当前位置: 首页 > news >正文

静态网站和动态网站的区别/网络营销策划模板

静态网站和动态网站的区别,网络营销策划模板,加强党建网站建设,买了虚拟主机怎么做网站一、核函数 kernel_func.py import numpy as npdef linear():"""线性核函数:return:"""def _linear(x_i, x_j):return np.dot(x_i, x_j)return _lineardef poly(degree3, coef01.0):"""多项式核函数:param degree: 阶次:param …

一、核函数

kernel_func.py

import numpy as npdef linear():"""线性核函数:return:"""def _linear(x_i, x_j):return np.dot(x_i, x_j)return _lineardef poly(degree=3, coef0=1.0):"""多项式核函数:param degree: 阶次:param coef: 常数项:return:"""def _poly(x_i, x_j):return np.power(np.dot(x_i, x_j) + coef0, degree)return _polydef rbf(gamma=1.0):"""高斯核函数:param gamma: 超参数:return:"""def _rbf(x_i, x_j):x_i, x_j = np.asarray(x_i), np.asarray(x_j)if x_i.ndim <= 1:return np.exp(-np.dot(x_i - x_j, x_i - x_j) / (2 * gamma ** 2))else:return np.exp(-np.multiply(x_i - x_j, x_i - x_j).sum(axis=1) / (2 * gamma ** 2))return _rbf

