形态学算法应用之连通分量提取的python实现——图像处理
原理
连通分量提取是图像处理和计算机视觉中的一项基本任务,旨在识别图像中所有连通区域,并将它们作为独立对象处理。在二值图像中,连通分量通常指的是所有连接在一起的前景像素集合。这里的“连接”可以根据四连通或八连通的邻接关系来定义。
连通分量提取的基本原理
邻接关系:
四连通:一个像素仅与其上、下、左、右四个邻域像素相连。
八连通:一个像素与其上、下、左、右以及四个对角线方向的邻域像素相连。
扫描算法:连通分量的提取通常通过扫描整个图像,对每个前景像素检查其邻域,以确定它是否属于已知的连通分量,或需要创建一个新的连通分量。这个过程可以使用两种主要技术:
基于标签的扫描:在第一次扫描过程中,为图像中的每个像素分配一个临时标签,表示其所属的连通分量。如果一个像素与一个或多个已标记的像素相连,它将被赋予相同的标签。如果相连的像素属于不同的连通分量,则需要在后续处理中合并这些分量。第二次扫描中,所有属于同一连通分量的像素将被赋予一个唯一的标签。
并查集(Union-Find)算法:这是一种有效的数据结构和算法,用于跟踪元素分组的集合。在连通分量提取的过程中,它可以用来合并相交的连通分量,并快速查找某个像素所属的连通分量。
数学形态学在连通分量提取中的应用
数学形态学提供了一组用于图像处理的工具,特别是对图像进行膨胀、腐蚀、开操作和闭操作,这些都是基于结构元素的形状操作。在连通分量提取中,可以利用膨胀和腐蚀操作来改善连通分量的识别:
腐蚀:可以用来去除小的噪声点,可能有助于分离在原始图像中紧密相连的对象。
膨胀:可以用来填补对象内的小孔,或将靠得很近的对象连接起来。
应用
连通分量提取广泛应用于图像分割、对象识别、目标跟踪和图像分类等领域。通过识别和标记图像中的独立对象,可以进一步对每个对象进行分析,如计算它们的大小、形状、位置等特性,这对于理解图像内容和进行高级图像分析至关重要。
python实现下图

提示
结果图显示了对该图提取其中一个连通分量的结果。
第一步,用阈值210对原图进行阈值操作,得到二值图像,可用函数cv2.threshold(img, 210, 1, cv2.THRESH_BINARY)实现;
第二步,指定一个连通分量的起始位置(实验中取坐标(100, 350)),构造初始阵列X_0(除了(100,350)位置置1,其余位置置0);
第三步,按照公式X_k=〖(X〗(k-1)⊕B)∩A,k=1,2,3,…更新阵列,直到X_k=X(k-1),其中B是5×5的方形结构元.最后收敛后的X_k即为上图最右显示的一个连通分量。
python代码
import cv2
import numpy as np
import matplotlib.pyplot as pltstart_position=(100,350) #(90,400)
img = cv2.imread('Fig0918.tif', 0)
_, img_bin = cv2.threshold(img, 210, 1, cv2.THRESH_BINARY)
kernel = np.ones((5, 5), dtype=np.uint8)
img_dst = np.zeros(img.shape)
img_dst[start_position] = 1
img_last = np.zeros(img.shape)while (np.sum(img_dst-img_last) != 0):img_last = img_dstimg_dst = cv2.dilate(img_last, kernel)img_dst = np.logical_and(img_dst, img_bin)img_dst = img_dst.astype(np.float)plt.subplot(1,3,1)
plt.imshow(img,cmap='gray')
plt.axis("off")
plt.title("original")plt.subplot(1,3,2)
plt.imshow(img_bin,cmap='gray')
plt.axis("off")
plt.title("binary")
plt.subplot(1, 3, 3)
plt.imshow(img_dst, cmap='gray')
plt.axis('off')
plt.title('connected_component')plt.show()
此代码是从一个指定的起点开始,通过迭代膨胀和逻辑与操作,识别和提取与该点连通的图像区域。这种方法特别适用于分析和处理具有复杂形状或结构的图像,在图像分割、目标识别等领域有着广泛的应用。
结果展示

取坐标(90, 400), 可以提取出另一根骨头。
总结
连通分量的定义:令S是一个像素子集,如果S中的全部像素之间存在一个通路(m通路或8通路),则可以说两个像素p和q在S中是连通的。对于S中的任何像素p,S中连通到该像素的像素集称为S的连通分量。
应用背景:在许多自动图像分析应用中,如何识别出图像中的不同之处,往往是从其二值图像中提取连通分量。
流程:
第一步,用阈值210对原图进行阈值操作,得到二值图像,可用函数cv2.threshold(img, 210, 1, cv2.THRESH_BINARY)实现;
第二步,指定一个连通分量的起始位置(实验中取坐标(100, 350)),构造初始阵列X_0(除了(100,350)位置置1,其余位置置0);
第三步,按照公式X_k=〖(X〗(k-1)⊕B)∩A,k=1,2,3,…更新阵列,直到X_k=X(k-1),其中B是5×5的方形结构元.最后收敛后的X_k即为上图最右显示的一个连通分量。
相关文章:
形态学算法应用之连通分量提取的python实现——图像处理
原理 连通分量提取是图像处理和计算机视觉中的一项基本任务,旨在识别图像中所有连通区域,并将它们作为独立对象处理。在二值图像中,连通分量通常指的是所有连接在一起的前景像素集合。这里的“连接”可以根据四连通或八连通的邻接关系来定义…...
