为什么神经网络做不了2次函数拟合,网上的都是骗人的吗?
环境:tensorflow2 kaggle
这几天突发奇想,用深度学习训练2次函数。先在网上找找相同的资料这方面资料太少了。大多数如下:
。
给我的感觉就是,用深度学习来做,真的很容易。
网上写出代码分析的比较少。但是也找到了一篇,写的言简意赅,不过我自已训练时,却发现对训练之外的数据,预测的不好。下面分两部分来阐明这一现像与我的思考。
一、代码复现:
(204条消息) tensorflow2.0实现简单曲线拟合_一只双鱼儿的博客-CSDN博客_tensorflow2 曲线拟合
网络结构如下:
model = tf.keras.Sequential([tf.keras.layers.Dense(10,input_shape=(1,),activation="elu"),tf.keras.layers.Dense(1)
])
该文章效果如下:
可以看出,在训练集内效果是很好的,但是博主没有使用训练集外的数据。于是我扩展了预测集,效果如下:
可以发现 ,在[1,5]定义域内,基本就是直线了。
这就很奇怪了,在训练集内是曲线,之外是直线。看网络结构,确实引入了非线性的环节如:activation="elu"。那这个非线性环节究竟有多大用呢?这就引出了第一个问题。
我试着将网络结构改为如下(也就是只保留线性环节):
"""
model = tf.keras.Sequential([tf.keras.layers.Dense(10,input_shape=(1,),activation="elu"),tf.keras.layers.Dense(1)
])
"""
model = tf.keras.Sequential([tf.keras.layers.Dense(1,input_shape=(1,)),tf.keras.layers.Dense(1)
])
效果如下:
好吧,那第一个问题是解决了。activation="elu"效果是很明显的。
二、为什么在训练集之外,生成了直线?
是过拟合吗?将训练集变成了查表法?
我做了如下实验,这其实是我的第二步(y=ax^2+bx+c+[noise],第一步没保存),用来满足y=x^2已经足够了:
ds_x = []
ds_y = []# 生成数据集
ds_x = np.linspace(-1,1,100)
ds_y = 5*ds_x**2 + 9*ds_x + 300 + np.random.randn(100)*0.05class model_x2(tf.keras.Model):def __init__(self):super(model_x2,self).__init__()self.layer1 = tf.keras.layers.Dense(1)self.layer1_2 = tf.keras.layers.Dense(1)self.layer2 = tf.keras.layers.Dense(1)def call(self,in1):in2 = tf.keras.layers.Multiply()((in1,in1,in1)) #in1 * in1x = self.layer1(in2)x1_2 = self.layer1_2(in1)x2 = tf.keras.layers.concatenate((x,x1_2))out = self.layer2(x2)return outmodel = model_x2()
model.build(input_shape=(None,1))
model.summary()opt = tf.keras.optimizers.Adam(learning_rate=0.01)
los = tf.keras.losses.MeanSquaredError()
acc = tf.keras.metrics.MeanSquaredError()
model.compile(optimizer=opt,loss=los,metrics=acc)model.fit(ds_x,ds_y,epochs=500)#以下就是画图了,将数据集里【-1,1】添加到【-1,3】,多出来的【1,3】示为预测
x = np.linspace(-1,3,20000) #np.array(range(1,100,1))
#y = x**xy_predict = model.predict(x)ds_x = np.linspace(-1,3,100)
ds_y = 5*ds_x**2 + 9*ds_x + 300 + np.random.randn(100)*0.05plt.scatter(ds_x,ds_y)
plt.plot(x,y_predict,'r')
plt.show()
#以下就是画图了,将数据集里【-1,1】添加到【-1,3】,多出来的【1,3】示为预测
效果如下:
三、结论:
用深度学习的多层结构,拟合非线性数据???
NO,NO,NO
应该手动引用非线性因子。
这不禁让我想起了曾经的日子,我们都知道3极管可以线性放大,但是有没有一种方式可以产生x^2项。当然是可以的,这就涉及到2极管还是3极管。。。的物理公式如下。。。
知道的小伙伴可以在评论区留言。
相关文章:
为什么神经网络做不了2次函数拟合,网上的都是骗人的吗?