二、SVM算法的实现

svm_smo_classifier.py

import copy
import randomimport matplotlib.pyplot as pltimport kernel_func
import numpy as npclass SVMClassifier:"""支持向量机二分类算法:硬间隔、软间隔、核函数,可做线性可分、非线性可分。SMO算法1. 训练样本的目标值限定编码为{0, 1}. SVM在fit时把0类别重编码为-1"""def __init__(self, C=1.0, gamma=1.0, degree=3, coef0=1.0, kernel=None, kkt_tol=1e-3, alpha_tol=1e-3,max_epochs=100):self.C = C  # 软间隔硬间隔的参数,硬间隔:适当增大C的值,软间隔:减少C值,允许部分样本不满足约束条件# self.gamma = gamma  # 径向基函数/高斯核函数超参数# self.degree = degree  # 多项式核函数的阶次# self.coef0 = coef0  # 多项式核函数的常数项self.kernel = kernel  # 选择的核函数if self.kernel is None or self.kernel.lower() == "linear":self.kernel_func = kernel_func.linear()  # self.kernel_func(x_i, x_j)elif self.kernel.lower() == "poly":self.kernel_func = kernel_func.poly(degree, coef0)  # self.kernel_func(x_i, x_j)elif self.kernel.lower() == "rbf":self.kernel_func = kernel_func.rbf(gamma)else:print("仅限linear、poly或rbf,值为None则默认为Linear线性核函数...")self.kernel_func = kernel_func.linear()self.alpha_tol = alpha_tol  # 支持向量容忍度self.kkt_tol = kkt_tol  # 在精度内检查self.max_epochs = max_epochsself.alpha = None  # 松弛变量self.E = None  # 误差self.w, self.b = None, None  # SVM的模型系数self.support_vectors = []  # 记录支持向量的索引self.support_vectors_alpha = []  # 支持向量所对应的松弛变量self.support_vectors_x, self.support_vectors_y = [], []  # 支持向量所对应的样本和目标self.cross_entropy_loss = []  # 优化过程中的交叉熵损失def init_params(self, x_train, y_train):"""初始化必要参数:param x_train: 训练集:param y_train: 编码后的目标集:return:"""n_samples, n_features = x_train.shapeself.w, self.b = np.zeros(n_features), 0.0  # 模型系数初始化为0值self.alpha = np.zeros(n_samples)  # 松弛变量self.E = self.decision_func(x_train) - y_train  # 初始化误差,所有样本类别取反def decision_func(self, x):"""SVM模型的预测计算,:param x: 可以是样本集,也可以是单个样本:return:"""if len(self.support_vectors) == 0:  # 当前没有支持向量if x.ndim <= 1:  # 标量或单个样本return 0else:return np.zeros(x.shape[0])  # np.zeros(x.shape[:-1])else:if x.ndim <= 1:wt_x = 0.0  # 模型w^T * x + b的第一项求和else:wt_x = np.zeros(x.shape[0])for i in range(len(self.support_vectors)):# 公式:w^T * x = sum(alpha_i * y_i * k(xi, x))wt_x += self.support_vectors_alpha[i] * self.support_vectors_y[i] * \self.kernel_func(x, self.support_vectors_x[i])return wt_x + self.bdef _meet_kkt(self, x_i, y_i, alpha_i, sample_weight_i):"""判断当前需要优化的alpha是否满足KKT条件:param x_i: 已选择的样本:param y_i: 已选择的目标:param alpha_i: 需要优化的alpha:return: bool:满足True,不满足False"""if alpha_i < self.C * sample_weight_i:return y_i * self.decision_func(x_i) >= 1 - self.kkt_tolelse:return y_i * self.decision_func(x_i) <= 1 + self.kkt_toldef _select_best_j(self, best_i):"""基于已经选择的第一个alpha_i,寻找使得|E_i - E_j|最大的best_j:param best_i: 已选择的第一个alpha_i索引:return:"""valid_j_list = [j for j in range(len(self.alpha)) if self.alpha[j] > 0 and best_i != j]if len(valid_j_list) > 0:idx = np.argmax(np.abs(self.E[best_i] - self.E[valid_j_list]))  # 在可选的j列表中查找绝对误差最大的索引best_j = valid_j_list[int(idx)]  # 最佳的jelse:idx = list(range(len(self.alpha)))  # 所有样本索引seq = idx[:best_i] + idx[best_i + 1:]  # 排除best_ibest_j = random.choice(seq)  # 随机选择return best_jdef _clip_alpha_j(self, y_i, y_j, alpha_j_unc, alpha_i_old, alpha_j_old, sample_weight_j):"""修剪第2个更新的alpha值:param y_i: 当前选择的第1个y目标值:param y_j: 当前选择的第2个y目标值:param alpha_j_unc: 当前未修剪的第2个alpha值:param alpha_i_old: 当前选择的第1个未更新前的alpha值:param alpha_j_old: 当前选择的第2个未更新前的alpha值:return:"""C = self.C * sample_weight_jif y_i == y_j:inf = max(0, alpha_i_old + alpha_j_old - C)  # Lsup = min(self.C, alpha_i_old + alpha_j_old)  # Helse:inf = max(0, alpha_j_old - alpha_i_old)  # Lsup = min(C, C + alpha_j_old - alpha_i_old)  # H# if alpha_j_unc < inf:#     alpha_j_new = inf# elif alpha_j_unc > sup:#     alpha_j_new = sup# else:#     alpha_j_new = alpha_j_uncalpha_j_new = [inf if alpha_j_unc < inf else sup if alpha_j_unc > sup else alpha_j_unc]return alpha_j_new[0]def _update_error(self, x_train, y_train, y):"""更新误差,计算交叉熵损失:param x_train: 训练样本集:param y_train: 目标集:param y: 编码后的目标集:return:"""y_predict = self.decision_func(x_train)  # 当前优化过程中的模型预测值self.E = y_predict - y  # 误差loss = -(y_train.T.dot(np.log(self.sigmoid(y_predict))) +(1 - y_train).T.dot(np.log(1 - self.sigmoid(y_predict))))self.cross_entropy_loss.append(loss / len(y))  # 平均交叉熵损失def fit(self, x_train, y_train, samples_weight=None):"""SVM的训练:SMO算法实现1. 按照启发式方法选择一对需要优化的alpha2. 对参数alpha、b、w、E等进行更新、修剪:param x_train: 训练集:param y_train: 目标集:return:"""x_train, y_train = np.asarray(x_train), np.asarray(y_train)if samples_weight is None:samples_weight = np.array([1.0] * x_train.shape[0])class_values = np.sort(np.unique(y_train))  # 类别的不同取值if class_values[0] != 0 or class_values[1] != 1:raise ValueError("仅限二分类,类别编码为{0、1}...")y = copy.deepcopy(y_train)y[y == 0] = -1  # SVM类别限定为{-1, 1}self.init_params(x_train, y)  # 参数的初始化n_samples = x_train.shape[0]  # 样本量for epoch in range(self.max_epochs):if_all_match_kkt_condition = True  # 表示所有样本都满足KKT条件# 1. 