第01章_数据库概述
第01章_数据库概述
讲师:尚硅谷-宋红康(江湖人称:康师傅)
官网:http://www.atguigu.com
1. 为什么要使用数据库
- 持久化(persistence):把数据保存到可掉电式存储设备中以供之后使用。大多数情况下,特别是企业级应用,数据持久化意味着将内存中的数据保存到硬盘上加以”固化”,而持久化的实现过程大多通过各种关系数据库来完成。
- 持久化的主要作用是将内存中的数据存储在关系型数据库中,当然也可以存储在磁盘文件、XML数据文件中。
生活中的例子:
2. 数据库与数据库管理系统
2.1 数据库的相关概念
DB:数据库(Database) |
---|
即存储数据的“仓库”,其本质是一个文件系统。它保存了一系列有组织的数据。 |
DBMS:数据库管理系统(Database Management System) |
是一种操纵和管理数据库的大型软件,用于建立、使用和维护数据库,对数据库进行统一管理和控制。用户通过数据库管理系统访问数据库中表内的数据。 |
SQL:结构化查询语言(Structured Query Language) |
专门用来与数据库通信的语言。 |
2.2 数据库与数据库管理系统的关系
数据库管理系统(DBMS)可以管理多个数据库,一般开发人员会针对每一个应用创建一个数据库。为保存应用中实体的数据,一般会在数据库创建多个表,以保存程序中实体用户的数据。
数据库管理系统、数据库和表的关系如图所示:
2.3 常见的数据库管理系统排名(DBMS)
目前互联网上常见的数据库管理软件有Oracle、MySQL、MS SQL Server、DB2、PostgreSQL、Access、Sybase、Informix这几种。以下是2021年DB-Engines Ranking 对各数据库受欢迎程度进行调查后的统计结果:(查看数据库最新排名:https://db-engines.com/en/ranking)
。。。
对应的走势图:(https://db-engines.com/en/ranking_trend)
2.4 常见的数据库介绍
Oracle
1979 年,Oracle 2 诞生,它是第一个商用的 RDBMS(关系型数据库管理系统)。随着 Oracle 软件的名气越来越大,公司也改名叫 Oracle 公司。
2007年,总计85亿美金收购BEA Systems。
2009年,总计74亿美金收购SUN。此前的2008年,SUN以10亿美金收购MySQL。意味着Oracle 同时拥有了 MySQL 的管理权,至此 Oracle 在数据库领域中成为绝对的领导者。
2013年,甲骨文超越IBM,成为继Microsoft后全球第二大软件公司。
如今 Oracle 的年收入达到了 400 亿美金,足以证明商用(收费)数据库软件的价值。
SQL Server
SQL Server 是微软开发的大型商业数据库,诞生于 1989 年。C#、.net等语言常使用,与WinNT完全集成,也可以很好地与Microsoft BackOffice产品集成。
DB2
IBM公司的数据库产品,收费的。常应用在银行系统中。
PostgreSQL
PostgreSQL 的稳定性极强,最符合SQL标准,开放源码,具备商业级DBMS质量。PG对数据量大的文本以及SQL处理较快。
SyBase
已经淡出历史舞台。提供了一个非常专业数据建模的工具PowerDesigner。
SQLite
嵌入式的小型数据库,应用在手机端。 零配置,SQlite3不用安装,不用配置,不用启动,关闭或者配置数据库实例。当系统崩溃后不用做任何恢复操作,再下次使用数据库的时候自动恢复。
informix
IBM公司出品,取自Information 和Unix的结合,它是第一个被移植到Linux上的商业数据库产品。仅运行于unix/linux平台,命令行操作。 性能较高,支持集群,适应于安全性要求极高的系统,尤其是银行,证券系统的应用。
3. MySQL介绍
3.1 概述
- MySQL是一个
开放源代码的关系型数据库管理系统
,由瑞典MySQL AB(创始人Michael Widenius)公司1995年开发,迅速成为开源数据库的 No.1。 - 2008被
Sun
收购(10亿美金),2009年Sun被Oracle
收购。MariaDB
应运而生。(MySQL 的创造者担心 MySQL 有闭源的风险,因此创建了 MySQL 的分支项目 MariaDB) - MySQL6.x 版本之后分为
社区版
和商业版
。 - MySQL是一种关联数据库管理系统,将数据保存在不同的表中,而不是将所有数据放在一个大仓库内,这样就增加了速度并提高了灵活性。
- MySQL是开源的,所以你不需要支付额外的费用。
- MySQL是可以定制的,采用了
GPL(GNU General Public License)
协议,你可以修改源码来开发自己的MySQL系统。 - MySQL支持大型的数据库。可以处理拥有上千万条记录的大型数据库。
- MySQL支持大型数据库,支持5000万条记录的数据仓库,32位系统表文件最大可支持
4GB
,64位系统支持最大的表文件为8TB
。 - MySQL使用
标准的SQL数据语言
