大模型2024规模化场景涌现,加速云计算走出第二增长曲线
导读:2024,大模型第一批规模化应用场景已出现。
如果说“百模大战”是2023年国内AI产业的关键词,那么2024年我们将正式迈进“应用为王”的新阶段。
不少业内观点认为,2024年“百模大战”将逐渐收敛甚至洗牌,而大模型在千行万业的应用将从小规模试水,逐渐走向规模化落地。
展望2024,哪些场景更有可能率先实现大模型的规模化应用?
如果将大模型的应用场景分为互联网和政企两大类,基于产业观察,「智能进化论」认为:
在互联网领域,搜索增强、多媒体内容生成(AIGC推理)、智能NPC、量化投研有望成为第一批规模化应用的场景;
在政企领域,政企AI算力调度平台、智能驾驶、销售预测、柔性制造、国产化AI大模型中心等场景走得更快,同时中小企业大模型体验版也有相当大的潜力。
透过大模型在TOP场景的落地,我们不妨追问,这些场景之间有什么共同之处吗?谁在推动大模型跨越规模化应用的奇点?
TOP场景盘点,大模型下一个杀手级应用在哪?
——大模型在互联网领域的规模化应用场景——
在互联网领域,2023年国内诞生了众多聊天机器人、文生文、文生图AI应用。其实,从搜索引擎、多媒体内容到游戏,中国领先的移动互联网生态与大模型的碰撞藏着无限可能,大模型下一个杀手级应用也许就会从中诞生。
- 搜索增强
搜索增强/检索增强生成技术(RAG)已成为当前最火热的LLM应用方案,被认为能够有效解决知识的局限性和时效性、幻觉等大模型应用的核心痛点。
此前大模型的知识来自训练数据集,而对实时性、非公开的或离线的数据是无法获取到的。搜索增强能够让大模型与实时互联网信息和垂直专业知识库连接,极大拓展了大模型的应用范围。
比如,过去搜索引擎通过关键词检索的方式返回结果,用户还需要花费大量时间精力去筛选原始网页和内容,才能找到想要的信息。通过搜索增强,大模型可以带来更精准的搜索结果,让搜索引擎变成集知识的发现、处理、分析和重新组织为一身的个人智能助理。
搜索增强同时具备检索和生成两种能力。如果将互联网信息比作一座拥有海量知识的图书馆,搜索增强融合了图书管理员和作家两种角色。图书管理员首先能够精准理解用户意图,然后快速从海量知识库中找到最相关的内容,再由作家将内容生成一个清晰易懂的答案,交付给用户。
搜索增强应用范围极广,包括搜索引擎网站、各类垂直APP内的搜索功能、千行百业的智能客服、企业内部知识库构建等等。
- 多媒体内容生成(AIGC推理)
麦肯锡数据显示,中国生成式AI市场2020~2025年复合增速将达到84% ,2025年中国市场将占全球市场规模的14%。
多媒体内容生成是普通人最有感知的AI场景,也是大模型最火热的应用领域之一。2023年,从AI孙燕姿到妙鸭相机,多个热门AI应用和现象都来自这一场景。AIGC也推动了影像、设计相关领域公司收入大涨。譬如根据2023年上半年财报,在AIGC推动下,美图公司以VIP订阅为主的影像和设计产品业务成为第一大收入,公司实现净利润同比增长320.4%。
多模态大模型提供的文生图、图生图、文生视频、文生3D、数字人生成等能力,能够快速、生成海量高质量创意内容,颠覆了内容产业的商业模式。此外,大模型结合AI增强、云渲染等技术,还能广泛应用于生成高分辨率图片和视频、噪点消除、老片修复和上色、高精度3D建模和3维重建等场景。
值得注意的是,2023年5月几名B站UP主基于开源模型推出的AI孙燕姿,通过AI歌手演绎翻唱歌曲获得了巨大关注度。这也说明大模型爆款应用,可能不一定来自大公司,也有可能来自初创企业甚至技术达人。
- 智能NPC
传统游戏中,NPC就像工具人,只能按部就班运行早已设定好的指令。如果NPC变成一个个智能体,具备不同的思想、性格和记忆,游戏世界该有多么精彩?是不是有种《西部世界》的感觉?
在大模型加持下,智能NPC能够在与玩家的交互过程中不断进化,发展出独特的游戏剧情,推动整个游戏世界的自我发展,重塑玩家体验。
目前,Ubisoft、网易等头部游戏公司已经尝试应用智能NPC。2023年,Open AI收购了一家名为Global Illumination的游戏公司,看重的正是其用ChatGPT驱动每个NPC角色的能力。
更重要的是,智能NPC让人们看到大模型+游戏产业背后更大的想象力,未来游戏中的其他元素,会不会也逐渐向AI生成的方向发展?
- 量化投研
量化投研是指金融机构通过分析大量金融和市场数据,预测市场走势与价格波动,从而提供投资策略和建议。然而金融市场瞬息万变,传统的投研工作面临信息爆炸、数据碎片化、预测准确率低、时效性差等挑战。
大模型投研工具成为金融行业提升投研效率的新解法。2023年已有多家金融科技平台推出大模型投研工具,让投研工作更高效更轻松。量化投研大模型可以通过分析市场行情、量价关系、研究报告、企业财报、舆情和热点等海量数据,为专业人士快速提供投资组合建议和风险管理策略。
——大模型在政企领域的规模化应用场景——
大模型在政企领域的热门应用场景在政企领域,那些率先实现规模化应用的场景将围绕政企客户、重点行业与中小企业展开。
比如,政企AI算力调度平台能够实现本地算力与云上算力的统一管理调度,国产化AI大模型中心为政企客户提供从芯片到平台应用全栈自主可控的基础设施。
在新能源汽车、新零售、新制造等产业,智能驾驶、销售预测、柔性制造是大模型的热门落地场景。
为降低中小企业使用大模型的资金、技术、人才门槛,中小企业大模型体验版可以让中小企业通过快速训练推理出适合自己的大模型,实现跨越式发展。
云计算,大模型走向规模化应用的必经之路