选择一对需要优化的alpha_i和alpha_jfor i in range(n_samples):  # 外层循环x_i, y_i = x_train[i, :], y[i]  # 当前选择的第1个需要优化的样本所对应的索引alpha_i_old, err_i_old = self.alpha[i], self.E[i]  # 取当前未更新的alpha和误差if not self._meet_kkt(x_i, y_i,alpha_i_old, samples_weight[i]):  # 不满足KKT条件if_all_match_kkt_condition = False  # 表示存在需要优化的变量j = self._select_best_j(i)  # 基于alpha_i选择alpha_jalpha_j_old, err_j_old = self.alpha[j], self.E[j]  # 当前第2个需要优化的alpha和误差x_j, y_j = x_train[j, :], y[j]  # 第2个需要优化的样本所对应的索引# 2. 基于已经选择的alpha_i和alpha_j,对alpha、b、E和w进行更新# 首先获取未修建的第2个需要更新的alpha值,并对其进行修建k_ii = self.kernel_func(x_i, x_i)k_jj = self.kernel_func(x_j, x_j)k_ij = self.kernel_func(x_i, x_j)eta = k_ii + k_jj - 2 * k_ijif np.abs(eta) < 1e-3:  # 避免分母过小,表示选择更新的两个样本比较接近continuealpha_j_unc = alpha_j_old - y_j * (err_j_old - err_i_old) / eta  # 未修剪的alpha_j# 修剪alpha_j使得0< alpha_j < Calpha_j_new = self._clip_alpha_j(y_i, y_j, alpha_j_unc, alpha_i_old,alpha_j_old, samples_weight[j])# 3. 通过修剪后的alpha_j_new更新alpha_ialpha_j_delta = alpha_j_new - alpha_j_oldalpha_i_new = alpha_i_old - y_i * y_j * alpha_j_deltaself.alpha[i], self.alpha[j] = alpha_i_new, alpha_j_new  # 更新回存# 4. 更新模型系数w和balpha_i_delta = alpha_i_new - alpha_i_old# w的更新仅与已更新的一对alpha有关self.w = self.w + alpha_i_delta * y_i * x_i + alpha_j_delta * y_j * x_jb_i_delta = -self.E[i] - y_i * k_ii * alpha_i_delta - y_i * k_ij * alpha_j_deltab_j_delta = -self.E[j] - y_i * k_ij * alpha_i_delta - y_i * k_jj * alpha_j_deltaif 0 < alpha_i_new < self.C * samples_weight[i]:self.b += b_i_deltaelif 0 < alpha_j_new < self.C * samples_weight[j]:self.b += b_j_deltaelse:self.b += (b_i_delta + b_j_delta) / 2# 5. 更新误差E,计算损失self._update_error(x_train, y_train, y)# 6. 更新支持向量相关信息,即重新选取self.support_vectors = np.where(self.alpha > self.alpha_tol)[0]self.support_vectors_x = x_train[self.support_vectors, :]self.support_vectors_y = y[self.support_vectors]self.support_vectors_alpha = self.alpha[self.support_vectors]if if_all_match_kkt_condition:  # 没有需要优化的alpha,则提前停机breakdef get_params(self):"""获取SVM的模型系数:return:"""return self.w, self.bdef predict_proba(self, x_test):"""预测测试样本所属类别的概率:param x_test: 测试样本集:return:"""x_test = np.asarray(x_test)y_test_hat = np.zeros((x_test.shape[0], 2))  # 存储每个样本的预测概率y_test_hat[:, 1] = self.sigmoid(self.decision_func(x_test))y_test_hat[:, 0] = 1.0 - y_test_hat[:, 1]return y_test_hatdef predict(self, x_test):"""预测测试样本的所属类别:param x_test: 测试样本集:return:"""return np.argmax(self.predict_proba(x_test), axis=1)@staticmethoddef sigmoid(x):"""sigmodi函数,为避免上溢或下溢,对参数x做限制:param x: 可能是标量数据,也可能是数组:return:"""x = np.asarray(x)  # 为避免标量值的布尔索引出错,转换为数组x[x > 30.0] = 30.0  # 避免下溢x[x < -50.0] = -50.0  # 避免上溢return 1 / (1 + np.exp(-x))def plt_loss_curve(self, is_show=True):"""可视化交叉熵损失函数:param is_show::return:"""if is_show:plt.figure(figsize=(7, 5))plt.plot(self.cross_entropy_loss, "k-", lw=1)plt.xlabel("Training Epochs", fontdict={"fontsize": 12})plt.ylabel("The Mean of Cross Entropy Loss", fontdict={"fontsize": 12})plt.title("The SVM Loss Curve of Cross Entropy")plt.grid(ls=":")if is_show:plt.show()def plt_svm(self, X, y, is_show=True, is_margin=False):"""可视化支持向量机模型:分类边界、样本、间隔、支持向量:param X::param y::param is_show::return:"""X, y = np.asarray(X), np.asarray(y)if is_show:plt.figure(figsize=(7, 5))if X.shape[1] != 2:print("Warning: 仅限于两个特征的可视化...")return# 可视化分类填充区域x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1xi, yi = np.meshgrid(np.linspace(x_min, x_max, 100), np.linspace(y_min, y_max, 100))zi = self.predict(np.c_[xi.ravel(), yi.ravel()])zi = zi.reshape(xi.shape)  # 等值线的x、y和z的维度必须一致plt.contourf(xi, yi, zi, cmap="winter", alpha=0.3)# 可视化正例、负例样本positive, negative = X[y == 1.0], X[y == 0.0]plt.plot(positive[:, 0], positive[:, 1], "*", label="Positive Samples")plt.plot(negative[:, 0], negative[:, 1], "x", label="Negative Samples")# 可视化支持向量if len(self.support_vectors) != 0:plt.scatter(self.support_vectors_x[:, 0], self.support_vectors_x[:, 1], s=80,c="none", edgecolors="k", label="Support Vectors")if is_margin and (self.kernel is None or self.kernel.lower() == "linear"):w, b = self.get_params()xi_ = np.linspace(x_min, x_max, 100)yi_ = -(w[0] * xi_ + b) / w[1]margin = 1 / w[1]plt.plot(xi_, yi_, "r-", lw=1.5, label="Decision Boundary")plt.plot(xi_, yi_ + margin, "k:", label="Maximum Margin")plt.plot(xi_, yi_ - margin, "k:")plt.title("Support Vector Machine Decision Boundary", fontdict={"fontsize": 14})plt.xlabel("X1", fontdict={"fontsize": 12})plt.xlabel("X2", fontdict={"fontsize": 12})plt.legend(frameon=False)plt.axis([x_min, x_max, y_min, y_max])if is_show:plt.show()

