关系(二)利用python绘制热图
关系(二)利用python绘制热图
热图 (Heatmap)简介
热图适用于显示多个变量之间的差异,通过颜色判断彼此之间是否存在相关性。
快速绘制
-
基于seaborn
import seaborn as sns import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib as mpl# 自定义数据 df = pd.DataFrame(np.random.random((5,5)), columns=["a","b","c","d","e"])# 利用seaborn的heatmap函数创建 sns.heatmap(df)plt.show()
定制多样化的热图
自定义热图一般是结合使用场景对相关参数进行修改,并辅以其他的绘图知识。参数信息可以通过官网进行查看,其他的绘图知识则更多来源于实战经验,大家不妨将接下来的绘图作为一种学习经验,以便于日后总结。
seaborn主要利用heatmap
绘制热图,可以通过seaborn.heatmap了解更多用法
-
不同输入格式的热图
import matplotlib.pyplot as plt import numpy as np import seaborn as sns import pandas as pd np.random.seed(0)sns.set(font='SimHei', font_scale=0.8, style="white") # 解决Seaborn中文显示问题# 初始化 fig = plt.figure(figsize=(12,8))# 宽型:是一个矩阵,其中每一行都是一个个体,每一列都是一个观察值。即热图的每个方块代表一个单元格 df = pd.DataFrame(np.random.random((6,5)), columns=["a","b","c","d","e"])ax = plt.subplot2grid((2, 2), (0, 0), colspan=1) sns.heatmap(df) ax.set_title('宽型')# 方型:相关矩阵热图 df = pd.DataFrame(np.random.random((100,5)), columns=["a","b","c","d","e"]) corr_matrix=df.corr() # 计算相关矩阵ax = plt.subplot2grid((2, 2), (0, 1), colspan=1) sns.heatmap(corr_matrix) ax.set_title('方型')# 方型:对角矩阵 df = pd.DataFrame(np.random.random((100,5)), columns=["a","b","c","d","e"]) corr_matrix=df.corr() # 计算相关矩阵 mask = np.zeros_like(corr_matrix) mask[np.triu_indices_from(mask)] = True # 生成上三角蒙版ax = plt.subplot2grid((2, 2), (1, 0), colspan=1) sns.heatmap(corr_matrix, mask=mask, square=True) ax.set_title('方型-对角矩阵')# 长型:每一行代表一个观测结果,输入三个变量(x,y,z) people = np.repeat(("A","B","C","D","E"),5) feature = list(range(1,6))*5 value = np.random.random(25) df = pd.DataFrame({'feature': feature, 'people': people, 'value': value }) # 数据透视 df_wide = df.pivot_table( index='people', columns='feature', values='value') ax = plt.subplot2grid((2, 2), (1, 1), colspan=1) sns.heatmap(df_wide) ax.set_title('长型')fig.tight_layout() # 自动调整间距 plt.show()
-
自定热图
import matplotlib.pyplot as plt import numpy as np import seaborn as sns import pandas as pd np.random.seed(0)sns.set(font='SimHei', font_scale=0.8, style="white") # 解决Seaborn中文显示问题# 自定义数据 df = pd.DataFrame(np.random.random((10,10)), columns=["a","b","c","d","e","f","g","h","i","j"])# 初始化 fig = plt.figure(figsize=(9,8))# 显示值标签 ax = plt.subplot2grid((3, 2), (0, 0), colspan=1) sns.heatmap(df, annot=True, annot_kws={"size": 7}) ax.set_title('显示值标签')# 自定义网格线 ax = plt.subplot2grid((3, 2), (0, 1), colspan=1) sns.heatmap(df, linewidths=2, linecolor='yellow') ax.set_title('自定义网格线')# 移除x、y或者颜色bar ax = plt.subplot2grid((3, 2), (1, 0), colspan=1) sns.heatmap(df, yticklabels=False, cbar=False) ax.set_title('移除部分轴元素')# 减少标签数量 ax = plt.subplot2grid((3, 2), (1, 1), colspan=1) sns.heatmap(df, xticklabels=4) ax.set_title('减少标签数量')# 指定中心值 ax = plt.subplot2grid((3, 2), (2, 0), colspan=1) sns.heatmap(df, center=1) ax.set_title('指定中心值')# 指定颜色 ax = plt.subplot2grid((3, 2), (2, 1), colspan=1) sns.heatmap(df, cmap="YlGnBu") ax.set_title('指定颜色')fig.tight_layout() # 自动调整间距 plt.show()
-
数据标准化
import matplotlib.pyplot as plt import numpy as np import seaborn as sns import pandas as pd np.random.seed(0)sns.set(font='SimHei', font_scale=0.8, style="white") # 解决Seaborn中文显示问题# 自定义数据 df = pd.DataFrame(np.random.randn(10,10) * 4 + 3) # 列含异常值与标准化 df_col = df.copy() df_col[1]=df_col[1]+40 # 构造异常数据点 df_norm_col=(df_col-df_col.mean())/df_col.std() # 按列标准化 # 行含异常值与标准化 df_row = df.copy() df_row.iloc[2]=df_row.iloc[2]+40 # 构造异常数据点 df_norm_row = df_row.apply(lambda x: (x-x.mean())/x.std(), axis = 1) # 按行标准化# 初始化 fig = plt.figure(figsize=(12,8))# 列含异常数据 ax = plt.subplot2grid((2, 2), (0, 0), colspan=1) sns.heatmap(df_col, cmap='viridis') ax.set_title('列含异常数据')# 按列标准化 ax = plt.subplot2grid((2, 2), (0, 1), colspan=1) sns.heatmap(df_norm_col, cmap='viridis') ax.set_title('按列标准化')# 行含异常数据 ax = plt.subplot2grid((2, 2), (1, 0), colspan=1) sns.heatmap(df_row, cmap='viridis') ax.set_title('行含异常数据')# 按行标准化 ax = plt.subplot2grid((2, 2), (1, 1), colspan=1) sns.heatmap(df_norm_col, cmap='viridis') ax.set_title('按行标准化')fig.tight_layout() # 自动调整间距 plt.show()
-
引申-聚类热图
可以通过seaborn.clustermap了解更多用法
import matplotlib.pyplot as plt import numpy as np import seaborn as sns import pandas as pd# 导入数据 df = pd.read_csv('https://raw.githubusercontent.com/holtzy/The-Python-Graph-Gallery/master/static/data/mtcars.csv') df = df.set_index('model')# 基本聚类热图 g = sns.clustermap(df, standard_scale=1) # 标准化处理plt.show()
总结
以上通过seaborn的heatmap
快速绘制热图,并通过修改参数或者辅以其他绘图知识自定义各种各样的热图来适应相关使用场景。
共勉~
相关文章:

关系(二)利用python绘制热图
关系(二)利用python绘制热图 热图 (Heatmap)简介 热图适用于显示多个变量之间的差异,通过颜色判断彼此之间是否存在相关性。 快速绘制 基于seaborn import seaborn as sns import pandas as pd import numpy as np i…...
P8597 [蓝桥杯 2013 省 B] 翻硬币
# [蓝桥杯 2013 省 B] 翻硬币 ## 题目背景 小明正在玩一个“翻硬币”的游戏。 ## 题目描述 桌上放着排成一排的若干硬币。我们用 * 表示正面,用 o 表示反面(是小写字母,不是零),比如可能情形是 **oo***oooo&#x…...

主流公链 - Fantom
Fantom:高性能的区块链协议 Fantom是一种开创性的区块链协议,旨在革新去中心化应用和数字金融领域 技术特点 共识机制 Lachesis协议:Fantom使用了Lachesis协议作为其共识算法。Lachesis是一种 异步拜占庭容错(ABFT)共…...

vue-quill-editor 富文本编辑器(可上传视频图片),组件挂载的方式实现
1.安装 npm install vue-quill-editor --save npm install quill-image-drop-module --save npm install quill-image-resize-module --save2.在组件下面新增组件 QlEditor (1)index.vue <template><div><div idquillEditorQiniu><!-- 基于element…...
入门编程第一步,从记住这些单词开始
** 入门编程第一步,从记住这些单词开始 ** 2023-10-18 一、交互式环境与 print 输出 1、print : 打印/输出 2、coding : 编码 3、syntax : 语法 4、error : 错误 5、invalid : 无效 6、idenfifier : 名称/标识符 7、character : 字符 二、字符串的操作&#x…...