尽管上述场景分散在各行各业,但如果非要找出这些场景的共同点,它们背后都有同一个不可忽视的驱动力,那就是云计算。
观察最头部的大模型应用创新,从ChatGPT到MidJourney,不难发现一流的大模型初创公司都背靠强大的云厂商。
如今,大模型领域的竞争已经转化为“云+AI”的体系化技术竞争。尤其是当大模型步入规模化应用阶段,云计算已经成为AI大模型创新发展的土壤。换句话说,大模型在千行万业能不能用得好,关键在于云计算。
我们也是时候重新认识云计算对于AI的价值了。
首先,弹性、可靠、高效的云上算力支持
大模型是算力无底洞,此前业界曾预测OpenAI训练GPT-4可能使用了大约10000-25000张GPU,这背后离不开微软云上算力的支撑。而且,大模型不仅需要海量算力,还要求算力具备灵活、弹性、可靠、高效等特性,云计算可以给到最佳解决方案。
国内云上AI算力供给,不得不提到华为云。华为云在贵安、乌兰察布、芜湖3大AI云算力中心及30多分节点,能够为企业提供澎湃昇腾AI算力。目前,昇腾AI算力可实现千卡训练30天长稳率达到90%,训练作业故障自动恢复,非自动场景下恢复时长小于30分钟,为千行百业使用大模型提供了稳定可靠、高质量的云底座。
此外,云上AI算力的可用性也是中国AI企业面临的新挑战。面对美国商务部抛出的“云上AI算力禁令”,华为云提供了充沛的昇腾算力,大大降低了中国企业云上AI算力被卡脖子的风险。
其次,基于系统级优化能力,实现降本增效
大模型也是吞金兽。大模型要想取得突破,消耗的算力资源每3-4个月就要翻一番。不久前,马斯克称参与AI军备竞赛的企业每年需要在AI硬件上投入数十亿美元,才能保持竞争力。
云计算是解决大模型成本问题的必由之路。一方面,云计算可以通过容器或Serverless技术,能够极大提升资源的复用率,让客户无需为闲置资源付费。另一方面,近年来云计算还在不断产生大量细分领域技术创新,专门针对AI、大模型的降本增效而生。
以前面提到的搜索增强场景为例,要构建搜索大模型增强能力,需要海量数据和AI算力资源,资金和时间成本巨大。解决这些痛点必须靠云基础设施层面的系统性优化。比如,华为云SFS Turbo可以大幅提升数据加载、训练数据读取速度,而且故障备份恢复快,实现千亿大模型ckpt文件秒级保存,让企业省钱更省心。华为云ModelArts AI加速套件,通过AI训练组网、集合通信算子及训练框架优化,可实现6千卡集群并行训练性能领先业界30%。
在AIGC场景下,华为云针对该场景的算子优化,能将整体性能提升30%。在某客户案例中,将图像生成模型迁移到昇腾后,通过AIGC生成一张图片的时间从6.2秒减少到5.2秒,并且通过AI渲染加速可以提升渲染效率2-4倍,大幅降低了内容生成时间和成本。
第三、海量AI应用创新的平台
云服务商不仅是底层资源的提供者,也是创新服务的构建者。如今越来越多的云厂商在MaaS新商业模式下不断探索,将AI和大模型能力作为创新云服务对外赋能。
比如,高峰期智能NPC每天都要面临海量玩家的实时交互,这让智能NPC对实时交互的时延和推理算力弹性扩缩容要求非常高。华为云与网易伏羲进行联合创新,通过网易伏羲构AI多云平台与华为云昇腾AI云服务的适配,在算子层和框架层进行大量性能优化。满足了交互场景的秒级时延要求,让智能NPC做到“忙时不慌,闲时不废”,保障了各时段玩家的体验。
Cloud for AI,云厂商破局的新机会
AI已经成为云计算产业发展的第二增长曲线。
得益于AI技术的发展,全球云计算行业实现再次加速。Synergy Research数据显示,全球企业2023年四季度在云计算的总支出达740亿美元,环比增长56亿美元,环比增速创下历史新高。预计2023年全球云计算行业收入将达到2700亿美元。
Synergy分析师John Dinsdale表示:“云计算是一个规模很大的市场,需要付出很大努力才能获得进展,但人工智能已经做到了这点。”他认为,在AI的助力下,接下来云计算市场规模还会继续增长。
2023年,大模型与生成式AI的火爆,让一个大趋势日益明晰:未来,几乎所有应用都会接入AI/大模型能力,我们将迎来一个AI原生应用的时代。
大模型给千行万业带来了新的生产方式、交互方式、业务范式、商业模式,未来各个产业对AI的需求(包括大模型产业链、云上算力、生成式AI)一定是大规模增长,这也给云计算产业带来了新的增长点。
在这样的大趋势下,Cloud for AI不仅是云厂商的新机会,也是必答题。纵观全球头部云厂商,都在探索如何基于AI重塑云计算技术和服务体系,开辟出全新的服务场景和服务内容。
国际云厂商方面,微软是AI助力云业务腾飞的典型案例。在2024财年第二财季(截至2023年12月31日),微软智能云Azure和其他云业务实现营收同比增长30%。目前,在微软智能云的5.3万名客户中,有三分之一都是2023年新加入的。
在国内,华为云则是Cloud for AI的深度践行者。华为云提供了从昇腾AI云服务、盘古系列大模型以及一系列AI研发工具套件在内的完整AI全栈技术平台。可以预见的是,在Cloud for AI的时代,AI将成为华为云一张独特的名片。
过去,大模型高高在上,很难落地。在经过一番痛苦的摸索与实践后,人们才发现,大模型落地的解法不在大模型本身,而在Cloud for AI。当Cloud for AI已就绪,当第一批TOP场景诞生,大模型才能真正驶向规模化应用的广阔星空。
文中图片来自摄图网
END
本文为「智能进化论」原创作品。
相关文章:

大模型2024规模化场景涌现,加速云计算走出第二增长曲线
导读:2024,大模型第一批规模化应用场景已出现。 如果说“百模大战”是2023年国内AI产业的关键词,那么2024年我们将正式迈进“应用为王”的新阶段。 不少业内观点认为,2024年“百模大战”将逐渐收敛甚至洗牌,而大模型在…...

Gitlab和Jenkins集成 实现CI (三)
Gitlab和Jenkins集成 实现CI (一) Gitlab和Jenkins集成 实现CI (二) Gitlab和Jenkins集成 实现CI (三) 自动部署 配置免密ssh 进入http服务器 生成ssh密钥 ssh-keygen -t rsa进入jenkins(容器) 拷贝公钥 ssh-copy-id http服务器用户名http服务器ip #输入http服务器密码配…...

随机过程及应用学习笔记(二)随机过程的基本概念
随机过程论就是研究随时间变化的动态系统中随机现象的统计规律的一门数学学科。 目录 前言 一、随机过程的定义及分类 1、定义 2、分类 二、随机过程的分布及其数字特征 1、分布函数 2、数字特征 均值函数和方差函数 协方差函数和相关函数 3、互协方差函数与互相关函…...

【机器学习】Kmeans如何选择k值
确定 K 值是 K-means 聚类分析的一个重要步骤。不同的 K 值可能会产生不同的聚类结果,因此选择合适的 K 值非常重要。 以下是一些常见的方法来选择 K 值: 手肘法:该方法基于绘制聚类内误差平方和(SSE)与 K 值之间的关系图。随着 K 值的增加,SSE会逐渐降低,但降低幅度逐…...