形式。 - MySQL可以允许运行于多个系统上,并且支持多种语言。这些编程语言包括C、C++、Python、Java、Perl、PHP和Ruby等。
3.2 MySQL发展史重大事件
MySQL的历史就是整个互联网的发展史。互联网业务从社交领域、电商领域到金融领域的发展,推动着应用对数据库的需求提升,对传统的数据库服务能力提出了挑战。高并发、高性能、高可用、轻资源、易维护、易扩展的需求,促进了MySQL的长足发展。
3.3 关于MySQL 8.0
MySQL从5.7版本直接跳跃发布了8.0版本
,可见这是一个令人兴奋的里程碑版本。MySQL 8版本在功能上做了显著的改进与增强,开发者对MySQL的源代码进行了重构,最突出的一点是多MySQL Optimizer优化器进行了改进。不仅在速度上得到了改善,还为用户带来了更好的性能和更棒的体验。
3.4 Why choose MySQL?
为什么如此多的厂商要选用MySQL?大概总结的原因主要有以下几点:
-
开放源代码,使用成本低。
-
性能卓越,服务稳定。
-
软件体积小,使用简单,并且易于维护。
-
历史悠久,社区用户非常活跃,遇到问题可以寻求帮助。
-
许多互联网公司在用,经过了时间的验证。
3.5 Oracle vs MySQL
Oracle 更适合大型跨国企业的使用,因为他们对费用不敏感,但是对性能要求以及安全性有更高的要求。
MySQL 由于其体积小、速度快、总体拥有成本低,可处理上千万条记录的大型数据库,尤其是开放源码这一特点,使得很多互联网公司、中小型网站选择了MySQL作为网站数据库(Facebook,Twitter,YouTube,阿里巴巴/蚂蚁金服,去哪儿,美团外卖,腾讯)。
4. RDBMS 与 非RDBMS
从排名中我们能看出来,关系型数据库绝对是 DBMS 的主流,其中使用最多的 DBMS 分别是 Oracle、MySQL 和 SQL Server。这些都是关系型数据库(RDBMS)。
4.1 关系型数据库(RDBMS)
4.1.1 实质
-
这种类型的数据库是
最古老
的数据库类型,关系型数据库模型是把复杂的数据结构归结为简单的二元关系
(即二维表格形式)。 -
关系型数据库以
行(row)
和列(column)
的形式存储数据,以便于用户理解。这一系列的行和列被称为表(table)
,一组表组成了一个库(database)。 -
表与表之间的数据记录有关系(relationship)。现实世界中的各种实体以及实体之间的各种联系均用
关系模型
来表示。关系型数据库,就是建立在关系模型
基础上的数据库。 -
SQL 就是关系型数据库的查询语言。
4.1.2 优势
- 复杂查询
可以用SQL语句方便的在一个表以及多个表之间做非常复杂的数据查询。 - 事务支持
使得对于安全性能很高的数据访问要求得以实现。
4.2 非关系型数据库(非RDBMS)
4.2.1 介绍
非关系型数据库,可看成传统关系型数据库的功能阉割版本
,基于键值对存储数据,不需要经过SQL层的解析,性能非常高
。同时,通过减少不常用的功能,进一步提高性能。
目前基本上大部分主流的非关系型数据库都是免费的。
4.2.2 有哪些非关系型数据库
相比于 SQL,NoSQL 泛指非关系型数据库,包括了榜单上的键值型数据库、文档型数据库、搜索引擎和列存储等,除此以外还包括图形数据库。也只有用 NoSQL 一词才能将这些技术囊括进来。
键值型数据库
键值型数据库通过 Key-Value 键值的方式来存储数据,其中 Key 和 Value 可以是简单的对象,也可以是复杂的对象。Key 作为唯一的标识符,优点是查找速度快,在这方面明显优于关系型数据库,缺点是无法像关系型数据库一样使用条件过滤(比如 WHERE),如果你不知道去哪里找数据,就要遍历所有的键,这就会消耗大量的计算。
键值型数据库典型的使用场景是作为内存缓存
。Redis
是最流行的键值型数据库。
文档型数据库
此类数据库可存放并获取文档,可以是XML、JSON等格式。在数据库中文档作为处理信息的基本单位,一个文档就相当于一条记录。文档数据库所存放的文档,就相当于键值数据库所存放的“值”。MongoDB 是最流行的文档型数据库。此外,还有CouchDB等。
搜索引擎数据库
虽然关系型数据库采用了索引提升检索效率,但是针对全文索引效率却较低。搜索引擎数据库是应用在搜索引擎领域的数据存储形式,由于搜索引擎会爬取大量的数据,并以特定的格式进行存储,这样在检索的时候才能保证性能最优。核心原理是“倒排索引”。
典型产品:Solr、Elasticsearch、Splunk 等。
列式数据库
列式数据库是相对于行式存储的数据库,Oracle、MySQL、SQL Server 等数据库都是采用的行式存储(Row-based),而列式数据库是将数据按照列存储到数据库中,这样做的好处是可以大量降低系统的 I/O,适合于分布式文件系统,不足在于功能相对有限。典型产品:HBase等。
图形数据库
图形数据库,利用了图这种数据结构存储了实体(对象)之间的关系。图形数据库最典型的例子就是社交网络中人与人的关系,数据模型主要是以节点和边(关系)来实现,特点在于能高效地解决复杂的关系问题。
