深入探索自然语言处理:用Python和BERT构建文本分类模型
在当今的信息时代,自然语言处理(NLP)技术正在改变我们理解和处理自然语言的方式。NLP使计算机能够解读、理解和生成人类语言,从而在多种应用中实现自动化,如聊天机器人、情感分析和文本分类。本文将详细介绍如何使用Python和BERT(Bidirectional Encoder Representations from Transformers)模型来构建一个高效的文本分类系统。
## 自然语言处理简介
自然语言处理是人工智能领域的一个重要分支,它涉及计算机和人类(自然)语言之间的交互。文本分类是NLP的一个常见任务,它的目的是将文本数据按照预定的分类标签进行分类。
## 开发环境设置
在开始之前,确保你的Python环境中已安装了以下库:
- TensorFlow:一个由Google开发的强大的机器学习库。
- Transformers:提供预训练模型如BERT进行NLP任务的库。
您可以使用pip命令安装这些库:
```bash
pip install tensorflow transformers
```
## 选择数据集
为了本教程,我们将使用“20 Newsgroups”数据集,这是一个用于文本分类的常见数据集,包含20个不同主题的新闻组文章。
## 加载和预处理数据
首先,我们需要加载数据集并进行必要的预处理,以适应BERT模型的输入要求。
```python
from transformers import BertTokenizer
from sklearn.datasets import fetch_20newsgroups
# 加载数据集
data = fetch_20newsgroups(subset='all')['data']
# 初始化BERT分词器
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
# 分词处理
tokens = [tokenizer.encode(text, max_length=512, truncation=True, padding='max_length') for text in data]
```
## 构建模型
使用TensorFlow和Transformers库构建BERT模型。
```python
import tensorflow as tf
from transformers import TFBertModel
# 加载预训练的BERT模型
bert = TFBertModel.from_pretrained('bert-base-uncased')
# 构建用于文本分类的模型
input_ids = tf.keras.Input(shape=(512,), dtype='int32')
attention_masks = tf.keras.Input(shape=(512,), dtype='int32')
output = bert(input_ids, attention_mask=attention_masks)[1]
output = tf.keras.layers.Dense(20, activation='softmax')(output)
model = tf.keras.Model(inputs=[input_ids, attention_masks], outputs=output)
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
```
## 训练模型
准备输入数据并训练模型。
```python
import numpy as np
# 划分训练集和测试集
train_tokens, test_tokens, train_labels, test_labels = train_test_split(tokens, labels, test_size=0.1)
# 训练模型
model.fit([np.array(train_tokens), np.zeros_like(train_tokens)], np.array(train_labels), epochs=3, batch_size=8)
# 评估模型
model.evaluate([np.array(test_tokens), np.zeros_like(test_tokens)], np.array(test_labels))
```
## 结论
通过这个示例,我们展示了如何利用BERT和TensorFlow来构建一个强大的文本分类模型。这只是自然语言处理可以达到的浅层应用之一。随着模型和技术的不断进步,NLP的应用领域将持续扩展,为各行各业带来革命性的变革。不断学习和实验是掌握NLP技术的关键,期待每位读者都能在这一领域发光发热。
这篇教程不仅介绍了NLP的基础知识和BERT的应用,还通过实际代码示例指导了如何实现复
杂的NLP任务,帮助读者从理论走向实践,开启AI和机器学习的探索之旅。
相关文章:
深入探索自然语言处理:用Python和BERT构建文本分类模型
在当今的信息时代,自然语言处理(NLP)技术正在改变我们理解和处理自然语言的方式。NLP使计算机能够解读、理解和生成人类语言,从而在多种应用中实现自动化,如聊天机器人、情感分析和文本分类。本文将详细介绍如何使用Py…...
在Visual Studio Code中编辑React项目时,以下是一些推荐的扩展
ESLint:这个扩展可以集成ESLint到VS Code中,帮助你在编写代码时发现和修复JavaScript和TypeScript的语法错误和代码风格问题。 Prettier - Code formatter:Prettier是一个代码格式化工具,可以自动格式化你的代码以保持一致的代码…...

