【Python】torch中的.detach()函数详解和示例
在PyTorch中,.detach()是一个用于张量的方法,主要用于创建该张量的一个“离断”版本。这个方法在很多情况下都非常有用,例如在缓存释放、模型评估和简化计算图等场景中。
.detach()方法用于从计算图中分离一个张量,这意味着它创建了一个新的张量,与原始张量共享数据,但不再参与任何计算图。这意味着这个新的张量不依赖于过去的计算值。
下面是.detach()函数的优点:
**缓存释放:**当你已经完成对某个中间结果的依赖计算,并且不打算在未来再次使用它时,你可以选择使用.detach()来释放与该结果相关的缓存。这样可以避免不必要的内存占用,提高内存使用效率。
**模型评估:**在模型评估过程中,你通常不关心模型参数的梯度。使用.detach()可以帮助你确保在计算过程中不累积梯度,从而在评估时得到更准确的结果。这对于模型验证和测试非常有用。
**简化计算图:**有时,你可能只对某些中间张量的值感兴趣,而不是整个计算图的完整历史。在这种情况下,.detach()可以帮助你创建一个不包含历史计算的新张量。这可以简化计算过程并提高计算效率。
需要注意的是,.detach()方法不会影响原始张量或其梯度属性。它只是创建了一个新的、与原始张量共享数据但无计算历史的张量。
示例:
import torch# 创建一个简单的计算图
x = torch.tensor([1.0, 2.0, 3.0])
y = x * 2
z = y + 1# 使用detach方法从计算图中移除z
z_detached = z.detach()# 现在z_detached不再参与任何计算图,但其值与z相同
print(z_detached) # 输出: tensor([3., 5., 7.])
输出:
tensor([3., 5., 7.])
在这个例子中,z_detached不再与原始的计算图关联,但它的值仍然是[3., 5., 7.]。
相关文章:
【Python】torch中的.detach()函数详解和示例
在PyTorch中,.detach()是一个用于张量的方法,主要用于创建该张量的一个“离断”版本。这个方法在很多情况下都非常有用,例如在缓存释放、模型评估和简化计算图等场景中。 .detach()方法用于从计算图中分离一个张量,这意味着它创建…...
二级域名分发系统源码 对接易支付php源码 全开源
全面开源的易支付PHP源码分享:实现二级域名分发对接 首先,在epay的config.php文件中修改您的支付域名。 随后,在二级域名分发网站上做相应修改。 伪静态 location / { try_files $uri $uri/ /index.php?$query_string; } 源码下载&#…...
二分查找与搜索树的高频问题(算法村第九关白银挑战)
基于二分查找的拓展问题 山峰数组的封顶索引 852. 山脉数组的峰顶索引 - 力扣(LeetCode) 给你由整数组成的山脉数组 arr ,返回满足 arr[0] < arr[1] < ... arr[i - 1] < arr[i] > arr[i 1] > ... > arr[arr.length - 1…...
Python爬虫快速入门
Python 爬虫Sutdy 1.基本类库 request(请求) 引入 from urllib import request定义url路径 url"http://www.baidu.com"进行请求,返回一个响应对象response responserequest.urlopen(url)读取响应体read()以字节形式打印网页源码 response.read()转码 编码 文本–by…...
部署MinIO
一、安装部署MINIO 1.1 下载 wget https://dl.min.io/server/minio/release/linux-arm64/minio chmod x minio mv minio /usr/local/bin/ # 控制台启动可参考如下命令, 守护进程启动请看下一个代码块 # ./minio server /data /data --console-address ":9001"1.2 配…...
RK3566环境搭建
环境:vmware16,ubuntu 18.04 安装依赖库: sudo apt-get install repo git ssh make gcc libssl-dev liblz4-tool expect g patchelf chrpath gawk texinfo chrpath diffstat binfmt-support qemu-user-static live-build bison flex fakero…...
精确掌控并发:滑动时间窗口算法在分布式环境下并发流量控制的设计与实现
这是《百图解码支付系统设计与实现》专栏系列文章中的第(15)篇,也是流量控制系列的第(2)篇。点击上方关注,深入了解支付系统的方方面面。 上一篇介绍了固定时间窗口算法在支付渠道限流的应用以及使用redis…...
Python展示 RGB立方体的二维切面视图
代码实现 import numpy as np import matplotlib.pyplot as plt# 生成 24-bit 全彩 RGB 立方体 def generate_rgb_cube():# 初始化一个 256x256x256 的三维数组rgb_cube np.zeros((256, 256, 256, 3), dtypenp.uint8)# 填充立方体for r in range(256):for g in range(256):fo…...
03 顺序表
目录 线性表顺序表练习 线性表(Linear list)是n个具有相同特性的数据元素的有限序列。线性表是一种在实际中广泛使用的数据结构,常见的线性表:顺序表、链表、栈、队列、字符串。。。 线性表在逻辑上时线性结构,是连续的一条直线。但在物理结…...