图形数据库顾名思义,就是一种存储图形关系的数据库。它利用了图这种数据结构存储了实体(对象)之间的关系。关系型数据用于存储明确关系的数据,但对于复杂关系的数据存储却有些力不从心。如社交网络中人物之间的关系,如果用关系型数据库则非常复杂,用图形数据库将非常简单。典型产品:Neo4J、InfoGrid等。
4.2.3 NoSQL的演变
由于 SQL 一直称霸 DBMS,因此许多人在思考是否有一种数据库技术能远离 SQL,于是 NoSQL 诞生了,但是随着发展却发现越来越离不开 SQL。到目前为止 NoSQL 阵营中的 DBMS 都会有实现类似 SQL 的功能。下面是“NoSQL”这个名词在不同时期的诠释,从这些释义的变化中可以看出 NoSQL 功能的演变
:
1970:NoSQL = We have no SQL
1980:NoSQL = Know SQL
2000:NoSQL = No SQL!
2005:NoSQL = Not only SQL
2013:NoSQL = No, SQL!
NoSQL 对 SQL 做出了很好的补充,比如实际开发中,有很多业务需求,其实并不需要完整的关系型数据库功能,非关系型数据库的功能就足够使用了。这种情况下,使用性能更高
、成本更低
的非关系型数据库当然是更明智的选择。比如:日志收集、排行榜、定时器等。
4.3 小结
NoSQL 的分类很多,即便如此,在 DBMS 排名中,还是 SQL 阵营的比重更大,影响力前 5 的 DBMS 中有 4 个是关系型数据库,而排名前 20 的 DBMS 中也有 12 个是关系型数据库。所以说,掌握 SQL 是非常有必要的。整套课程将围绕 SQL 展开。
5. 关系型数据库设计规则
-
关系型数据库的典型数据结构就是
数据表
,这些数据表的组成都是结构化的(Structured)。 -
将数据放到表中,表再放到库中。
-
一个数据库中可以有多个表,每个表都有一个名字,用来标识自己。表名具有唯一性。
-
表具有一些特性,这些特性定义了数据在表中如何存储,类似Java和Python中 “类”的设计。
5.1 表、记录、字段
-
E-R(entity-relationship,实体-联系)模型中有三个主要概念是:
实体集
、属性
、联系集
。 -
一个实体集(class)对应于数据库中的一个表(table),一个实体(instance)则对应于数据库表中的一行(row),也称为一条记录(record)。一个属性(attribute)对应于数据库表中的一列(column),也称为一个字段(field)。
ORM思想 (Object Relational Mapping)体现:
数据库中的一个表 <---> Java或Python中的一个类
表中的一条数据 <---> 类中的一个对象(或实体)
表中的一个列 <----> 类中的一个字段、属性(field)
5.2 表的关联关系
-
表与表之间的数据记录有关系(relationship)。现实世界中的各种实体以及实体之间的各种联系均用关系模型来表示。
-
四种:一对一关联、一对多关联、多对多关联、自我引用
5.2.1 一对一关联(one-to-one)
- 在实际的开发中应用不多,因为一对一可以创建成一张表。
- 举例:设计
学生表
:学号、姓名、手机号码、班级、系别、身份证号码、家庭住址、籍贯、紧急联系人、…-
拆为两个表:两个表的记录是一一对应关系。
-
基础信息表
(常用信息):学号、姓名、手机号码、班级、系别 -
档案信息表
(不常用信息):学号、身份证号码、家庭住址、籍贯、紧急联系人、…
-
- 两种建表原则:
- 外键唯一:主表的主键和从表的外键(唯一),形成主外键关系,外键唯一。
- 外键是主键:主表的主键和从表的主键,形成主外键关系。
5.2.2 一对多关系(one-to-many)
- 常见实例场景:
客户表和订单表
,分类表和商品表
,部门表和员工表
。 - 举例:
-
员工表:编号、姓名、…、所属部门
-
部门表:编号、名称、简介
-
- 一对多建表原则:在从表(多方)创建一个字段,字段作为外键指向主表(一方)的主键
5.2.3 多对多(many-to-many)
要表示多对多关系,必须创建第三个表,该表通常称为联接表
,它将多对多关系划分为两个一对多关系。将这两个表的主键都插入到第三个表中。
-
举例1:学生-课程
-
学生信息表
:一行代表一个学生的信息(学号、姓名、手机号码、班级、系别…) -
课程信息表
:一行代表一个课程的信息(课程编号、授课老师、简介…) -
选课信息表
:一个学生可以选多门课,一门课可以被多个学生选择学号 课程编号 1 1001 2 1001 1 1002
-
-
举例2:产品-订单
“订单”表和“产品”表有一种多对多的关系,这种关系是通过与“订单明细”表建立两个一对多关系来定义的。一个订单可以有多个产品,每个产品可以出现在多个订单中。
产品表
:“产品”表中的每条记录表示一个产品。订单表
:“订单”表中的每条记录表示一个订单。订单明细表
:每个产品可以与“订单”表中的多条记录对应,即出现在多个订单中。一个订单可以与“产品”表中的多条记录对应,即包含多个产品。
- 举例3:用户-角色
- 多对多关系建表原则:需要创建第三张表,中间表中至少两个字段,这两个字段分别作为外键指向各自一方的主键。
5.3.4 自我引用(Self reference)
相关文章:

第01章_数据库概述
第01章_数据库概述 讲师:尚硅谷-宋红康(江湖人称:康师傅) 官网:http://www.atguigu.com 1. 为什么要使用数据库 持久化(persistence):把数据保存到可掉电式存储设备中以供之后使用。大多数情况下&#x…...

我所理解的高通UEFI之display的流程和移植
UEFI的流程UEFI跟uboot一样在OS加载启动之前,正确的指定启动服务,并向内核传递信息,代替原先的uboot。它包含了上电、驱动实现,以及os环境的建立和应用程序(类似于fastboot)。这个os是UEFI自己独立运行独有…...

iozone -a fsync: I/O error
iozone -a fsync: I/O error iozone: interrupted exit iozone 问题表现是手机老化后重启不开机。检查不开机Log,发现/data/system/packages.xml文件有损坏,pull 离线日志,发现出问题前后的日志也不能pull,pull出来的离线日志解压…...

Element UI框架学习篇(五)
Element UI框架学习篇(五) 1 准备工作 1.1 在zlz包下创建数据传输对象类EmpDTO package com.zlz.dto;import lombok.AllArgsConstructor; import lombok.Data; import lombok.NoArgsConstructor;//根据前台来的 Data public class EmpDTO {private String name;private Stri…...

SpringBoot 全局异常处理用法及原理
SpringBoot 全局异常处理用法及原理 Springboot或springMVC项目中, 我们一般会设置一个全局异常处理, 来对异常进行兜底。 业务代码执行过程中抛出的异常, 如果业务逻辑没有主动捕获,那么异常就会一直往上抛,最后进入…...

浏览器中HTTP请求流程是如何处理的
HTTP 是一种允许浏览器向服务器获取资源的协议,是 Web 的基础,通常由浏览器发起请求,用来获取不同类型的文件,例如 HTML 文件、CSS 文件、JavaScript 文件、图片、视频等。 浏览器端发起 HTTP 请求流程: 1. 构建请求…...

