当前位置: 首页 > news >正文

软考37-上午题-【数据库】-数据模型、数据库的三级模式和二级映像

一、考情简介

上午题:6分——6道选择题

下午题:15分——一道分析题

E-R图、关系模式:下午考试必考!!!(编制也要考!)

二、数据模型

数据模型是对现实世界数据特征的抽象。

数据模型的分类:

1、概念数据模型——E-R模型

从信息世界中抽象的数据模型。

下午题常考,上午题不怎么考

2、基本数据模型——关系模型

从计算机世界中抽象出的DBMS支持的数据模型

2-1、概念数据模型(信息模型)

 按用户的观点对数据和信息建模,更接近与人的思维,与计算机无关,主要用于数据库的设计。

这类模型中最著名的是:实体-联系模型,即,E-R模型。

2-1-1、E-R模型中的基本术语                                                                        

1、实体

客观存在并相互区别的事物,如:单位、职工、部门、项目。

2、属性

实体的特性,一个实体可以有若干属性。属性的具体取值:属性值

如:学生实体的若干属性(学号、姓名、性别、出生日期、班号)

3、码:

唯一标识实体的属性集。如:学号是学生实体的码。

4、域

属性的取值范围。如:性别域(男,女)

5、联系

实体之间的对应关系。

两个实体集之间的联系有3种类型:

(1)、1对1的联系(1:1)。如:班和班长之间的联系。

(2)、一对多的联系(1:n)。如:班和学生之间的联系。

(3)、多对多的联系(m:n)。如:课程和学生之间的联系。

如果,一个联系也具有属性,该属性也要用无向边与该联系连接起来。 

E-R图示例:

2-2、结构数据模型(数据模型)

结构数据模型,直接面向数据库的逻辑结构,任何一个DBMS都以某个结构数据模型为基础。

常见的结构数据模型:

  • 层次模型
  • 网状模型
  • 关系模型
  • 面向对象模型

2-2-1、层次模型

树形结构,有向树!!!

示例:

2-2-2、网状模型

图结构

示例:

2-2-3、关系模型

二维表格结构来表示实体和实体之间联系数据模型。关系模型是关系的描述。

示例:

2-2-4、真题

三、数据库的三级模式结构

数据库的产品很多,他们支持不同的数据模型(层次模型、网状模型、关系模型、面向对象模型),实用不同的数据库语言,建立在不同的操作系统之上。数据的存储结构也各不相同,但体系结构基本上都有相同的特征,采用:三级模式和两级映像。

3-1、三级模式 

1、概念模式

也称为:模式

对应的是:基本表(DBMS中的基本表)

是数据的逻辑结构 

 

2、外模式

也称为:用户模式、子模式

对应的是:视图

3、内模式

也称为:存储模式

对应的是:存储文件

是数据的物理结构

数据按外模式的描述,提供给用户;按内模式的描述存储在磁盘上。

概念模式提供了连接这两级模式的相对稳定的中间层,并使得两级中任意一级的改变都不受另一级影响。

真题

真题1:

真题2:

3-2、二级映像

数据库系统,在三级模式之间提供了两级映像:模式/内模式映像、外模式/模式映像。两级映像保证了数据库中的数据具有较高的逻辑独立性、物理独立性。

1、模式/内模式映像(概念模式/内模式映像)

存在于概念级和内部级之间,实现了概念模式和内模式之间的相互转换。

2、外模式/模式映像(外模式/概念模式映像)

存在于外部级和概念级之间,实现了外模式和概念模式之间的相互转换。

3、数据的独立性

数据的独立性:数据和程序独立。

数据的独立性由DBMS的二级映像功能来保证。

数据的独立性包括:

  • 数据的物理独立性
  • 数据的逻辑独立性

3-1、数据的物理独立性

当数据库的内模式(存储文件)变化时,数据的逻辑结构不变。

应用程序处理的只是数据的逻辑结构。

所以,数据的物理独立性保证:当数据的物理结构改变时,应用程序不用改变。

但是,为了保证应用程序能够正确执行,需要修改:概念模式和内模式之间的映像

用户的应用程序与数据库的物理结构是相互独立的。

3-2、数据的逻辑独立性

用户的应用程序与数据库的逻辑结构是相互独立的。

数据的逻辑结构变化后,用户程序也可以不用修改。

但是,为了保证应用程序能够正确执行,需要修改:外模式和概念模式之间的映像

真题

真题1:

真题2:

相关文章:

软考37-上午题-【数据库】-数据模型、数据库的三级模式和二级映像

一、考情简介 上午题:6分——6道选择题 下午题:15分——一道分析题 E-R图、关系模式:下午考试必考!!!(编制也要考!) 二、数据模型 数据模型是对现实世界数据特征的抽象…...