2023年全球软件开发大会(QCon北京站2023)9月:核心内容与学习收获(附大会核心PPT下载)
随着科技的飞速发展,全球软件开发大会(QCon)作为行业领先的技术盛会,为世界各地的专业人士提供了交流与学习的平台。本次大会汇集了全球的软件开发者、架构师、项目经理等,共同探讨软件开发的最新趋势、技术与实践。本…...
ChatGPT 和 文心一言 的优缺点及需求和使用场景
ChatGPT和文心一言是两种不同的自然语言生成模型,它们有各自的优点和缺点。 ChatGPT(Generative Pre-trained Transformer)是由OpenAI开发的生成式AI模型,它在庞大的文本数据集上进行了预训练,并可以根据输入生成具有上…...
架构师之超时未支付的订单进行取消操作的几种解决方案
今天给大家上一盘硬菜,并且是支付中非常重要的一个技术解决方案,有这块业务的同学注意自己尝试一把哈! 一、需求如下: 生成订单30分钟未支付,自动取消 生成订单60秒后,给用户发短信 对上述的需求,我们给…...
【容器固化】 OS技术之OpenStack容器固化的实现原理及操作
1. Docker简介 要学习容器固化,那么必须要先了解下Docker容器技术。Docker是基于GO语言实现的云开源项目,通过对应用软件的封装、分发、部署、运行等生命周期的管理,达到应用组件级别的“一次封装,到处运行”。这里的应用软件&am…...
设置 SSH 通过密钥登录
我们一般使用 PuTTY 等 SSH 客户端来远程管理 Linux 服务器。但是,一般的密码方式登录,容易有密码被暴力破解的问题。所以,一般我们会将 SSH 的端口设置为默认的 22 以外的端口,或者禁用 root 账户登录。其实,有一个更…...
1.6 面试经典150题 - 买卖股票的最佳时机
买卖股票的最佳时机 给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。 你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。 返回你可以从这笔交易…...
locust快速入门--使用分布式提高测试压力
背景: 使用默认的locust启动命令进行压测时,尽管已经将用户数设置大比较大(400),但是压测的时候RPS一直在100左右。需要增加压测的压力。 问题原因: 如果你是通过命令行启动的或者参考之前文章的启动方式…...
K8s(三)Pod资源——pod亲和性与反亲和性,pod重启策略
目录 pod亲和性与反亲和性 pod亲和性 pod反亲和性 pod状态与重启策略 pod状态 pod重启策略 本文主要介绍了pod资源与pod相关的亲和性,以及pod的重启策略 pod亲和性与反亲和性 pod亲和性(podAffinity)有两种 1.podaffinity,…...
免费的域名要不要?
前言 eu.org的免费域名相比于其他免费域名注册服务,eu.org的域名后缀更加独特。同时,eu.org的域名注册也比较简单,只需要填写一些基本信息,就可以获得自己的免费域名。 博客地址 免费的域名要不要?-雪饼前言 eu.org…...
高通sm7250与765G芯片是什么关系?(一百八十一)
简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 优质专栏:多媒…...
[Python进阶] Python操作MySQL数据库:pymysql
7.7 操作MySQL数据库:pymysql 7.7.1 准备工作(创建mysql数据库) PHPStudy介绍: phpstudy是一款非常有用的PHP开发工具,旨在帮助开发者更加便捷地进行PHP程序的开发与调试。它提供了一个友好的图形用户界面,使得用户能够方便地进…...
Vim 调用外部命令学习笔记
Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...
AI Agent与Agentic AI:原理、应用、挑战与未来展望
文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例:使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例:使用OpenAI GPT-3进…...
Cesium1.95中高性能加载1500个点
一、基本方式: 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...
Golang dig框架与GraphQL的完美结合
将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用,可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器,能够帮助开发者更好地管理复杂的依赖关系,而 GraphQL 则是一种用于 API 的查询语言,能够提…...
家政维修平台实战20:权限设计
目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系,主要是分成几个表,用户表我们是记录用户的基础信息,包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题,不同的角色…...
Vue2 第一节_Vue2上手_插值表达式{{}}_访问数据和修改数据_Vue开发者工具
文章目录 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染2. 插值表达式{{}}3. 访问数据和修改数据4. vue响应式5. Vue开发者工具--方便调试 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染 准备容器引包创建Vue实例 new Vue()指定配置项 ->渲染数据 准备一个容器,例如: …...
cf2117E
原题链接:https://codeforces.com/contest/2117/problem/E 题目背景: 给定两个数组a,b,可以执行多次以下操作:选择 i (1 < i < n - 1),并设置 或,也可以在执行上述操作前执行一次删除任意 和 。求…...
ElasticSearch搜索引擎之倒排索引及其底层算法
文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...
力扣-35.搜索插入位置
题目描述 给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 class Solution {public int searchInsert(int[] nums, …...
算法岗面试经验分享-大模型篇
文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer (1)资源 论文&a…...