Kafka系列之:Kafka集群同时设置基于时间和日志大小两种方式保存Topic的数据
Kafka系列之:Kafka集群同时设置基于时间和日志大小两种方式保存Topic的数据 一、基于日志大小二、基于时间大小三、参数设置四、设置命令一、基于日志大小 "log.retention.bytes"是Apache Kafka中的一项配置参数,用于指定每个日志段文件的最大大小。当日志段文件的…...
pytest+allure批量执行测试用例
在 Pytest 中,可以使用装饰器 `@pytest.fixture` 来定义用例级别的前置和后置操作。下面是一个示例代码,演示了如何使用 Pytest 的前置和后置操作: ```python import pytest @pytest.fixture(scope="function") def setup_function(): print("Setup fu…...
SpringBoot和SpringMVC
目录 一、springboot项目 (1)创建springboot项目 (2)目录介绍 (3)项目启动 (4)运行一个程序 (5)通过其他方式创建和运行springboot项目 二、SpringMVC…...
免费搭建幻兽帕鲁服务器,白嫖阿里云游戏服务器
阿里云幻兽帕鲁服务器免费搭建方案,先在阿里云高校计划「云工开物」活动领取学生专享300元无门槛代金券,幻兽帕鲁专用服务器4核16G配置26元1个月、149元半年,直接使用这个无门槛300元代金券抵扣即可免费搭建幻兽帕鲁服务器。阿里云服务器网al…...
[技术杂谈]如何下载vscode历史版本
网站模板: https://code.visualstudio.com/updates/v1_85 如果你想下载1.84系列可以访问https://code.visualstudio.com/updates/v1_84 然后看到: 选择对应版本下载即可,我是windows x64系统选择x64即可开始下载...
nginx slice模块的使用和源码分析
文章目录 1. 为什么需要ngx_http_slice_module2. 配置指令3. 加载模块4. 源码分析4.1 指令分析4.2 模块初始化4.3 slice模块的上下文4.2 $slice_range字段值获取4.3 http header过滤处理4.4 http body过滤处理5 测试和验证 1. 为什么需要ngx_http_slice_module 顾名思义&#…...
AI应用开发-python实现redis数据存储
AI应用开发相关目录 本专栏包括AI应用开发相关内容分享,包括不限于AI算法部署实施细节、AI应用后端分析服务相关概念及开发技巧、AI应用后端应用服务相关概念及开发技巧、AI应用前端实现路径及开发技巧 适用于具备一定算法及Python使用基础的人群 AI应用开发流程概…...
2024年Java架构篇之设计模式
2024年Java实战面试题_java 5 年 面试-CSDN博客 1、单例模式...
搭建macOS开发环境-1:准备工作
请记住: 最重要的准备工作永远是:备份数据 !!! 通过图形界面检查 Mac 的 CPU 类型: 在搭载 Apple 芯片的 Mac 电脑上,“关于本机”会显示一个标有“芯片”的项目并跟有相应芯片的名称: 通过命令行检查Mac的CPU类型 …...
【Makefile语法 02】Makefile语法基础
目录 一、Makefile概述 二、Makefile变量 三、Makefile符号 一、Makefile格式 1. 基本格式: targets : prerequisties [tab键]command target:目标文件,可以是 OjectFile,也可以是执行文件,还可以是一个标签&…...
如何写一个其他人可以使用的GitHub Action
前言 在GitHub中,你肯定会使用GitHub Actions自动部署一个项目到GitHub Page上,在这个过程中总要使用workflows工作流,并在其中使用action,在这个使用的过程中,总会好奇怎么去写一个action呢,所以ÿ…...
