当前位置: 首页 > news >正文

Kubernetes Pod 水平自动伸缩(HPA)

Pod 自动扩缩容

之前提到过通过手工执行kubectl scale命令和在Dashboard上操作可以实现Pod的扩缩容,但是这样毕竟需要每次去手工操作一次,而且指不定什么时候业务请求量就很大了,所以如果不能做到自动化的去扩缩容的话,这也是一个很麻烦的事情。如果Kubernetes系统能够根据Pod当前的负载的变化情况来自动的进行扩缩容就好了,因为这个过程本来就是不固定的,频繁发生的,所以纯手工的方式不是很现实。

幸运的是Kubernetes为我们提供了这样一个资源对象:Horizontal Pod Autoscaling(Pod水平自动伸缩),简称HPAHAP通过监控分析RC或者Deployment控制的所有Pod的负载变化情况来确定是否需要调整Pod的副本数量,这是HPA最基本的原理。
在这里插入图片描述

HPAkubernetes集群中被设计成一个controller,我们可以简单的通过kubectl autoscale命令来创建一个HPA资源对象,HPA Controller默认30s轮询一次(可通过kube-controller-manager的标志--horizontal-pod-autoscaler-sync-period进行设置),查询指定的资源(RC或者Deployment)中Pod的资源使用率,并且与创建时设定的值和指标做对比,从而实现自动伸缩的功能。

当你创建了HPA后,HPA会从Heapster或者用户自定义的RESTClient端获取每一个一个Pod利用率或原始值的平均值,然后和HPA中定义的指标进行对比,同时计算出需要伸缩的具体值并进行相应的操作。目前,HPA可以从两个地方获取数据:

  • Heapster:仅支持CPU使用率
  • 自定义监控:我们到后面的监控的文章中再给大家讲解这部分的使用方法

现在来介绍从Heapster获取监控数据来进行自动扩缩容的方法,所以首先我们得安装Heapster,前面我们在kubeadm搭建集群的文章中,实际上我们已经默认把Heapster相关的镜像都已经拉取到节点上了,所以接下来我们只需要部署即可,我们这里使用的是Heapster 1.4.2 版本的,前往Heapstergithub页面:

https://github.com/kubernetes/heapster

我们将该目录下面的yaml文件保存到我们的集群上,然后使用kubectl命令行工具创建即可,另外创建完成后,如果需要在Dashboard当中看到监控图表,我们还需要在Dashboard中配置上我们的heapster-host

同样的,我们来创建一个Deployment管理的Nginx Pod,然后利用HPA来进行自动扩缩容。定义DeploymentYAML文件如下:(hap-deploy-demo.yaml)

---
apiVersion: apps/v1
kind: Deployment
metadata:name: hpa-nginx-deploylabels:app: nginx-demo
spec:revisionHistoryLimit: 15selector:matchLabels:app: nginxtemplate:metadata:labels:app: nginxspec:containers:- name: nginximage: nginxports:- containerPort: 80

然后创建Deployment

$ kubectl create -f hpa-deploy-demo.yaml

现在我们来创建一个HPA,可以使用kubectl autoscale命令来创建:

$ kubectl autoscale deployment hpa-nginx-deploy --cpu-percent=10 --min=1 --max=10
deployment "hpa-nginx-deploy" autoscaled
···
$ kubectl get hpa                                                         
NAME        REFERENCE              TARGET    CURRENT   MINPODS   MAXPODS   AGE
hpa-nginx-deploy   Deployment/hpa-nginx-deploy   10%       0%        1         10        13s

此命令创建了一个关联资源 hpa-nginx-deploy 的HPA,最小的 pod 副本数为1,最大为10。HPA会根据设定的 cpu使用率(10%)动态的增加或者减少pod数量。

当然出来使用kubectl autoscale命令来创建外,我们依然可以通过创建YAML文件的形式来创建HPA资源对象。如果我们不知道怎么编写的话,可以查看上面命令行创建的HPAYAML文件:

$ kubectl get hpa hpa-nginx-deploy -o yaml
apiVersion: autoscaling/v1
kind: HorizontalPodAutoscaler
metadata:creationTimestamp: 2017-06-29T08:04:08Zname: nginxtestnamespace: defaultresourceVersion: "951016361"selfLink: /apis/autoscaling/v1/namespaces/default/horizontalpodautoscalers/nginxtestuid: 86febb63-5ca1-11e7-aaef-5254004e79a3
spec:maxReplicas: 5 //资源最大副本数minReplicas: 1 //资源最小副本数scaleTargetRef:apiVersion: apps/v1kind: Deployment //需要伸缩的资源类型name: nginxtest  //需要伸缩的资源名称targetCPUUtilizationPercentage: 50 //触发伸缩的cpu使用率
status:currentCPUUtilizationPercentage: 48 //当前资源下pod的cpu使用率currentReplicas: 1 //当前的副本数desiredReplicas: 2 //期望的副本数lastScaleTime: 2017-07-03T06:32:19Z