 三、SVM算法的测试

test_svm_classifier.py

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_classification, load_iris
from sklearn.model_selection import train_test_split
from svm_smo_classifier import SVMClassifier
from sklearn.metrics import classification_reportX, y = make_classification(n_samples=200, n_features=2, n_classes=2, n_informative=1,n_redundant=0, n_repeated=0, n_clusters_per_class=1,class_sep=1.5, random_state=42)# iris = load_iris()
# X, y = iris.data[:100, :2], iris.target[:100]X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0, shuffle=True)# C = 1000,倾向于硬间隔
svm = SVMClassifier(C=1000)
svm.fit(X_train, y_train)
y_test_pred = svm.predict(X_test)
print(classification_report(y_test, y_test_pred))plt.figure(figsize=(14, 10))
plt.subplot(221)
svm.plt_svm(X_train, y_train, is_show=False, is_margin=True)
plt.subplot(222)
svm.plt_loss_curve(is_show=False)# C = 1,倾向于软间隔
svm = SVMClassifier(C=1)
svm.fit(X_train, y_train)
y_test_pred = svm.predict(X_test)
print(classification_report(y_test, y_test_pred))plt.subplot(223)
svm.plt_svm(X_train, y_train, is_show=False, is_margin=True)
plt.subplot(224)
svm.plt_loss_curve(is_show=False)plt.tight_layout()
plt.show()