环境:tensorflow2 kaggle 这几天突发奇想,用深度学习训练2次函数。先在网上找找相同的资料这方面资料太少了。大多数如下: 。 给我的感觉就是,用深度学习来做,真的很容易。 网上写出代码分析的比较少。但是也找到了…...
【Java】Help notes about JAVA
JAVA语言帮助笔记Java的安装与JDKJava命名规范JAVA的数据类型自动类型转换强制类型转换JAVA的运算符取余运算结果的符号逻辑运算的短路运算三元运算符运算符优先级JAVA的流程控制分支结构JAVA类Scanner类Java的安装与JDK JDK安装网站:https://www.oracle.com/java/…...
2023北京老博会,北京养老展,第十届中国国际老年产业博览会
2023第十届(北京)国际老年产业博览会,将于08月28-30日盛大举办; 2023北京老博会:2023第十届中国(北京)国际老年产业博览会The 2023 tenth China (Beijing) International Aged industry Expo&a…...
C++展开模板参数包、函数参数包-(lambda+折叠表达式)
开门见山 以下代码可展开模板参数包和展开函数参数包。 // lambda折叠表达式(需C17) #include <iostream> using namespace std;// 1.展开模板参数包 template<typename ...T> void Func1() {([]() {cout << typeid(T).name() << endl;}(), ...);// …...
【Spark分布式内存计算框架——Spark Core】7. RDD Checkpoint、外部数据源
第五章 RDD Checkpoint RDD 数据可以持久化,但是持久化/缓存可以把数据放在内存中,虽然是快速的,但是也是最不可靠的;也可以把数据放在磁盘上,也不是完全可靠的!例如磁盘会损坏等。 Checkpoint的产生就是…...
Connext DDSQoS参考
1 QoS策略列表 ConnextDDS 6.1.1版中所有QoS策略的高级视图。 1. QoS策略描述...
【正则表达式】获取html代码文本内所有<script>标签内容
文章目录一. 背景二. 思路与过程1. 正则表达式中需要限定<script>开头与结尾2. 增加标签格式的限定3. 不限制<script>首尾的内部内容4. 中间的内容不能出现闭合的情况三. 结果与代码四. 正则辅助工具一. 背景 之前要对学生提交的html代码进行检查,在获…...
有 9 种springMVC常用注解高频使用,来了解下?
文章目录1、Controller2、RequestMapping2.1 RequestMapping注解有六个属性2.1.1 value2.1.2 method2.1.3 consumes2.1.4 produces2.1.5 params2.1.6 headers2.2 Request Mapping("/helloword/?/aa")的Ant路径,匹配符2.3 Request …...
【ES6】掌握Promise和利用Promise封装ajax
💻 【ES6】掌握Promise和利用Promise封装ajax 🏠专栏:JavaScript 👀个人主页:繁星学编程🍁 🧑个人简介:一个不断提高自我的平凡人🚀 🔊分享方向:目…...
REDIS-持久化方案
我们知道redis是内存数据库,它的数据是存储在内存中的,我们知道内存的一个特点是断电数据就丢失,所以redis提供了持久化功能,可以将内存中的数据状态存储到磁盘里面,避免数据丢失。 Redis持久化有三种方案,…...
五、Java框架之Maven进阶
黑马课程 文章目录1. 分模块开发1.1 分模块开发入门案例示例:抽取domain层示例:抽取dao层1.2 依赖管理2. 聚合和继承2.1 聚合概述聚合实现步骤2.2 继承 dependencyManagement3. 属性管理3.1 依赖版本属性管理3.2 配置文件属性管理(了解&#…...
1.前言【Java面试第三季】
1.前言【Java面试第三季】前言推荐1.前言00_前言闲聊和课程说明本课程介绍目前考核的变化趋势vcr集数和坚持学长谷粉面试题复盘反馈最后前言 2023-2-1 12:30:05 以下内容源自 【尚硅谷Java大厂面试题第3季,跳槽必刷题目必扫技术盲点(周阳主讲࿰…...