好,现在我们根据上面的YAML文件就可以自己来创建一个基于YAMLHPA描述文件了。

现在我们来增大负载进行测试,我们来创建一个busybox,并且循环访问上面创建的服务。

$ kubectl run -i --tty load-generator --image=busybox /bin/sh
If you don't see a command prompt, try pressing enter.
/ # while true; do wget -q -O- http://172.16.255.60:4000; done

下图可以看到,HPA已经开始工作。

$ kubectl get hpa
NAME        REFERENCE              TARGET    CURRENT   MINPODS   MAXPODS   AGE
hpa-nginx-deploy   Deployment/hpa-nginx-deploy   10%       29%        1         10        27m

同时我们查看相关资源hpa-nginx-deploy的副本数量,副本数量已经从原来的1变成了3。

$ kubectl get deployment hpa-nginx-deploy
NAME        DESIRED   CURRENT   UP-TO-DATE   AVAILABLE   AGE
hpa-nginx-deploy   3         3         3            3           4d

同时再次查看HPA,由于副本数量的增加,使用率也保持在了10%左右。

$ kubectl get hpa
NAME        REFERENCE              TARGET    CURRENT   MINPODS   MAXPODS   AGE
hpa-nginx-deploy   Deployment/hpa-nginx-deploy   10%       9%        1         10        35m

同样的这个时候我们来关掉busybox来减少负载,然后等待一段时间观察下HPADeployment对象

$ kubectl get hpa     
NAME        REFERENCE              TARGET    CURRENT   MINPODS   MAXPODS   AGE
hpa-nginx-deploy   Deployment/hpa-nginx-deploy   10%       0%        1         10        48m
$ kubectl get deployment hpa-nginx-deploy
NAME        DESIRED   CURRENT   UP-TO-DATE   AVAILABLE   AGE
hpa-nginx-deploy   1         1         1            1           4d

可以看到副本数量已经由3变为1。

不过当前的HPA只有CPU使用率这一个指标,还不是很灵活的,在后面的文章中我们来根据我们自定义的监控来自动对Pod进行扩缩容。


相关文章:

Kubernetes Pod 水平自动伸缩(HPA)

Pod 自动扩缩容 之前提到过通过手工执行kubectl scale命令和在Dashboard上操作可以实现Pod的扩缩容,但是这样毕竟需要每次去手工操作一次,而且指不定什么时候业务请求量就很大了,所以如果不能做到自动化的去扩缩容的话,这也是一个…...

钉钉、企业微信和飞书向“钱”看

在急剧变革的时候,不管黑猫白猫,要抓到老鼠才算好猫。如今,各互联网企业早已进入降本增效的新阶段。勒紧裤腰带过日子之下,能不能盈利、商业化空间有多大,就成为各个业务极为重要的考核指标。在各业务板块中&#xff0…...

网上购物网站的设计

技术:Java、JSP等摘要:本文介绍了JSP和JAVA等相关技术,针对网上购物系统的实际需求,设计开发了一个基于JSP的小型电子商务网站也就是网上购物系统,。在设计开发中,采用的是SSH框架(strutsspring…...

【Java学习笔记】8.Java 运算符

Java 运算符 计算机的最基本用途之一就是执行数学运算,作为一门计算机语言,Java也提供了一套丰富的运算符来操纵变量。我们可以把运算符分成以下几组: 算术运算符关系运算符位运算符逻辑运算符赋值运算符其他运算符 算术运算符 算术运算符…...

RHCSA-使用命令管理文件(3.6)

硬链接与软链接基本操作: 创建软硬连接的命令:ln 硬链接:ln 源文件(已经存在的文件) 链接文件名(新建) 软连接:ln -s 源文件(已存在的文件) 快捷方式文件名…...

socket聊天室--socket的建立

socket聊天室–socket实现 文章目录 socket聊天室--socket实现socket()bind()listen()accept()connect()发送接收read()函数recv()函数write()函数send()函数close()关闭套接字IP 地址格式转换函数socket() #include <sys/types...