 test_svm_kernel_classifier.py 

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_classification, make_moons
from sklearn.model_selection import train_test_split
from svm_smo_classifier import SVMClassifier
from sklearn.metrics import classification_reportX, y = make_moons(n_samples=200, noise=0.1)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0, shuffle=True)svm_rbf = SVMClassifier(C=10.0, kernel="rbf", gamma=0.5)
svm_rbf.fit(X_train, y_train)
y_test_pred = svm_rbf.predict(X_test)
print(classification_report(y_test, y_test_pred))
print("=" * 60)
svm_poly = SVMClassifier(C=10.0, kernel="poly", degree=3)
svm_poly.fit(X_train, y_train)
y_test_pred = svm_poly.predict(X_test)
print(classification_report(y_test, y_test_pred))plt.figure(figsize=(14, 10))
plt.subplot(221)
svm_rbf.plt_svm(X_train, y_train, is_show=False)
plt.subplot(222)
svm_rbf.plt_loss_curve(is_show=False)plt.subplot(223)
svm_poly.plt_svm(X_train, y_train, is_show=False)
plt.subplot(224)
svm_poly.plt_loss_curve(is_show=False)plt.tight_layout()
plt.show()

 test_svm_kernel_classifier2.py 

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_classification, make_moons
from sklearn.model_selection import train_test_split
from svm_smo_classifier import SVMClassifier
from sklearn.metrics import classification_reportX, y = make_classification(n_samples=100, n_features=2, n_classes=2, n_informative=1,n_redundant=0, n_repeated=0, n_clusters_per_class=1,class_sep=0.8, random_state=21)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0, shuffle=True)svm_rbf1 = SVMClassifier(C=10.0, kernel="rbf", gamma=0.1)
svm_rbf1.fit(X_train, y_train)
y_test_pred = svm_rbf1.predict(X_test)
print(classification_report(y_test, y_test_pred))
print("=" * 60)
svm_rbf2 = SVMClassifier(C=1.0, kernel="rbf", gamma=0.5)
svm_rbf2.fit(X_train, y_train)
y_test_pred = svm_rbf2.predict(X_test)
print(classification_report(y_test, y_test_pred))
print("=" * 60)svm_poly1 = SVMClassifier(C=10.0, kernel="poly", degree=3)
svm_poly1.fit(X_train, y_train)
y_test_pred = svm_poly1.predict(X_test)
print(classification_report(y_test, y_test_pred))
svm_poly2 = SVMClassifier(C=10.0, kernel="poly", degree=6)
svm_poly2.fit(X_train, y_train)
y_test_pred = svm_poly2.predict(X_test)
print(classification_report(y_test, y_test_pred))X, y = make_classification(n_samples=100, n_features=2, n_classes=2, n_informative=1,n_redundant=0, n_repeated=0, n_clusters_per_class=1,class_sep=0.8, random_state=21)
X_train1, X_test1, y_train1, y_test1 = train_test_split(X, y, test_size=0.2, random_state=0, shuffle=True)svm_linear1 = SVMClassifier(C=10.0, kernel="linear")
svm_linear1.fit(X_train1, y_train1)
y_test_pred1 = svm_linear1.predict(X_test1)
print(classification_report(y_test1, y_test_pred1))
svm_linear2 = SVMClassifier(C=10.0, kernel="linear")
svm_linear2.fit(X_train1, y_train1)
y_test_pred = svm_linear2.predict(X_test1)
print(classification_report(y_test1, y_test_pred1))plt.figure(figsize=(21, 10))
plt.subplot(231)
svm_rbf1.plt_svm(X_train, y_train, is_show=False)
plt.subplot(232)
svm_rbf2.plt_svm(X_train, y_train, is_show=False)
plt.subplot(233)
svm_poly1.plt_svm(X_train, y_train, is_show=False)
plt.subplot(234)
svm_poly2.plt_svm(X_train, y_train, is_show=False)
plt.subplot(235)
svm_linear1.plt_svm(X_train1, y_train1, is_show=False, is_margin=True)
plt.subplot(236)
svm_linear2.plt_svm(X_train1, y_train1, is_show=False, is_margin=True)plt.tight_layout()
plt.show()

相关文章:

机器学习:SVM算法(Python)

一、核函数 kernel_func.py import numpy as npdef linear():"""线性核函数:return:"""def _linear(x_i, x_j):return np.dot(x_i, x_j)return _lineardef poly(degree3, coef01.0):"""多项式核函数:param degree: 阶次:param …...