06 分频器设计

分频器简介 实现分频一般有两种方法,一种方法是直接使用 PLL 进行分频,比如在 FPGA 或者 ASIC 设计中,都可以直接使用 PLL 进行分频。但是这种分频有时候受限于 PLL 本身的特性,无法得到频率很低的时钟信号,比如输入 …...

力扣hot100题解(python版7-9题)

7、接雨水 给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。 示例 1: 输入:height [0,1,0,2,1,0,1,3,2,1,2,1] 输出:6 解释:上面是由数组 [0,1,0,2,1,0,1,…...

ECMAScript 6+ 新特性 ( 四 ) 迭代器 与 生成器

2.14.迭代器 2.14.1.for…of for...of 是 JavaScript ES6 引入的一种新的循环结构,,用于遍历可迭代对象(Iterable objects)的每个元素。 它可以自动调用目标对象的迭代器接口,并按顺序逐个访问集合中的每个值。 它…...

【MySQL】事务的一致性究竟怎么理解?

众所周知,事务有四大特性:原子性、一致性、隔离性、持久性,除了一致性,其他三类特性都很好理解。而关于一致性的解释有点让人头疼,我查了很多文章,大多类似:事务的执行必须使数据库处于一致状态…...

证件照(兼容H5,APP,小程序)

证件照由uniappuyui开发完成&#xff0c;并同时兼容H5、App、微信小程序、支付宝小程序&#xff0c;其他端暂未测试。 先看部分效果图吧具体可以下方复制链接体验demo 首页代码 <template><view class""><view class"uy-m-x-30 uy-m-b-20"…...

pytorch-textregression,中文文本回归实践,支持多值输出

pytorch-textregression&#xff0c;中文文本回归实践&#xff0c;支持多值输出 pytorch-textregression是一个以pytorch和transformers为基础&#xff0c;专注于中文文本回归的轻量级自然语言处理工具&#xff0c;支持多值回归等。 目录 数据使用方式paper参考 项目地址 py…...

go语言学而思【持续更新】

问题&#xff1a;在Go语言中nil是什么意思&#xff1f; 答&#xff1a;在Go语言中&#xff0c;nil是一个预声明的标识符&#xff0c;用于表示某些类型的零值。它可以被用作以下类型的零值&#xff1a; 指针&#xff08;Pointer&#xff09;切片&#xff08;Slice&#xff09;…...

LVS-NAT之VMNET环境搭建

目录 搭建拓扑图 搭建规划 VMNET0 搭建 VMNET2 搭建 LVS端增加网卡 搭建拓扑图: 搭建规划: CLIENT(servera): VMNET0 LVS(serverb): VMNET0 VMNET2 WEB1(serverd): VMNET2 WEB2(servere): VMNET2 VMNE…...

[TCP] TCP/IP 基础知识词典(2)

我想统计一下&#xff0c;TCP/IP 尤其是TCP协议&#xff0c;能搜到的常见的问题&#xff0c;整理起来&#xff0c;关键词添加在目录中&#xff0c;便于以后查阅。 目前预计整理共3篇&#xff1a; [TCP] TCP/IP 基础知识问答 &#xff1a;基础知识 [TCP] TCP/IP 基础知识问答&…...

【牛牛送书 | 第四期】《高效使用Redis:一书学透数据存储与高可用集群》带你快速学习使用Redis

前言&#xff1a; 当今互联网技术日新月异&#xff0c;随着数据量的爆炸式增长&#xff0c;如何高效地存储和管理数据成为了每个公司都必须面对的挑战。与此同时&#xff0c;用户对于应用程序的响应速度和稳定性要求也越来越高。在这个背景下&#xff0c;Redis 作为一个…...

Threejs 实现3D影像地图,Json地图,地图下钻

1.使用threejs实现3D影像地图效果&#xff0c;整体效果看起来还可以&#xff0c;底层抽象了基类&#xff0c;实现了通用&#xff0c;对任意省份&#xff0c;城市都可以只替换数据&#xff0c;即可轻松实现效果。 效果如下&#xff1a; 链接https://www.bilibili.com/video/BV1…...

根据Excel创建管道系统及材质

之前看过程鑫老师的文章&#xff0c;介绍过根据Excel数据创建管道系统&#xff0c;但是有小伙伴问过我&#xff0c;照着他这个做&#xff0c;没成功&#xff0c;于是呢&#xff0c;我就想试下&#xff0c;结果发现也没成功。 然后我逐个节点过了一遍&#xff0c;发现可能是因为…...