[C++]使用OpenCV去除面积较小的连通域
这是后期补充的部分,和前期的代码不太一样 效果图 源代码 //测试 void CCutImageVS2013Dlg::OnBnClickedTestButton1() {vector<vector<Point> > contours; //轮廓数组vector<Point2d> centers; //轮廓质心坐标 vector<vector<Point&…...
vscode连接不上,终端ssh正常,一直输入密码正确但是无法登录
若是之前链结果突然等不上,使用第一个链接 若是第一次链接连不上,先使用第二个链接,在使用第一个链接 原因:原因是服务器端的wget命令不能使用,vscode需要服务器端下载个文件,无法下载就导致了如上的错误…...

Hive on Spark 配置
目录 1 Hive 引擎简介2 Hive on Spark 配置2.1 在 Hive 所在节点部署 Spark2.2 在hive中创建spark配置文件2.3 向 HDFS上传Spark纯净版 jar 包2.4 修改hive-site.xml文件2.5 Hive on Spark测试2.6 报错 1 Hive 引擎简介 Hive引擎包括:MR(默认)…...
ROS 基本
ROS创建自己的功能包 ROS中工作空间(workspace)是一个存放工程开发相关文件的文件夹,其中有四个文件夹。 src:代码空间(Source Space)build:编译空间(Build Space)devel:开发空间(Development Space)install:安装空间(Install Space) OK接下来创作工作空间&#…...

Pygame基础9-射击
简介 玩家用鼠标控制飞机(白色方块)移动,按下鼠标后,玩家所在位置出现子弹,子弹匀速向右飞行。 代码 没有什么新的东西,使用两个精灵类表示玩家和子弹。 有一个细节需要注意,当子弹飞出屏幕…...

Ps:颜色查找
颜色查找 Color Lookup命令通过应用预设的 LUT 来改变图像的色彩和调性,从而为摄影师和设计师提供了一种快速实现复杂色彩调整的方法,广泛应用于颜色分级、视觉风格的统一和创意色彩效果的制作。 Ps菜单:图像/调整/颜色查找 Adjustments/Colo…...

vue3+vite 模板vue3-element-admin框架如何关闭当前页面跳转 tabs
使用模版: 有来开源组织 / vue3-element-admin 需要关闭的.vue 页面增加以下方法 //setup 里import {LocationQuery, useRoute, useRouter} from "vue-router"; const router useRouter(); function close() {console.log(|--router.currentRoute.value, router.cur…...

JavaScript 对象管家 Proxy
JavaScript 在 ES6 中,引入了一个新的对象类型 Proxy,它可以用来代理另一个对象,并可以在代理过程中拦截、覆盖和定制对象的操作。Proxy 对象封装另一个对象并充当中间人,其提供了一个捕捉器函数,可以在代理对象上拦截…...

Qt + Vs联合开发
Qt + Vs联合开发 文章目录 Qt + Vs联合开发环境说明VS+Qt安装注意事项QtCreator msvc编译器配置Visual Studio 2019 + Qt 5.12.10Visual Studio 2015 + Qt5.12.10VsQt环境配置安装插件 Qt Visual Studio Tools插件配置Qt创建项目Vs创建Qt项目VsQt工程转换Vs工程转Qt工程Qt工程转…...

开源知识库平台Raneto--使用Docker部署Raneto
文章目录 一、Raneto介绍1.1 Raneto简介1.2 知识库介绍 二、阿里云环境2.1 环境规划2.2 部署介绍 三、环境检查3.1 检查Docker服务状态3.2 检查Docker版本3.3 检查docker compose 版本 四、下载Raneto镜像五、部署Raneto知识库平台5.1 创建挂载目录5.2 编辑config.js文件5.3 编…...

鸿蒙原OS开发实例:【ArkTS类库单次I/O任务开发】
Promise和async/await提供异步并发能力,适用于单次I/O任务的场景开发,本文以使用异步进行单次文件写入为例来提供指导。 实现单次I/O任务逻辑。 import fs from ohos.file.fs; import common from ohos.app.ability.common;async function write(data:…...