基于yolov5的人脸口罩检测,可进行图像目标检测,也可进行视屏和摄像检测(pytorch框架)【python源码+UI界面+功能源码详解】

功能演示&#xff1a; 基于yolov5的人脸口罩检测系统&#xff0c;支持图像检测&#xff0c;视频检测和实时摄像检测功能&#xff08;pytorch框架&#xff09;_哔哩哔哩_bilibili &#xff08;一&#xff09;简介 基于yolov5的人脸口罩检测系统是在pytorch框架下实现的&#…...

2024如何恢复旧版的Chrome的主题样式

起因 chrome 更新版本之后的主题样式变成了浅紫色的页签卡样式&#xff0c;感觉很不习惯&#xff0c;也很不喜欢 如何换回旧版主题 通过主题商店&#xff0c;安装旧版本的主题 主题商店搜索下面&#xff0c;或着直接访问下面的地址 Chrome Original White Theme https://…...

【文生视频】Diffusion Transformer:OpenAI Sora 原理、Stable Diffusion 3 同源技术

文生视频 Diffusion Transformer&#xff1a;Sora 核心架构、Stable Diffusion 3 同源技术 提出背景输入输出生成流程变换器的引入Diffusion Transformer (DiT)架构Diffusion Transformer (DiT)总结 OpenAI Sora 设计思路阶段1: 数据准备和预处理阶段2: 架构设计阶段3: 输入数据…...

Redis 服务集群、哨兵、缓存及持久化的实现原理和应用场景

Redis 是一种高性能的键值存储系统&#xff0c;已经成为了许多企业和互联网公司的核心技术之一。本文将介绍 Redis 的服务集群、哨兵以及缓存实现原理和应用场景&#xff0c;以帮助读者更好地理解和使用 Redis。 引言&#xff1a; 随着互联网应用规模不断扩大&#xff0c;Redi…...

通过Redis增减库存避坑

问题&#xff1a; 先执行get获取值&#xff0c;判断符合条件再执行incr、decr操作。在临界缓存失效的情况下&#xff0c;会默认赋值当前key为永不过期的0&#xff0c;再执行加减法&#xff0c;导致程序异常。 推荐解决方案&#xff1a; 1、限制接口频率&#xff1a;先incr&…...

Windows系统搭建Elasticsearch引擎结合内网穿透实现远程连接查询数据

文章目录 系统环境1. Windows 安装Elasticsearch2. 本地访问Elasticsearch3. Windows 安装 Cpolar4. 创建Elasticsearch公网访问地址5. 远程访问Elasticsearch6. 设置固定二级子域名 Elasticsearch是一个基于Lucene库的分布式搜索和分析引擎&#xff0c;它提供了一个分布式、多…...

Java爬虫使用JSoup获取静态资源图片

import org.jsoup.Connection; import org.jsoup.Jsoup; import org.jsoup.nodes.Document; import org.jsoup.nodes.Element; import org.jsoup.select.Elements; import java.io.FileOutputStream;/*** 获取静态图片*/public class ImageDownloader {public static void main…...

LeetCode 2433.找出前缀异或的原始数组

给你一个长度为 n 的 整数 数组 pref 。找出并返回满足下述条件且长度为 n 的数组 arr &#xff1a; pref[i] arr[0] ^ arr[1] ^ … ^ arr[i]. 注意 ^ 表示 按位异或&#xff08;bitwise-xor&#xff09;运算。 可以证明答案是 唯一 的。 示例 1&#xff1a; 输入&#xf…...

C++面试:系统网络性能评估与优化

系统网络性能评估与优化是指对计算机系统中的网络部分进行评估分析&#xff0c;并采取一系列措施来提升网络性能的能力。在面试中&#xff0c;涉及这一主题的问题可能会围绕以下几个方面展开。 网络性能评估 基于网络延迟、带宽、吞吐量等指标对网络性能进行评估。使用工具&a…...

