/杭州百度首页优化
类加载阶段 1. 加载 加载: 是指将编辑器编译后的java文件加载到jvm中,其中加载又分为几个阶段。 ClassLoader 通过全路径的形式通过 双亲委派机制 加载class文件二进制字节流到内存里面. 二进制字节流转换为虚拟机需要的格式存储在方法区之中。 在内存中共生成一个代表这个…...
涪陵网站制作/兰州seo公司
上一篇博文介绍了MDP问题以及对应的价值迭代和策略迭代两种解法,本文我们将手把手使用python 实现在4*3格网对value iteration algorithm 进行实现。首先回顾value iteration算法,如下图所示: 其中输入中最重要的就是构造 p(s|s, a)ÿ…...
宁夏网站建设/软件开发
打开浏览器,输入 http://localhost:8080/ (浏览器必须支持webgl,推荐使用chrome) 有两个链接非常重要 Documentation 里面是Cesium的完整的API说明,里面可以找到: 某一个模块的所有函数,属性部分效果截图部分函数&…...