LeetCode 热题 100 | 链表(下)
目录 1 148. 排序链表 2 23. 合并 K 个升序链表 3 146. LRU 缓存 3.1 解题思路 3.2 详细过程 3.3 完整代码 菜鸟做题第三周,语言是 C 1 148. 排序链表 解题思路: 遍历链表,把每个节点的 val 都存入数组中用 sort 函数对数组进…...

Ubuntu搭建计算集群
计算机硬件和技术的发展使得高性能模拟和计算在生活和工作中的作用逐渐显现出来,无论是计算化学,计算物理和当下的人工智能都离不开高性能计算。笔者工作主要围绕计算化学和物理开展,亦受限于自身知识和技术所限,文中只是浅显地尝…...

数据结构~~树(2024/2/8)
目录 树 1、定义: 2、树的基本术语: 3、树的表示 树 1、定义: 树是一种非线性的数据结构,它是由n(n>0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树&…...

【教学类-48-03】202402011“闰年”(每4年一次 2月有29日)世纪年必须整除400才是闰年)
2000-2099年之间的闰年有25次, 背景需求: 已经制作了对称年月的数字提取,和年月日相等的年份提取 【教学类-48-01】20240205对称的“年”和“月日”(如2030 0302)-CSDN博客文章浏览阅读84次。【教学类-48-01】202402…...

如何开发一个属于自己的人工智能语言大模型?
要开发一个属于自己的人工智能语言模型,你需要遵循以下步骤: 数据收集:首先你需要大量的文本数据来训练你的模型。这些数据可以来自于各种来源,例如书籍、网站、新闻文章等。你需要确保这些数据足够多样化,以便模型能学…...

【HTTP】localhost和127.0.0.1的区别是什么?
目录 localhost是什么呢? 从域名到程序 localhost和127.0.0.1的区别是什么? 域名的等级划分 多网站共用一个IP和端口 私有IP地址 IPv6 今天在网上逛的时候看到一个问题,没想到大家讨论的很热烈,就是标题中这个: …...

Edge浏览器-常用快捷键
按键组合作用Ctrl Shift I开发人员工具Ctrl E定位到 空地址栏Ctrl L定位到 地址栏Ctrl Shift B显示或隐藏 收藏夹栏Ctrl Shift O打开收藏夹(搜索)Ctrl T打开一个新标签页Ctrl W关闭当前标签页Ctrl Shift T重新打开刚才关闭的标签页Ctrl Tab切换到下一个标签页Ctrl…...

C++:Vector动态数组的copy深入理解
动态数组分配的大小默认为2的n次方1,2,4,8... 在main中创建的vertices,push需要放到Vertex中(copy),下一次copy是因为要调整vertices的大小 vertices.push_back(Vertex(1,2,3));//拷贝 第一次&a…...

【PyTorch】PyTorch中张量(Tensor)切片操作
PyTorch深度学习总结 第三章 PyTorch中张量(Tensor)切片操作 文章目录 PyTorch深度学习总结一、前言二、获取张量中的元素1、切片(行、列数)方法2、torch.where()函数3、使元素置零的操作 一、前言 上文介绍了PyTorch中改变张量(Tensor)形状的操作&…...

GeoServer 2.11.1升级解决Eclipse Jetty 的一系列安全漏洞问题
Eclipse Jetty 资源管理错误漏洞(CVE-2021-28165) Eclipse Jetty HTTP请求走私漏洞(CVE-2017-7656) Eclipse Jetty HTTP请求走私漏洞(CVE-2017-7657) Eclipse Jetty HTTP请求走私漏洞(CVE-2017-7658) Jetty 信息泄露漏洞(CVE-2017-9735) Eclipse Jetty 安全漏洞(CVE-2022-20…...

【蓝桥杯选拔赛真题34】C++最大值 第十三届蓝桥杯青少年创意编程大赛C++编程选拔赛真题解析
目录 C/C++最大值 一、题目要求 1、编程实现 2、输入输出...

STM32之USART
概述 串口通信,通用异步收发传输器(Universal Asynchronous Receiver/Transmitter ),简称UART;而USART(Universal Synchronous/Asynchronous Receiver/Transmitter)通用同步收发传输器。 USAR…...

unity 点击事件
目录 点击按钮,显示图片功能教程 第1步添加ui button,添加ui RawImage 第2步 添加脚本: 第3步,把脚本拖拽到button,点击button,设置脚本的变量, GameObject添加 Component组件 点击按钮&am…...

idea自带的HttpClient使用
1. 全局变量配置 {"local":{"baseUrl": "http://localhost:9001/"},"test": {"baseUrl": "http://localhost:9002/"} }2. 登录并将结果设置到全局变量 PostMapping("/login")public JSONObject login(H…...

vue3-应用规模化-路由和状态
客户端 vs. 服务端路由 服务端路由指的是服务器根据用户访问的 URL 路径返回不同的响应结果。当我们在一个传统的服务端渲染的 web 应用中点击一个链接时,浏览器会从服务端获得全新的 HTML,然后重新加载整个页面。 然而,在单页面应用中&…...