Java适配器模式 - 灵活应对不匹配的接口

Java适配器模式 - 灵活应对不匹配的接口 引言&#xff1a; 在软件开发中&#xff0c;我们经常遇到不同系统、库或框架之间的接口不兼容问题。为了解决这些问题&#xff0c;我们可以使用适配器模式。适配器模式是一种结构型设计模式&#xff0c;它允许不兼容的接口之间进行协作…...

[ai笔记12] chatGPT技术体系梳理+本质探寻

欢迎来到文思源想的ai空间&#xff0c;这是技术老兵重学ai以及成长思考的第12篇分享&#xff01; 这周时间看了两本书&#xff0c;一本是大神斯蒂芬沃尔弗拉姆学的《这就是ChatGPT》,另外一本则是腾讯云生态解决方案高级架构师宋立恒所写的《AI制胜机器学习极简入门》&#xf…...

Elasticsearch:使用 ELSER v2 进行语义搜索

在我之前的文章 “Elasticsearch&#xff1a;使用 ELSER 进行语义搜索”&#xff0c;我们展示了如何使用 ELESR v1 来进行语义搜索。在使用 ELSER 之前&#xff0c;我们必须注意的是&#xff1a; 重要&#xff1a;虽然 ELSER V2 已正式发布&#xff0c;但 ELSER V1 仍处于 [预览…...

智慧农业之智能物流

智慧物流属于农业生产环节中的重要节点,上游为农业生产环节,下游为销售与商贸环节,因此,通过联通生产与销售环节,通过合理调配物流过程,可以实现对于农产品的快速运输与销售,减少中间环节中的无效损耗,从而实现增收节支,实实在在地解决了农产品利润偏低的问题。 生产…...

Redis主从、哨兵、Redis Cluster集群架构

Redis主从、哨兵、Redis Cluster集群架构 Redis主从架构 Redis主从架构搭建 主从搭建的问题 如果同步数据失败&#xff0c;查看log日志报错无法连接&#xff0c;检查是否端口未开放出现”Error reply to PING from master:...“日志&#xff0c;修改参数protected-mode no …...

Javascript 运算符、流程控制语句和数组

【三】运算符 【1】算数运算符 &#xff08;1&#xff09;分类 加减乘除&#xff1a;*/取余&#xff1a;%和python不一样的点&#xff1a;没有取整// &#xff08;2&#xff09;特殊的点 只要NaN参与运算得到的结果也是NaNnull转换成0&#xff0c;undefined转换成NaN 【2…...

电机驱动死区时间

电机驱动死区时间 电机驱动死区时间死区时间&#xff08;Dead Time&#xff09;自己话补充说明 电机驱动死区时间 电机驱动死区时间一般在几纳秒到几微秒之间&#xff0c;具体长度取决于所使用的电子器件。 一、什么是电机驱动死区时间&#xff1f; 电机驱动死区时间指的是在电…...

图像的压缩感知的MATLAB实现(第3种方案)

前面介绍了两种不同的压缩感知实现&#xff1a; 图像压缩感知的MATLAB实现&#xff08;OMP&#xff09; 压缩感知的图像仿真&#xff08;MATLAB源代码&#xff09; 上述两种方法还存在着“速度慢、精度低”等不足。 本篇介绍一种新的方法。 压缩感知&#xff08;Compressed S…...

高温应用中GaN HEMT大信号建模的ASM-HEMT

来源&#xff1a;An ASM-HEMT for Large-Signal Modeling of GaN HEMTs in High-Temperature Applications&#xff08;JEDS 23年&#xff09; 摘要 本文报道了一种用于模拟高温环境下氮化镓高电子迁移率晶体管&#xff08;GaN HEMT&#xff09;的温度依赖性ASM-HEMT模型。我…...

文件上传---->生僻字解析漏洞

现在的现实生活中&#xff0c;存在文件上传的点&#xff0c;基本上都是白名单判断&#xff08;很少黑名单了&#xff09; 对于白名单&#xff0c;我们有截断&#xff0c;图片马&#xff0c;二次渲染&#xff0c;服务器解析漏洞这些&#xff0c;于是今天我就来补充一种在upload…...