第八篇【传奇开心果系列】python的文本和语音相互转换库技术点案例示例:Google Text-to-Speech虚拟现实(VR)沉浸式体验经典案例

传奇开心果博文系列 系列博文目录python的文本和语音相互转换库技术点案例示例系列 博文目录前言一、雏形示例代码二、扩展思路介绍三、虚拟导游示例代码四、交互式学习示例代码五、虚拟角色对话示例代码六、辅助用户界面示例代码七、实时语音交互示例代码八、多语言支持示例代…...

ubuntu使用LLVM官方发布的tar.xz来安装Clang编译器

ubuntu系统上的软件相比CentOS更新还是比较快的&#xff0c;但是还是难免有一些软件更新得不那么快&#xff0c;比如LLVM Clang编译器&#xff0c;目前ubuntu 22.04版本最高还只能安装LLVM 15&#xff0c;而LLVM 18 rc版本都出来了。参见https://github.com/llvm/llvm-project/…...

Windows 远程控制 Mac 电脑怎么操作

要从 Windows 远程控制 Mac 电脑&#xff0c;您可以使用内置 macOS 功能或第三方软件解决方案。以下是一些方法&#xff1a; 一、使用内置 macOS 功能&#xff08;屏幕共享&#xff09; 1、在 macOS 上启用屏幕共享 转至系统偏好设置 > 共享&#xff1b;选中“屏幕共享”…...

c# HttpCookie操作,建立cookie工具类

HttpCookie 是一个在.NET Framework中用于管理和操作HTTP Cookie的类。它提供了一种方便的方式来创建、设置、读取和删除Cookie。 Cookie是一种在客户端和服务器之间传递数据的机制&#xff0c;用于跟踪用户的会话状态和存储用户相关的信息。它通常由服务器发送给客户端&#…...

【这个词(Sequence-to-Sequence)在深度学习中怎么解释,有什么作用?】

&#x1f680; 作者 &#xff1a;“码上有前” &#x1f680; 文章简介 &#xff1a;深度学习笔记 &#x1f680; 欢迎小伙伴们 点赞&#x1f44d;、收藏⭐、留言&#x1f4ac; Sequence-to-Sequence&#xff08;Seq2Seq&#xff09; Sequence-to-Sequence&#xff08;Seq2Seq…...

挑战30天学完Python:Day16 日期时间

&#x1f4d8; Day 16 &#x1f389; 本系列为Python基础学习&#xff0c;原稿来源于 30-Days-Of-Python 英文项目&#xff0c;大奇主要是对其本地化翻译、逐条验证和补充&#xff0c;想通过30天完成正儿八经的系统化实践。此系列适合零基础同学&#xff0c;或仅了解Python一点…...

Web3之光:揭秘数字创新的未来

随着数字化时代的深入发展&#xff0c;Web3正以其独特的技术和理念&#xff0c;为我们打开数字创新的崭新视角。作为数字化时代的新兴力量&#xff0c;Web3将深刻影响着我们的生活、工作和社会。本文将揭秘Web3的奥秘&#xff0c;探讨其在数字创新领域的前景和潜力。 1. 重新定…...

基于服务器使用 apt 安装、配置 Nginx

&#x1f9fe; 一、查看可安装的 Nginx 版本 首先&#xff0c;你可以运行以下命令查看可用版本&#xff1a; apt-cache madison nginx-core输出示例&#xff1a; nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...

React Native在HarmonyOS 5.0阅读类应用开发中的实践

一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强&#xff0c;React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 &#xff08;1&#xff09;使用React Native…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

汇编常见指令

汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX&#xff08;不访问内存&#xff09;XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...

优选算法第十二讲:队列 + 宽搜 优先级队列

优选算法第十二讲&#xff1a;队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...

DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”

目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...

rnn判断string中第一次出现a的下标

# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...

管理学院权限管理系统开发总结

文章目录 &#x1f393; 管理学院权限管理系统开发总结 - 现代化Web应用实践之路&#x1f4dd; 项目概述&#x1f3d7;️ 技术架构设计后端技术栈前端技术栈 &#x1f4a1; 核心功能特性1. 用户管理模块2. 权限管理系统3. 统计报表功能4. 用户体验优化 &#x1f5c4;️ 数据库设…...

C# 表达式和运算符(求值顺序)

求值顺序 表达式可以由许多嵌套的子表达式构成。子表达式的求值顺序可以使表达式的最终值发生 变化。 例如&#xff0c;已知表达式3*52&#xff0c;依照子表达式的求值顺序&#xff0c;有两种可能的结果&#xff0c;如图9-3所示。 如果乘法先执行&#xff0c;结果是17。如果5…...

Vue3中的computer和watch

computed的写法 在页面中 <div>{{ calcNumber }}</div>script中 写法1 常用 import { computed, ref } from vue; let price ref(100);const priceAdd () > { //函数方法 price 1price.value ; }//计算属性 let calcNumber computed(() > {return ${p…...