网络安全检查表
《网络攻击检查表》 1.应用安全漏洞 2.弱口令,默认口令 3.服务器互联网暴露 4.操作系统,中间件安全漏洞 5.研发服务器,邮件服务器等安全检查...

SSM框架,Maven的学习(下)
依赖传递和依赖冲突 依赖传递指的是当一个模块或库 A 依赖于另一个模块或库 B,而 B 又依赖于模块或库 C,那么 A 会间接依赖于 C。这种依赖传递结构可以形成一个依赖树。当我们引入一个库或框架时,构建工具(如 Maven、Gradle&…...

Vivado开发FPGA使用流程、教程 verilog(建立工程、编译文件到最终烧录的全流程)
目录 一、概述 二、工程创建 三、添加设计文件并编译 四、线上仿真 五、布局布线 六、生成比特流文件 七、烧录 一、概述 vivado开发FPGA流程分为创建工程、添加设计文件、编译、线上仿真、布局布线(添加约束文件)、生成比特流文件、烧录等步骤&a…...

C语言之动态内存管理
目录 1. 为什么要有动态内存分配2. malloc和freemallocfree 3. calloc和realloccallocrealloc 4. 常见的动态内存的错误对NULL直接的解引用操作对动态开辟空间的越界访问对非动态开辟内存使用free释放使用free释放一块动态开辟内存的一部分对同一块动态内存多次释放动态开辟内存…...

【AIGC风格prompt深度指南】掌握绘画风格关键词,实现艺术模仿的革新实践
[小提琴家]ASCII风格,点,爆炸,光,射线,计算机代码 由冰和水制成的和平标志]非常详细,寒冷,冰冻,大气,照片逼真,流动,16K 胡迪尼模拟火和水&#x…...

Qt安装配置教程windows版(包括:Qt5.8.0版本,Qt5.12,Qt5.14版本下载安装教程)(亲测可行)
目录 Qt5.8.0版本安装教程Qt5.8.0版本下载安装 Qt5.12.2版本安装教程下载安装 Qt 5.14.2安装教程下载安装和创建项目 参考视频 QT为嵌入式系统提供了大量的库和可重用组件。 WPS Office,咪咕音乐,Linux桌面环境等都是QT开发的。 Qt5.8.0版本安装教程 Q…...

SpringCloud-Ribbon实现负载均衡
在微服务架构中,负载均衡是一项关键的技术,它可以确保各个服务节点间的负载分布均匀,提高整个系统的稳定性和性能。Spring Cloud 中的 Ribbon 就是一种负载均衡的解决方案,本文将深入探讨 Ribbon 的原理和在微服务中的应用。 一、…...

Qt网络编程-TCP与UDP
网络基础 TCP与UDP基础 关于TCP与UDP的基础这里就不过多介绍了,具体可以查看对应百度百科介绍: TCP(传输控制协议)_百度百科 (baidu.com) UDP_百度百科 (baidu.com) 需要知道这两者的区别: 可靠性: TC…...

Promise 常见题目
微信搜索“好朋友乐平”关注公众号。 1. Promise 对象池 请你编写一个异步函数 promisePool ,它接收一个异步函数数组 functions 和 池限制 n。它应该返回一个 promise 对象,当所有输入函数都执行完毕后,promise 对象就执行完毕。 池限制 定…...

五大架构风格之五:仓库架构风格
仓库架构风格: 仓库风格架构(Repository Architecture Style)是一种软件架构模式,它主要用于处理系统中的持久化数据存储和检索。在这一风格中,仓库(Repository)作为应用程序与数据库或其他持久…...

探索设计模式的魅力:外观模式简化术-隐藏复杂性,提供简洁接口的设计秘密
设计模式专栏:http://t.csdnimg.cn/U54zu 目录 引言:探索简化之路 一、起源和演变 二、场景案例分析 2.1 不用模式实现:用一坨坨代码实现 2.2 问题 2.3 外观模式重构代码 定义 界面 接口 利用外观模式解决问题步骤 外观模式结构和说明 重构…...