Ubuntu中Python3找不到_sqlite3模块

今天跑一个代码&#xff0c;出现了一个找不到sqlite3模块的错误&#xff0c;错误如下: from _sqlite3 import * ModuleNotFoundError: No module named _sqlite3 网上查资料说&#xff0c;因为python3没有自带sqlite3相关方面的支持&#xff0c;要自己先安装然后再重新编译Py…...

HarmonyOS4.0系统性深入开发37 改善布局性能

改善布局性能 Flex为采用弹性布局的容器。容器内部的所有子元素&#xff0c;会自动参与弹性布局。子元素默认沿主轴排列&#xff0c;子元素在主轴方向的尺寸称为主轴尺寸。 在单行布局场景下&#xff0c;容器里子组件的主轴尺寸长度总和可能存在不等于容器主轴尺寸长度的情况…...

Internet协议

文章目录 Internet协议网络层协议IPV4协议IP地址&#xff1a;IPv4数据报格式IP数据报的封装和分片 Internet路由协议路由信息协议RIP开放最短路径优先协议OSPF外部网关协议BGP组播协议PIM和MOSPF ARP和RARPARP协议&#xff1a;RARP协议&#xff1a; Internet控制报文协议ICMPIP…...

深度学习基础(一)神经网络基本原理

之前的章节我们初步介绍了机器学习相关基础知识&#xff0c;目录如下&#xff1a; 机器学习基础&#xff08;一&#xff09;理解机器学习的本质-CSDN博客 机器学习基础&#xff08;二&#xff09;监督与非监督学习-CSDN博客 机器学习基础&#xff08;四&#xff09;非监督学…...

2024年2月22日 - mis

rootyy3568-alip:/sys# ls /sys/class/gpio/gpio* -F /sys/class/gpio/gpio114 /sys/class/gpio/gpiochip511 /sys/class/gpio/gpiochip0 /sys/class/gpio/gpiochip64 /sys/class/gpio/gpiochip128 /sys/class/gpio/gpiochip96 /sys/class/gpio/gpiochip32符号表示该文…...

拼接 URL(C 语言)【字符串处理】

题目来自于博主算法大师的专栏&#xff1a;最新华为OD机试C卷AB卷OJ&#xff08;CJavaJSPy&#xff09; https://blog.csdn.net/banxia_frontend/category_12225173.html 题目 给定一个 url 前缀和 url 后缀 通过,分割 需要将其连接为一个完整的 url 如果前缀结尾和后缀开头都…...

故障排除:Failed to load SQL Modules into database Cluster

PostgreSQL 安装和故障排除 重新安装前的准备工作 在重新安装 PostgreSQL 之前&#xff0c;确保完成以下步骤&#xff1a; 重新卸载 PostgreSQL 并重启电脑。 删除以下目录&#xff1a; C:\Program Files\PostgreSQL\13C:\Users\admin\AppData\Roaming\pgadmin 重启安装过…...

【超详细】HIVE 日期函数(当前日期、时间戳转换、前一天日期等)

文章目录 相关文献常量&#xff1a;当前日期、时间戳前一天日期、后一天日期获取日期中的年、季度、月、周、日、小时、分、秒等时间戳转换时间戳 to 日期日期 to 时间戳 日期之间月、天数差 作者&#xff1a;小猪快跑 基础数学&计算数学&#xff0c;从事优化领域5年&#…...

[ffmpeg] x264 配置参数解析

背景 创建 x264 编码器后&#xff0c;其有一组默认的编码器配置参数&#xff0c;也可以根据需要修改参数&#xff0c;来满足编码要求。 具体参数 可修改的参数&#xff0c;比较多&#xff0c;这边只列举一些常用的。 获取可以配置的参数 方式1 查看 ffmpeg源码 libx264.c…...

GO语言基础总结

多态&#xff1a; 定义一个父类的指针&#xff08;接口&#xff09;&#xff0c;然后把指针指向子类的实例&#xff0c;再调用这个父类的指针&#xff0c;然后子类的方法被调用了&#xff0c;这就是多态现象。 Golang 高阶 goroutine 。。。。。 channel channel的定义 …...