【Pytorch项目实战】之语义分割:U-Net、UNet++、U2Net
文章目录博主精品专栏导航一、前言1.1、什么是图像分割?1.2、语义分割与实例分割的区别1.3、语义分割的上下文信息1.4、语义分割的网络架构二、网络 数据集2.1、经典网络的发展史(模型详解)2.2、分割数据集下载三、算法详解3.1、U-Net3.1.1、…...

七、插件机制
Interceptor MyBatis 插件模块中最核心的接口就是 Interceptor 接口,它是所有 MyBatis 插件必须要实现的接口,其核心定义如下: public interface Interceptor {// 插件实现类中需要实现的拦截逻辑Object intercept(Invocation invocation) …...

kmp算法
前缀函数 π[i]maxk0,⋯,i{k∣s[0,⋯,k−1]s[i−(k−1),⋯,i]}\pi\left[i\right] \max\limits_{k 0,\cdots, i}\left\{k|s\left[0,\cdots,k-1\right] s\left[i-\left(k-1\right) ,\cdots, i\right]\right\} π[i]k0,⋯,imax{k∣s[0,⋯,k−1]s[i−(k−1),⋯,i]} 简单来说…...

【Python】正则表达式简单教程
0x01 正则表达式概念及符号含义 掌握正则表达式,只需要记住不同符号所表示的含义,以及对目标对象模式(或规律)的正确概括。 1、基础内容 字符匹配 在正则表达式中,如果直接给出字符,就是精确匹配。\d 匹…...

SAP ABAP Odata
GetEntity和GetEntitys GetEntitys 创建Odata Project 导入结构 选择需要的字段 设定Key 勾选字段的creatable、updatable、sortable、nullable、filterable属性值。 再依上述步骤创建ZPOITEM结构和实体集 3. 创建ZPOHEADER和ZPOITEM的Association 两个实体集的关联字段&…...

Android native ASAN 排查内存泄漏
一、概述 android 对native - c/c 的调试和排查是比较难受的一件事。我看周遭做window , linux 甚至ios的调试排查起c的代码都比较方便。习惯了app开发去熟悉native是各种痛苦,最主要是排查问题上。后续有时间打算整理下native 的错误排查使用ÿ…...

Django项目开发
一.认识NoSQL 1.SQL 关系型数据库 结构化: 定义主键,无符号型数据等关联的:结构化表和表之间的关系通过外键进行关联,节省存储空间SQL查询:语法固定 SELECT id,name,age FROM tb_user WHERE id1 ACID 2.NoSQL 非关系型数据库 Re…...

Debezium系列之:深入理解Debezium Server和Debezium Server实际应用案例详解
Debezium系列之:深入理解Debezium Server和Debezium Server实际应用案例详解 一、认识Debezium Server二、下载Debezium Server三、解压Debezium Server四、查看Debezium Server目录五、Debezium Server配置六、Debezium Server启动输出样式七、源配置八、格式配置九、Transfo…...

IDE2022源码编译tomcat
因为学习需要,我需要源码编译运行tomcat对其源码进行一个简单的追踪分析。由于先前并未接触过java相关的知识,安装阻力巨大。最后请教我的开发朋友才解决了最后的问题。将其整理出来,让大家能够快速完成相关的部署。本文仅解决tomcat-8.5.46版…...

214 情人节来袭,电视剧 《点燃我温暖你》李峋同款 Python爱心表白代码,赶紧拿去用吧
大家好,我是徐公,六年大厂程序员经验,今天为大家带来的是动态心形代码,电视剧 《点燃我温暖你》同款的,大家赶紧看看,拿去向你心仪的对象表白吧,下面说一下灵感来源。 灵感来源 今天ÿ…...

数据库范式
基本概念 函数依赖 x→yx\rightarrow yx→y,当确定xxx的时候,yyy也可以确定 例: 学号→\rightarrow→姓名,当知道了学号,就知道了学生姓名 学号,课程号→\rightarrow→成绩,当知道了学号和课程号ÿ…...

CUDA中的底层驱动API
文章目录CUDA底层驱动API1. Context2. Module3. Kernel Execution4. Interoperability between Runtime and Driver APIs5. Driver Entry Point Access5.1. Introduction5.2. Driver Function Typedefs5.3. Driver Function Retrieval5.3.1. Using the driver API5.3.2. Using …...

