chatGLM3+chatchat实现本地知识库
背景
由于客服存在大量的问题为FAQ问题,需要精准回复客户,所以针对此类精准问题,通过自建同量数量库进行回复。
落地方案
通过chatGLM3-6B+langchain-chatchat+bge-large-zh实现本地知识库库。
注意:相关介绍和说明请看官网~
配置要求
名称 | 要求 | 说明 |
内存 | 16G | 最好是32G |
GPU | 英伟达16G | 最好是24G |
python | 3.10 |
环境搭建
拉取代码
https://github.com/chatchat-space/Langchain-Chatchat.git 安装环境
建议:通过conda 创建专用环境
进入环境然后执行如下
pip install -r requirements.txt
pip install -r requirements_api.txt
pip install -r requirements_webui.txt 下载模型
#国内源下载(推荐)git lfs installgit clone https://www.modelscope.cn/ZhipuAI/chatglm3-6b.git
git clone https://www.modelscope.cn/AI-ModelScope/bge-large-zh.git #需要梯子
git lfs installgit clone https://huggingface.co/THUDM/chatglm3-6b
git clone https://huggingface.co/BAAI/bge-large-zh 项目部署
初始化配置
进入项目执行如下命令:
python copy_config_example.py
python init_database.py --recreate-vs 
然后会在config中生成如下:

文件名称 | 说明 |
basic_config.py | 基础配置,用于配置日志相关 |
kb_config.py | 向量数据量配置,可配置相关的参数 |
model_config.py | 模型配置,可以在这里配置模型相关信息 |
prompt_config.py | 消息板模配置 |
server_config.py | 服务配置,配置端口及host等 |
配置修改
model_config.py 修改如下:
MODEL_ROOT_PATH =存放你模型的路劲(不需要指定到模型位置)
EMBEDDING_MODEL=向量数据库名称(不需要包含路劲)
server_config.py 修改如下:
OPEN_CROSS_DOMAIN = True
项目启动
#前台启动
python startup.py -a
#后台启动
nohup python startup.py>startup.log -a &
访问API接口列表:http://127.0.0.1:20000/docs#/
项止
访问页面:127.0.0.1:8501

最后
试了最新的chatchat发现这个版本在识别agent中的utils有时生效有时无效,官方也承认有这个问题,建议后续还是用官方的chatGLM3的utils,下次文章再输出。
相关链接:
https://github.com/THUDM/ChatGLM3
https://github.com/chatchat-space/Langchain-Chatchat
相关文章:
chatGLM3+chatchat实现本地知识库
背景 由于客服存在大量的问题为FAQ问题,需要精准回复客户,所以针对此类精准问题,通过自建同量数量库进行回复。 落地方案 通过chatGLM3-6Blangchain-chatchatbge-large-zh实现本地知识库库。 注意:相关介绍和说明请看官网~ 配置要…...
webpack5零基础入门-11处理html资源
1.目的 主要是为了自动引入打包后的js与css资源,避免手动引入 2.安装相关包 npm install --save-dev html-webpack-plugin 3.引入插件 const HtmlWebpackPlugin require(html-webpack-plugin); 4.添加插件(通过new方法调用) /**插件 *…...
el-input设置max、min无效的解决方案
目录 一、方式1:type“number” 二、方式2:oninput(推荐) 三、计算属性 如下表所示,下面为官方关于max,min的介绍: el-input: max原生属性,设置最大值min原生属性&a…...
C语言经典面试题目(十八)
1、如何在C语言中实现堆排序算法? 堆排序是一种利用堆数据结构进行排序的算法。它的基本思想是首先将待排序的数组构建成一个最大堆(或最小堆),然后逐步将堆顶元素与堆中最后一个元素交换,并重新调整堆,使…...
[数据集][目标检测]零售柜零食检测数据集VOC+YOLO格式5422张113类
数据集格式:Pascal VOC格式YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):5422 标注数量(xml文件个数):5422 标注数量(txt文件个数):5422 标注…...
Flask vs. Django:选择适合你的Web开发框架【第134篇—Flask vs. Django】
👽发现宝藏 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。【点击进入巨牛的人工智能学习网站】。 Flask vs. Django:选择适合你的Web开发框架 在选择一个适合你项目的Web开发框架…...
你能解释一下Spring AOP(面向切面编程)的概念和用法吗?在Spring中,如何使用事务管理?
你能解释一下Spring AOP(面向切面编程)的概念和用法吗? Spring AOP(面向切面编程)是Spring框架中一个非常重要的功能模块,它允许开发者通过预编译方式和运行期动态代理来实现程序功能的统一维护。AOP并不是…...
时序分解 | Matlab实现GWO-CEEMDAN基于灰狼算法优化CEEMDAN时间序列信号分解
时序分解 | Matlab实现GWO-CEEMDAN基于灰狼算法优化CEEMDAN时间序列信号分解 目录 时序分解 | Matlab实现GWO-CEEMDAN基于灰狼算法优化CEEMDAN时间序列信号分解效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.CEEMDAN方法的分解效果取决于白噪声幅值权重(Nstd)和噪声添…...
Spring Boot(七十):利用Jasypt对数据库连接进行加密
1 Jasypt简介 Jasypt(Java Simplified Encryption)是一个专注于简化Java加密操作的工具。它提供了一种简单而强大的方式来处理数据的加密和解密,使开发者能够轻松地保护应用程序中的敏感信息,如数据库密码、API密钥等。 Jasypt的设计理念是简化加密操作,使其对开发者更加…...
Mysql设计规范
主键推荐默认用递增字符串大小合理设置数据库默认字段: 主键、创建人、创建时间、修改人、修改时间、逻辑删除(可选)、乐观锁(可选)冗余字段: 严禁冗余变更字段;例如: 创建人名称,租…...