06分支限界法
文章目录八数码难题普通BFS算法全局择优算法(A算法,启发式搜索算法)单源最短路径问题装载问题算法思想:队列式分支限界法优先队列式分支限界法布线问题最大团问题批处理作业调度问题分支限界法与回溯法的区别: &#x…...
Docker Compose编排
一、概念1、Docker Compose是什么Docker Compose的前身是Fig,它是一个定义及运行多个Docker容器的工具通过 Compose,不需要使用shell脚本来启动容器,而使用 YAML 文件来配置应用程序需要的所有服务然后使用一个命令,根据 YAML 的文…...
Docker进阶 - 11. Docker Compose 编排服务
注:本文只对一些重要步骤和yml文件进行一些讲解,其他的具体程序没有记录。 目录 1. 原始的微服务工程编排(不使用Compose) 2. 使用Compose编排微服务 2.1 编写 docker-compose.yml 文件 2.2 修改并构建微服务工程镜像 2.3 启动 docker-compose 服务…...
福利篇2——嵌入式岗位笔试面试资料汇总(含大厂笔试面试真题)
前言 汇总嵌入式软件岗位笔试面试资料,供参考。 文章目录 前言一、公司嵌入式面经1、小米1)面试时长2)面试问题2、科大讯飞1)面试时长2)面试题目3、其余公司面经二、嵌入式笔试面试资料(全)三、嵌入式岗位薪资报告四、硬件岗位薪资报告一、公司嵌入式面经 1、小米 1)…...
[ubuntu]LVM磁盘管理
LVM是 Logical Volume Manager(逻辑卷管理)的简写,是Linux环境下对磁盘分区进行管理的一种机制,由Heinz Mauelshagen在Linux 2.4内核上实现。LVM可以实现用户在无需停机的情况下动态调整各个分区大小。1.简介 LVM本质上是一个…...
开源流程引擎Camunda
开源流程引擎Camunda 文章作者:智星 1.简介 Camunda是一个轻量级的商业流程开源平台,是一种基于Java的框架,持久层采用Mybatis,可以内嵌集成到Java应用、SpringBooot应用中,也可以独立运行,其支持BPMN&a…...
【PTA Advanced】1155 Heap Paths(C++)
目录 题目 Input Specification: Output Specification: Sample Input 1: Sample Output 1: Sample Input 2: Sample Output 2: Sample Input 3: Sample Output 3: 思路 代码 题目 In computer science, a heap is a specialized tree-based data structure that s…...
Educational Codeforces Round 129 (Rated for Div. 2)
A. Game with Cards. 题目链接 题目大意: Alice和Bob玩卡牌。Alice有n张,Bob有m张。第一轮选手出一张数字卡牌。第二轮另一个选手要选择一张比他大的,依此类推。谁没有牌可出则输。问Alice和Bob分别先手时,谁赢?输出…...
[数据库]表的增删改查
●🧑个人主页:你帅你先说. ●📃欢迎点赞👍关注💡收藏💖 ●📖既选择了远方,便只顾风雨兼程。 ●🤟欢迎大家有问题随时私信我! ●🧐版权:本文由[你帅…...
分享77个JS菜单导航,总有一款适合您
分享77个JS菜单导航,总有一款适合您 77个JS菜单导航下载链接:https://pan.baidu.com/s/1e_384_1KC2oSTDy7AaD3og?pwdzkw6 提取码:zkw6 Python采集代码下载链接:https://wwgn.lanzoul.com/iKGwb0kye3wj class ChinaZJsSeleni…...
kubernetes -- 核心组件介绍以及组件的运行流程
常用组件大白话说 如果想要官方的,详细的信息,请看官方文档。 https://kubernetes.io/zh-cn/docs/concepts/overview/components/ 现在介绍一些核心的概念: etcd:存储所有节点的信息,节点上部署的容器信息等都存在数…...
微信小程序Springboot短视频分享系统
3.1小程序端 用户注册页面,输入用户的个人信息点击注册即可。 注册完成后会返回到登录页面,用户输入自己注册的账号密码即可登录成功 登录成功后我们可以看到有相关的视频还有视频信息,我的信息等。 视频信息推荐是按照点击次数进行推荐的&am…...