C语言:二叉树的构建
目录 一、二叉树的存储 1.1 顺序存储 1.2 链式存储 二、二叉树的顺序结构及实现 2.1堆的概念及结构 2.2堆的构建 2.3堆的插入 2.4堆顶的删除 2.5堆的完整代码 三、二叉树的链式结构及实现 3.1链式二叉树的构建 3.2链式二叉树的遍历 3.2.1前序遍历 …...
软件测试工程师面试汇总功能测试篇
Q:一、进行测试用例设计的时候用到的方法有哪些? A:最常使用的测试用例设计方法包括等价类划分法、边界值分析方法、场景法、错误推测法。其中,最容易 发现错误的是边界值法,使用最多的是场景法。以注册为例:首先从需求确定用户名…...
javaAPI1
API application pragramming interface 应用程序编程接口 除java.lang包以外,其他包中的类在使用时需要导入 建包 package com.abc.javabean; 导包格式,import 包名.类名 API使用技巧 1,先看关键字 2,看参数列表 3,看返回值类型 String 封装字符串和处理字符串的类…...

案例研究|DataEase实现物业数据可视化管理与决策支持
河北隆泰物业服务有限责任公司(以下简称为“隆泰物业”)创建于2002年,总部设在河北省高碑店市,具有国家一级物业管理企业资质,通过了质量体系、环境管理体系、职业健康安全管理体系等认证。自2016年至今,隆…...

RocketMQ延迟消息机制
两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数,对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后…...

【机器视觉】单目测距——运动结构恢复
ps:图是随便找的,为了凑个封面 前言 在前面对光流法进行进一步改进,希望将2D光流推广至3D场景流时,发现2D转3D过程中存在尺度歧义问题,需要补全摄像头拍摄图像中缺失的深度信息,否则解空间不收敛…...
Python ROS2【机器人中间件框架】 简介
销量过万TEEIS德国护膝夏天用薄款 优惠券冠生园 百花蜂蜜428g 挤压瓶纯蜂蜜巨奇严选 鞋子除臭剂360ml 多芬身体磨砂膏280g健70%-75%酒精消毒棉片湿巾1418cm 80片/袋3袋大包清洁食品用消毒 优惠券AIMORNY52朵红玫瑰永生香皂花同城配送非鲜花七夕情人节生日礼物送女友 热卖妙洁棉…...

C++使用 new 来创建动态数组
问题: 不能使用变量定义数组大小 原因: 这是因为数组在内存中是连续存储的,编译器需要在编译阶段就确定数组的大小,以便正确地分配内存空间。如果允许使用变量来定义数组的大小,那么编译器就无法在编译时确定数组的大…...

保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek
文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama(有网络的电脑)2.2.3 安装Ollama(无网络的电脑)2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...

Linux 中如何提取压缩文件 ?
Linux 是一种流行的开源操作系统,它提供了许多工具来管理、压缩和解压缩文件。压缩文件有助于节省存储空间,使数据传输更快。本指南将向您展示如何在 Linux 中提取不同类型的压缩文件。 1. Unpacking ZIP Files ZIP 文件是非常常见的,要在 …...

【C++特殊工具与技术】优化内存分配(一):C++中的内存分配
目录 一、C 内存的基本概念 1.1 内存的物理与逻辑结构 1.2 C 程序的内存区域划分 二、栈内存分配 2.1 栈内存的特点 2.2 栈内存分配示例 三、堆内存分配 3.1 new和delete操作符 4.2 内存泄漏与悬空指针问题 4.3 new和delete的重载 四、智能指针…...
【LeetCode】3309. 连接二进制表示可形成的最大数值(递归|回溯|位运算)
LeetCode 3309. 连接二进制表示可形成的最大数值(中等) 题目描述解题思路Java代码 题目描述 题目链接:LeetCode 3309. 连接二进制表示可形成的最大数值(中等) 给你一个长度为 3 的整数数组 nums。 现以某种顺序 连接…...

DBLP数据库是什么?
DBLP(Digital Bibliography & Library Project)Computer Science Bibliography是全球著名的计算机科学出版物的开放书目数据库。DBLP所收录的期刊和会议论文质量较高,数据库文献更新速度很快,很好地反映了国际计算机科学学术研…...

车载诊断架构 --- ZEVonUDS(J1979-3)简介第一篇
我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 做到欲望极简,了解自己的真实欲望,不受外在潮流的影响,不盲从,不跟风。把自己的精力全部用在自己。一是去掉多余,凡事找规律,基础是诚信;二是…...