Vue3项目部署安装
Vue3ts部署 查看官网安装项目vue3的命令(四个)其中有: yarn create vuelatest 我执行时遇到报错,可能是我yarn版本不是最新 的问题, 改用这个命令去掉latest即可 yarn create vue 新项目先要安装yarn依赖,才能yarn …...
Oracle P6 Professional 配置连接数据库总结
前言 P6 Professional作为Oracle P6计划管理系统的重要套件之一,其操作出色,体检佳,是非常多的计划工程师跟踪项目进度计划的辅助工具。自20年前,Professional一直在不断的演变更新,以适应当前的新技术,从…...
WPF —— Grid网格布局
1 :Grid网格布局简介 Grid为WPF中最常用的布局容器, 作为View中的主要组成部分, 负责框架中整体的页面布局。 2:网格标签Grid.ColumnDef Grid.ColumnDefinitions自定义列 只能设置宽度 不能设置高度ColumnDefinition 每一个列可以设置宽度,…...
爬虫的去重
去重基本原理 爬虫中什么业务需要使用去重 防止发出重复的请求防止存储重复的数据 在爬取网页数据时,避免对同一URL发起重复的请求,这样可以减少不必要的网络流量和服务器压力,提高爬虫的效率,在将爬取到的数据存储到数据库或其…...
elementUI两个select单选框联动
实现需求:两个单选框内容两栋,在选择第一个时,第二个选框能自动更新对应选项。且在切换第一个选项内容时,第二个选框会被清空且切换到新的对应选项。 设置值班班次和备班情况两个选项 ,完整代码如下: <…...
十四、GPT
在GPT-1之前,传统的 NLP 模型往往使用大量的数据对有监督的模型进行任务相关的模型训练,但是这种有监督学习的任务存在两个缺点:预训练语言模型之GPT 需要大量的标注数据,高质量的标注数据往往很难获得,因为在很多任务…...
五款优秀的FTP工具
一、WinSCP WinSCP是一个Windows环境下使用SSH的开源图形化SFTP客户端。同时支持SCP协议。它的主要功能就是在本地与远程计算机间安全的复制文件。.winscp也可以链接其他系统,比如linux系统。 官网:https://winscp.net/ 二、FileZilla FileZilla是一个免费开源的…...
十八、软考-系统架构设计师笔记-真题解析-2022年真题
软考-系统架构设计师-2022年上午选择题真题 考试时间 8:30 ~ 11:00 150分钟 1.云计算服务体系结构如下图所示,图中①、②、③分别与SaaS、PaaS、IaaS相对应,图中①、②、③应为( )。 A.应用层、基础设施层、平台层 B.应用层、平台层、基础设施层 C.平…...
oracle数据库名、实例名、服务名等区分
DB_NAME: ①是数据库名,长度不能超过8个字符,记录在datafile、redolog和control file中 ②在DataGuard环境中DB_NAME相同而DB_UNIQUE_NAME不同 ③在RAC环境中,各个节点的DB_NAME 都相同,但是INSTANCE_NAME不同 ④DB_NA…...
MQ横向对比:RocketMQ、Kafka、RabbitMQ、ActiveMQ、ZeroMQ
前言 本文将从多个角度全方位对比目前比较常用的几个MQ: RocketMQKafkaRabbitMQActiveMQZeroMQ将单独说明。 表格对比 特性RocketMQKafkaRabbitMQActiveMQ单机吞吐量10 万级,支撑高吞吐10 几万级,吞吐量非常高,甚至有文献称&a…...
网络编程(Modbus进阶)
思维导图 Modbus RTU(先学一点理论) 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议,由 Modicon 公司(现施耐德电气)于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...
RocketMQ延迟消息机制
两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数,对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后…...
python打卡day49
知识点回顾: 通道注意力模块复习空间注意力模块CBAM的定义 作业:尝试对今天的模型检查参数数目,并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...
mongodb源码分析session执行handleRequest命令find过程
mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程,并且验证connection是否超过限制ASIOSession和connection是循环接受客户端命令,把数据流转换成Message,状态转变流程是:State::Created 》 St…...
苍穹外卖--缓存菜品
1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得,如果用户端访问量比较大,数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据,减少数据库查询操作。 缓存逻辑分析: ①每个分类下的菜品保持一份缓存数据…...
反射获取方法和属性
Java反射获取方法 在Java中,反射(Reflection)是一种强大的机制,允许程序在运行时访问和操作类的内部属性和方法。通过反射,可以动态地创建对象、调用方法、改变属性值,这在很多Java框架中如Spring和Hiberna…...
【7色560页】职场可视化逻辑图高级数据分析PPT模版
7种色调职场工作汇报PPT,橙蓝、黑红、红蓝、蓝橙灰、浅蓝、浅绿、深蓝七种色调模版 【7色560页】职场可视化逻辑图高级数据分析PPT模版:职场可视化逻辑图分析PPT模版https://pan.quark.cn/s/78aeabbd92d1...
【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)
本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...
基于IDIG-GAN的小样本电机轴承故障诊断
目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) 梯度归一化(Gradient Normalization) (2) 判别器梯度间隙正则化(Discriminator Gradient Gap Regularization) (3) 自注意力机制(Self-Attention) 3. 完整损失函数 二…...
破解路内监管盲区:免布线低位视频桩重塑停车管理新标准
城市路内停车管理常因行道树遮挡、高位设备盲区等问题,导致车牌识别率低、逃费率高,传统模式在复杂路段束手无策。免布线低位视频桩凭借超低视角部署与智能算法,正成为破局关键。该设备安装于车位侧方0.5-0.7米高度,直接规避树枝遮…...