排序算法学习
文章目录前言一、直接插入排序算法二、折半插入排序算法三、2路插入排序算法四、快速排序算法学习前言 算法是道路生涯的一个巨大阻碍。今日前来解决这其中之一:有关的排序算法,进行实现以及性能分析。 一、直接插入排序算法 插入排序算法实现主要思想…...
常见漏洞之 struts2+ jboss
数据来源 本文仅用于信息安全的学习,请遵守相关法律法规,严禁用于非法途径。若观众因此作出任何危害网络安全的行为,后果自负,与本人无关。 01 Struts2相关介绍 》Struts2概述 》Struts2历史漏洞(1) 》…...
leetcode470 用Rand7()实现Rand10()
力扣470 第一步:根据Rand7()函数制作一个可以随机等概率生成0和1的函数rand_0and1 调用Rand7()函数,随机等概率生成1,2,3,4,5,6,7 这时我们设置:生成1,2&a…...
JSON数据解析商品详情API
大家有探讨稳定获取商品主图、jiage、标题,及sku的完整解决方案。这个引起了我技术挑战的兴趣,然后各种网上资料查询,最终还是不负努力,找到更好的解决方案,不再出现任何滑块验证码,完全绕过,实…...
服务端开发Java面试复盘篇1
上周投了一些简历,约了8-9家面试,其中完成了3家的第一轮面试,由于面试的是Java 的实习生,感觉问的题目都比较基础,不过有些问题回答的不是很好,在这里对回答的不太好的题目做一下总结和复盘。 目录 一、后…...
Android框架WiFi架构
同学,别退出呀,我可是全网最牛逼的 WIFI/BT/GPS/NFC分析博主,我写了上百篇文章,请点击下面了解本专栏,进入本博主主页看看再走呗,一定不会让你后悔的,记得一定要去看主页置顶文章哦。 一、wpa_supplicant:wpa_supplicant本身开源项目源码,被谷歌收购之后加入Android移…...
网站分站的实现方法/优秀营销案例分享
(推荐)Nginx变量使用方法详解 - https://www.jianshu.com/p/44680c081ea0 顺风详解Nginx系列—Ngx中的变量: https://blog.csdn.net/ok449a6x1i6qq0g660fv/article/details/80276506 rewrite 的用法:https://blog.csdn.net/liuxiao723846/a…...
广州设计公司排行榜/互联网优化
点击上方“Java基基”,选择“设为星标”做积极的人,而不是积极废人!源码精品专栏 原创 | Java 2020 超神之路,很肝~中文详细注释的开源项目RPC 框架 Dubbo 源码解析网络应用框架 Netty 源码解析消息中间件 RocketMQ 源码解析数据库…...
怎么用linux做网站/百度竞价排名价格查询
本教程将教你如何使用qmake。 从简单的实例开始 让我们假设你刚才完成了您的应用程序的基本实现,您已经创建了以下文件: hello.CPPhello.hmain.cpp首先,用你最喜欢的纯文本编辑器,创建一个名为hello.pro的文件。你需要做的第一件…...
合肥专业网站优化价格/天津百度推广电话
FFmpeg都是命令行的,用起来肯定不方便。但是,这对技术宅应该不成问题。下面,我就罗列一些比较实用的使用方法吧。FFmpeg的下载与安装FFmpeg是开源的。但我们不必去下载它的源代码。下载已经编译好的exe/dll即可。可以到http://www.ffmpeg.org…...
北京做网站的公司哪家好/周口网站seo
2019独角兽企业重金招聘Python工程师标准>>> 今天在交流群里看到有一位仁兄问了一个java String对象方面的问题! 题目如下: String s "abcd";s "efgh";s s.substring(2,5); s s.toUpperCase()return s.toString();…...
赣州市做网站设计/萌新seo
下表包含了Oracle不同产品的缺省端口,例如Oracle Database,Oracle Application Server的默认端口。更改这些默认端口可以防止简单的数据库攻击,除了端口扫描。在Oracle中经常会发生不能改变默认端口的情况,因为Oracle的端口是硬编…...