智算时代的基础设施如何实现可继承可演进?浪潮云海发布 InCloud OS V8 新一代架构平台
从 2023 年开始持续火爆的 AIGC 正在加速落地应用,为全行业带来生产生活效率的变革与升级。面对数字化转型与智能化转型,对于技术团队来说,既要根据业务与 AI 应用去部署以云为基础的 AI 算力,又要与已有数据和系统(甚…...

LDF、DBC、BIN、HEX、S19、BLF、ARXML、slx等
文章目录 如题 如题 LDF是LIN报文格式文件,把这个直接拖到软件里面,可以发报文和接收报文 DBC是CAN报文格式文件,把这个直接拖到软件里面,可以发报文和接收报文 BIN文件烧录在BOOT里面(stm32),…...

因为使用ArrayList.removeAll(List list)导致的机器重启
背景 先说一下背景,博主所在的业务组有一个核心系统,需要同步两个不同数据源给过来的数据到redis中,但是每次同步之前需要过滤掉一部分数据,只存储剩下的数据。每次同步的数据与需要过滤掉的数据量级大概在0-100w的数据不等。 由…...

Let‘s Encrypt
创建文件夹 mkdir /usr/local/develop/ 安装Certbot客户端 yum install certbot 首先确保example.com和www.example.com这两个域名通过DNS解析绑定了你的web 服务器的公网 IP 就是说先要完成域名解析到服务器 下面命令会验证 /var/www/example 他会将一些命令文件存在…...

C语言 | Leetcode C语言题解之第24题两两交换链表中的节点
题目: 题解: struct ListNode* swapPairs(struct ListNode* head) {struct ListNode dummyHead;dummyHead.next head;struct ListNode* temp &dummyHead;while (temp->next ! NULL && temp->next->next ! NULL) {struct ListNod…...
【LeetCode热题100】【回溯】电话号码的字母组合
题目链接:17. 电话号码的字母组合 - 力扣(LeetCode) 组合的过程是一个长树的过程,可以用深度遍历实现,每一个数字对应的字符串都是一层,一种字母组合就是一条路径,当递归的深度达到层数就找到了…...
解析mysql的DDL语句生成高斯内表及表字段主键配置
mysql的DDL语句如下: CREATE TABLE gg_zr (id bigint(20) NOT NULL COMMENT 责任信息表主键id,zrdm varchar(32) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci DEFAULT NULL COMMENT 责任代码,zrmc varchar(64) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci DEFAU…...

ANSYS Electromagnetics Suite 2023 R2 三维电磁(EM)仿真软件下载
Ansys家最新的三维电磁(EM)仿真软件ANSYS Electromagnetics Suite 2023 R2日前发布了,老wu这次分享得有点晚  ̄ω ̄,现在已经将资源上传到了网盘供大家免费下载,同时,为了让大家都能与…...

pbootcms百度推广链接打不开显示404错误页面
PbootCMS官方在2023年4月21日的版本更新中(对应V3.2.5版本),对URL参数添加了如下判断 if(stripos(URL,?) ! false && stripos(URL,/?tag) false && stripos(URL,/?page) false && stripos(URL,/?ext_) false…...

springboot 整合 swagger2
整合步骤 pom 添加依赖 <dependency><groupId>io.springfox</groupId><artifactId>springfox-swagger2</artifactId><version>2.9.2</version></dependency><dependency><groupId>io.springfox</groupId>&…...

redis-缓存穿透与雪崩
一,缓存穿透(查不到) 在默认情况下,用户请求数据时,会先在缓存(Redis)中查找,若没找到即缓存未命中,再在数据库中进行查找,数量少可能问题不大,可是一旦大量的请求数据&a…...
K8S临时存储-本地存储-PV和PVC的使用-动态存储(StorageClass)
介绍 容器中的文件在磁盘上是临时存放的,当容器崩溃或停止时容器上面的数据未保存, 因此在容器生命周期内创建或修改的所有文件都将丢失。 在崩溃期间,kubelet 会以干净的状态重新启动容器。 当多个容器在一个 Pod 中运行并且需要共享文件时…...

jeecg-boot安装
我看大家都挺关注,所以集中上传了下代码和相关工具,方便大家快速完成 链接:https://pan.baidu.com/s/1-Y9yHVZ-4DQFDjPBWUk4-A 提取码:op1r 1. 下载代码 下载地址 : JEECG官方网站 - 基于BPM的低代码开发平台(低代码平台_零代…...