排序算法的时间复杂度存在下界问题
对于几种常用的排序算法,无论是归并排序、快速排序、以及更加常见的冒泡排序等,这些排序算法的时间复杂度都是大于等于O(n*lg(n))的,而这些排序算法存在一个共同的行为,那就是这些算法在对元素进行排序的时候,都会进行…...
详解洛谷P2016 战略游戏/BZOJ0495. 树的最小点覆盖之战略游戏(贪心/树形DP)
Description Bob喜欢玩电脑游戏,特别是战略游戏。但是他经常无法找到快速玩过游戏的办法。现在他有个问题。 他要建立一个古城堡,城堡中的路形成一棵树。他要在这棵树的结点上放置最少数目的士兵,使得这些士兵能了望到所有的路。 注意&…...
解决The Tomcat connector configured to listen on port 8080 failed to start
问题 启动javar报错,提示如下 Description: The Tomcat connector configured to listen on port 8080 failed to start. The port may already be in use or the connector may be misconfigured. Action: Verify the connector’s configuration, identify a…...
深度学习自然语言处理(NLP)模型BERT:从理论到Pytorch实战
文章目录 深度学习自然语言处理(NLP)模型BERT:从理论到Pytorch实战一、引言传统NLP技术概览规则和模式匹配基于统计的方法词嵌入和分布式表示循环神经网络(RNN)与长短时记忆网络(LSTM)Transform…...
C语言的循环结构
目录 前言 1.三种循环语句 1.while循环 2.for循环 2.1缺少表达式的情况 3.do while循环 2.break语句和continue语句 2.1在while循环中 2.2在for循环中 2.3在do while 循环中 3.循环的嵌套 4.go to语句 前言 C语⾔是结构化的程序设计语⾔,这⾥的结构指的是…...
C#用Array类的FindAll方法和List<T>类的Add方法按关键词在数组中检索元素并输出
目录 一、使用的方法 1. Array.FindAll(T[], Predicate) 方法 (1)定义 (2)示例 2.List类的常用方法 (1)List.Add(T) 方法 (2)List.RemoveAt(Int32) 方法 (3&…...
【前后端接口AES+RSA混合加解密详解(vue+SpringBoot)附完整源码】
前后端接口AES+RSA混合加解密详解(vue+SpringBoot) 前后端接口AES+RSA混合加解密一、AES加密原理和为什么不使用AES加密二、RSA加密原理和为什么不使用rsa加密三、AES和RSA混合加密的原理四、代码样例前端1. 请求增加加密标识2. 前端加密工具类3.前端axios请求统一封装,和返…...
React环境配置
1.安装Node.js Node.js官网:https://nodejs.org/en/ 下载之后按默认选项安装好 重启电脑即可自动完成配置 2.安装React 国内使用 npm 速度很慢,可以使用淘宝定制的 cnpm (gzip 压缩支持) 命令行工具代替默认的 npm。 ①使用 winR 输入 cmd 打开终端 ②依…...
装饰模式(Decorator Pattern)重构java邮件发奖系统实战
前言 现在我们有个如下的需求,设计一个邮件发奖的小系统, 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式(Decorator Pattern)允许向一个现有的对象添加新的功能,同时又不改变其…...
基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容
基于 UniApp + WebSocket实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...
Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)
引言:为什么 Eureka 依然是存量系统的核心? 尽管 Nacos 等新注册中心崛起,但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制,是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...
css的定位(position)详解:相对定位 绝对定位 固定定位
在 CSS 中,元素的定位通过 position 属性控制,共有 5 种定位模式:static(静态定位)、relative(相对定位)、absolute(绝对定位)、fixed(固定定位)和…...
什么是EULA和DPA
文章目录 EULA(End User License Agreement)DPA(Data Protection Agreement)一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA(End User License Agreement) 定义: EULA即…...
Rust 异步编程
Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...
UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)
UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中,UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化…...
如何在最短时间内提升打ctf(web)的水平?
刚刚刷完2遍 bugku 的 web 题,前来答题。 每个人对刷题理解是不同,有的人是看了writeup就等于刷了,有的人是收藏了writeup就等于刷了,有的人是跟着writeup做了一遍就等于刷了,还有的人是独立思考做了一遍就等于刷了。…...
智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制
在数字化浪潮席卷全球的今天,数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具,在大规模数据获取中发挥着关键作用。然而,传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时,常出现数据质…...
代理篇12|深入理解 Vite中的Proxy接口代理配置
在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...