【博客616】prometheus staleness对PromQL查询的影响
prometheus staleness对PromQL查询的影响 1、prometheus staleness 官方文档的解释: 概括: 运行查询时,将独立于实际的当前时间序列数据选择采样数据的时间戳。这主要是为了支持聚合(sum、avg 等)等情况,…...

多传感器融合定位十三-基于图优化的建图方法其二
多传感器融合定位十二-基于图优化的建图方法其二3.4 预积分方差计算3.4.1 核心思路3.4.2 连续时间下的微分方程3.4.3 离散时间下的传递方程3.5 预积分更新4. 典型方案介绍4.1 LIO-SAM介绍5. 融合编码器的优化方案5.1 整体思路介绍5.2 预积分模型设计Reference: 深蓝学院-多传感…...

linux 服务器线上问题故障排查
一 线上故障排查概述 1.1 概述 线上故障排查一般从cpu,磁盘,内存,网络这4个方面入手; 二 磁盘的排查 2.1 磁盘排查 1.使用 df -hl 命令来查看磁盘使用情况 2.从读写性能排查:iostat -d -k -x命令来进行分析 最后一列%util可以看到每块磁盘写入的程度,而rrqpm/s以及…...

Sandman:一款基于NTP协议的红队后门研究工具
关于Sandman Sandman是一款基于NTP的强大后门工具,该工具可以帮助广大研究人员在一个安全增强型网络系统中执行红队任务。 Sandman可以充当Stager使用,该工具利用了NTP(一个用于计算机时间/日期同步协议)从预定义的服务器获取并…...

【SSL/TLS】准备工作:HTTPS服务器部署:Nginx部署
HTTPS服务器部署:Nginx部署1. 准备工作2. Nginx服务器YUM部署2.1 直接安装2.2 验证3. Nginx服务器源码部署3.1 下载源码包3.2 部署过程4. Nginx基本操作4.1 nginx常用命令行4.2 nginx重要目录1. 准备工作 1. Linux版本 [rootlocalhost ~]# cat /proc/version Li…...

微搭低代码从入门到精通11-数据模型
学习微搭低代码,先学习基本操作,然后学习组件的基本使用。解决了前端的问题,我们就需要深入学习后端的功能。后端一般包括两部分,第一部分是常规的数据库的操作,包括增删改查。第二部分是业务逻辑的编写,在…...

【算法基础】前缀和与差分
😽PREFACE🎁欢迎各位→点赞👍 收藏⭐ 评论📝📢系列专栏:算法💪种一棵树最好是十年前其次是现在1.什么是前缀和前缀和指一个数组的某下标之前的所有数组元素的和(包含其自身&#x…...

LTD212次升级 | 官网社区支持PC端展示 • 官网新增证件查询应用,支持条形码扫码查询
1、新增证件查询应用,支持条形码扫码查询; 2、新增用户社区PC端功能; 01证件查询应用 1、新增证件查询应用功能 支持证件信息录入、打印功能,支持条形码扫码识别。 后台管理操作路径:官微中心 - 应用 - 证件查询 …...

【安全】nginx反向代理+负载均衡上传webshell
目录 一、负载均衡反向代理下上传webshell Ⅰ、环境搭建 ①下载蚁剑,于github获取官方版: ②下载docker&docker-compose ③结合前面启动环境 ④验证 负载均衡下webshell上传 一、负载均衡反向代理下上传webshell 什么是反向代理? 通常的代…...

线程池框架
这是之前有做的一个可以接受用户传入任意类型的任务函数和任意参数,并且能拿到任务对应返回值的一个线程池框架,可以链接成动态库,用在相关项目里面。一共实现了两版,都是支持fixed和cached模式的,半同步半异步的&…...

【TCP的拥塞控制】基于窗口的拥塞控制
TCP的拥塞窗口CWND大小和传输轮次n的关系如下所示。(本题10分) cwnd12481632333435363738394041422122232425261248N1234567891011121314151617181920212223242526 问题: (1)慢开始阶段的时间间隔?&#…...

STP协议基础
STP协议技术来源二层环路及危害二层交换机网络的冗余性与环路人为错误导致的二层环路二层环路带来的问题STP生成树协议STP概述STP基本概念桥ID根桥COSTRPC(Root Path Cost)根路径开销PORT ID端口IDBPDU桥协议数据单元STP的计算过程(1…...