Raft图文详解

Raft图文详解 refer to: Raft lecture (Raft user study) - YouTube Raft PDF Raft算法详解 - 知乎 (zhihu.com) 今天来详细介绍一下Raft协议 Raft是来解决公式问题的协议&#xff0c;那么什么是共识呢&#xff1f; 在分布式系统里面&#xff0c;consensus指的是多个节点对…...

春季出游,学会这些功能,让你旅途更舒心

春意盎然&#xff0c;万物复苏&#xff0c;春天正是旅游观光的好时节&#xff0c;相信不少小伙伴已经做好了出游的准备。想拥有好的心情&#xff0c;除了美食美景&#xff0c;好的出游神器也必不可少&#xff0c;好的出游神器能让我们的旅途更舒心&#xff0c;一起来看看是哪些…...

【华为OD机试真题java、python、c++、jsNode】简单的自动曝光【2022 Q4 100分】(100%通过)

代码请进行一定修改后使用,本代码保证100%通过率。本文章提供java、python、c++、jsNode四种代码 题目描述 一个图像有n个像素点,存储在一个长度为n的数组img里,每个像素点的取值范围[0,255]的正整数。 请你给图像每个像素点值加上一个整数k(可以是负数),得到新图newImg…...

react学习笔记-1:创建项目

安装nodejs https://nodejs.org/dist/v18.14.2/node-v18.14.2-x64.msi 修改国内源&#xff1a;npm config set registry https://registry.npm.taobao.org 使用create-react-app脚手架创建项目 安装脚手架 npm install -g create-react-app 全局安装&#xff0c;可以在任意的…...

vulnhub five86-2

总结&#xff1a;sudo -l&#xff0c;抓流量包&#xff0c;搜索引擎。。 目录 下载地址 漏洞分析 信息收集 网站渗透 ​编辑 反弹shell提权 下载地址 Five86-2.zip (Size: 1.7 GB)Download (Mirror): https://download.vulnhub.com/five86/Five86-2.zip使用&#xff1a;下…...

OpenCV入门(四)快速学会OpenCV3画基本图形

OpenCV入门&#xff08;四&#xff09;快速学会OpenCV3画基本图形 1.画点 在OpenCV中&#xff0c;点分为2D平面中的点和3D平面中的点&#xff0c;区别就是3D中点多了一个z坐标。我们首先介绍2D中的点&#xff0c;坐标为整数的点可以直接用(x, y)代替&#xff0c;其中x是横坐标…...

【MAC OS 命令行】Redis的安装、启动和停止。就是如此简单

目录Mac 安装 Redis使用 Homebrew 安装 Redis总结Mac 安装 Redis 使用 Homebrew 安装 Redis 如果没有安装 Homebrew&#xff0c;先安装 Homebrew 执行命令&#xff1a; 方法一、brew 官网的安装脚本 /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homeb…...

Leetecode 661. 图片平滑器

图像平滑器 是大小为 3 x 3 的过滤器&#xff0c;用于对图像的每个单元格平滑处理&#xff0c;平滑处理后单元格的值为该单元格的平均灰度。 每个单元格的 平均灰度 定义为&#xff1a;该单元格自身及其周围的 8 个单元格的平均值&#xff0c;结果需向下取整。&#xff08;即&…...

剑指 Offer II 020. 回文子字符串的个数

题目链接 剑指 Offer II 020. 回文子字符串的个数 mid 题目描述 给定一个字符串 s&#xff0c;请计算这个字符串中有多少个回文子字符串。 具有不同开始位置或结束位置的子串&#xff0c;即使是由相同的字符组成&#xff0c;也会被视作不同的子串。 示例 1&#xff1a; 输入…...

Python实现多键字典

实现背景 在许多场景中&#xff0c;有时需要通过多种信息来获取某个特定的值&#xff0c;而各种编程语言&#xff08;包括Python&#xff09;使用的字典&#xff08;Dict&#xff09;数据结构通常只支持单个键值寻值key-val对&#xff0c;即“一对一”&#xff08;一个键对应一…...

【python socket】实现websocket服务端

一、获取握手信息首先通过如下代码&#xff0c;我们使用socket来获取客户端的握手信息import socketsock socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) sock.bind(("127.0.0.1", 8002)) sock.li…...

PANGO的CFG那些事

先来看位于VCCIOCFG这个bank上引脚&#xff0c; MODE JTAG时&#xff0c;MODExxx. except 3’b000. 禁止设置为3’b000. Slave Parallel时&#xff0c;MODE 3’b110&#xff0c;不常用。 Slave Serial时&#xff0c;MODE 3’b111&#xff0c;不常用。 Master SPI 时&…...