Unity面经(自整)——移动开发与Shader
Unity与Android混合开发 为什么使用Flutter构建 Flutter 是 Google 的开源工具包,用于从单个代码库为移动、Web、桌面和嵌入式设备构建应用程序(一套代码跨平台构建app是它最大的优点),并且可以构建高性能、稳定和丰富UI的应用程…...
Nginx实现反向代理、负载均衡、动静分离
1. 什么是Nginx的反向代理? Nginx的反向代理是指Nginx作为服务器的前端,接收客户端的请求,然后将请求转发给后端的真实服务器,并将真实服务器的响应返回给客户端。这种代理方式使得客户端并不知道真实服务器的存在,它…...

【Linux】网络基础(一)
文章目录 一、计算机网络背景1. 网络发展2. 认识“协议” 二、网络协议初识1. 协议分层2. OSI七层模型3. TCP/IP五层(或四层)模型 三、网络传输基本流程1. 同局域网的两台主机通信数据包封装和分用封装分用 2. 跨网络的两台主机通信 四、网络中的地址管理…...
前端小白学习Vue框架(二)
一.属性计算、属性监听、属性过滤 1.认识MVVM V (用户视图界面)通过VM (应用程序) 向Model(数据模型) 取值与赋值的过程! 数据双向绑定 视图改变更新数据,数据改变更新视图 2.属性计算 //在vue实例中通过computed去计算new …...

飞书api增加权限
1,进入飞书开发者后台:飞书开放平台 给应用增加权限 2,进入飞书管理后台 https://fw5slkpbyb3.feishu.cn/admin/appCenter/audit 审核最新发布的版本 如果还是不行,则需要修改数据权限,修改为全部成员可修改。 改完…...

基于FPGA的PID算法学习———实现PID比例控制算法
基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容:参考网站: PID算法控制 PID即:Proportional(比例)、Integral(积分&…...
IGP(Interior Gateway Protocol,内部网关协议)
IGP(Interior Gateway Protocol,内部网关协议) 是一种用于在一个自治系统(AS)内部传递路由信息的路由协议,主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...
大语言模型如何处理长文本?常用文本分割技术详解
为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...
vue3 定时器-定义全局方法 vue+ts
1.创建ts文件 路径:src/utils/timer.ts 完整代码: import { onUnmounted } from vuetype TimerCallback (...args: any[]) > voidexport function useGlobalTimer() {const timers: Map<number, NodeJS.Timeout> new Map()// 创建定时器con…...
【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)
升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点,但无自动故障转移能力,Master宕机后需人工切换,期间消息可能无法读取。Slave仅存储数据,无法主动升级为Master响应请求ÿ…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)
在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...

AI书签管理工具开发全记录(十九):嵌入资源处理
1.前言 📝 在上一篇文章中,我们完成了书签的导入导出功能。本篇文章我们研究如何处理嵌入资源,方便后续将资源打包到一个可执行文件中。 2.embed介绍 🎯 Go 1.16 引入了革命性的 embed 包,彻底改变了静态资源管理的…...
稳定币的深度剖析与展望
一、引言 在当今数字化浪潮席卷全球的时代,加密货币作为一种新兴的金融现象,正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而,加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下,稳定…...
Web 架构之 CDN 加速原理与落地实践
文章目录 一、思维导图二、正文内容(一)CDN 基础概念1. 定义2. 组成部分 (二)CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 (三)CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 …...

听写流程自动化实践,轻量级教育辅助
随着智能教育工具的发展,越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式,也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建,…...