路由协议(OSPF、ISIS、BGP)实验配置

目录 OSPF基础实验 建立OSPF邻居 配置虚连接 配置接口的网络类型 配置特殊区域 配置路由选路 配置路由过滤 ISIS基础实验配置 配置ISIS邻居建立 配置认证 配置路由扩散 配置路由过滤 配置定时器 BGP基础实验配置 建立BGP对等体 建立IBGP对等体 建立EBGP对等体…...

Python可变对象与不可变对象的浅拷贝与深拷贝

前言 本文主要介绍了python中容易面临的考试点和犯错点&#xff0c;即浅拷贝与深拷贝 首先&#xff0c;针对Python中的可变对象来说&#xff0c;例如列表&#xff0c;我们可以通过以下方式进行浅拷贝和深拷贝操作&#xff1a; import copya [1, 2, 3, 4, [a, b]]b a …...

九天毕昇深度学习平台 | 如何安装库?

pip install 库名 -i https://pypi.tuna.tsinghua.edu.cn/simple --user 举个例子&#xff1a; 报错 ModuleNotFoundError: No module named torch 那么我需要安装 torch pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple --user pip install 库名&#x…...

【JVM面试篇】高频八股汇总——类加载和类加载器

目录 1. 讲一下类加载过程&#xff1f; 2. Java创建对象的过程&#xff1f; 3. 对象的生命周期&#xff1f; 4. 类加载器有哪些&#xff1f; 5. 双亲委派模型的作用&#xff08;好处&#xff09;&#xff1f; 6. 讲一下类的加载和双亲委派原则&#xff1f; 7. 双亲委派模…...

解读《网络安全法》最新修订,把握网络安全新趋势

《网络安全法》自2017年施行以来&#xff0c;在维护网络空间安全方面发挥了重要作用。但随着网络环境的日益复杂&#xff0c;网络攻击、数据泄露等事件频发&#xff0c;现行法律已难以完全适应新的风险挑战。 2025年3月28日&#xff0c;国家网信办会同相关部门起草了《网络安全…...

[ACTF2020 新生赛]Include 1(php://filter伪协议)

题目 做法 启动靶机&#xff0c;点进去 点进去 查看URL&#xff0c;有 ?fileflag.php说明存在文件包含&#xff0c;原理是php://filter 协议 当它与包含函数结合时&#xff0c;php://filter流会被当作php文件执行。 用php://filter加编码&#xff0c;能让PHP把文件内容…...

Chromium 136 编译指南 Windows篇:depot_tools 配置与源码获取(二)

引言 工欲善其事&#xff0c;必先利其器。在完成了 Visual Studio 2022 和 Windows SDK 的安装后&#xff0c;我们即将接触到 Chromium 开发生态中最核心的工具——depot_tools。这个由 Google 精心打造的工具集&#xff0c;就像是连接开发者与 Chromium 庞大代码库的智能桥梁…...

tomcat入门

1 tomcat 是什么 apache开发的web服务器可以为java web程序提供运行环境tomcat是一款高效&#xff0c;稳定&#xff0c;易于使用的web服务器tomcathttp服务器Servlet服务器 2 tomcat 目录介绍 -bin #存放tomcat的脚本 -conf #存放tomcat的配置文件 ---catalina.policy #to…...

MySQL:分区的基本使用

目录 一、什么是分区二、有什么作用三、分类四、创建分区五、删除分区 一、什么是分区 MySQL 分区&#xff08;Partitioning&#xff09;是一种将单张表的数据逻辑上拆分成多个物理部分的技术。这些物理部分&#xff08;分区&#xff09;可以独立存储、管理和优化&#xff0c;…...

Vue 模板语句的数据来源

&#x1f9e9; Vue 模板语句的数据来源&#xff1a;全方位解析 Vue 模板&#xff08;<template> 部分&#xff09;中的表达式、指令绑定&#xff08;如 v-bind, v-on&#xff09;和插值&#xff08;{{ }}&#xff09;都在一个特定的作用域内求值。这个作用域由当前 组件…...

git: early EOF

macOS报错&#xff1a; Initialized empty Git repository in /usr/local/Homebrew/Library/Taps/homebrew/homebrew-core/.git/ remote: Enumerating objects: 2691797, done. remote: Counting objects: 100% (1760/1760), done. remote: Compressing objects: 100% (636/636…...

数据库——redis

一、Redis 介绍 1. 概述 Redis&#xff08;Remote Dictionary Server&#xff09;是一个开源的、高性能的内存键值数据库系统&#xff0c;具有以下核心特点&#xff1a; 内存存储架构&#xff1a;数据主要存储在内存中&#xff0c;提供微秒级的读写响应 多数据结构支持&…...