当前位置: 首页 > news >正文

llama-factory SFT系列教程 (二),大模型在自定义数据集 lora 训练与部署

文章目录

    • 简介
    • 支持的模型列表
    • 2. 添加自定义数据集
    • 3. lora 微调
    • 4. 大模型 + lora 权重,部署
      • 问题
    • 参考资料

简介

文章列表:

  1. llama-factory SFT系列教程 (一),大模型 API 部署与使用
  2. llama-factory SFT系列教程 (二),大模型在自定义数据集 lora 训练与部署
  3. llama-factory SFT系列教程 (三),chatglm3-6B 命名实体识别实战

支持的模型列表

模型名模型大小默认模块Template
Baichuan27B/13BW_packbaichuan2
BLOOM560M/1.1B/1.7B/3B/7.1B/176Bquery_key_value-
BLOOMZ560M/1.1B/1.7B/3B/7.1B/176Bquery_key_value-
ChatGLM36Bquery_key_valuechatglm3
DeepSeek (MoE)7B/16B/67Bq_proj,v_projdeepseek
Falcon7B/40B/180Bquery_key_valuefalcon
Gemma2B/7Bq_proj,v_projgemma
InternLM27B/20Bwqkvintern2
LLaMA7B/13B/33B/65Bq_proj,v_proj-
LLaMA-27B/13B/70Bq_proj,v_projllama2
Mistral7Bq_proj,v_projmistral
Mixtral8x7Bq_proj,v_projmistral
OLMo1B/7Batt_projolmo
Phi-1.5/21.3B/2.7Bq_proj,v_proj-
Qwen1.8B/7B/14B/72Bc_attnqwen
Qwen1.50.5B/1.8B/4B/7B/14B/72Bq_proj,v_projqwen
StarCoder23B/7B/15Bq_proj,v_proj-
XVERSE7B/13B/65Bq_proj,v_projxverse
Yi6B/9B/34Bq_proj,v_projyi
Yuan2B/51B/102Bq_proj,v_projyuan

参考自:https://zhuanlan.zhihu.com/p/689333581

  • 默认模块 作为 --lora_target 参数的默认值,也可使用 --lora_target all 参数指定全部模块;

  • –template 参数可以是 default, alpaca, vicuna 等任意值。但“对话”(Chat)模型请务必使用对应的模板。

项目所支持模型的完整列表请参阅 constants.py。

2. 添加自定义数据集

LLaMA-Factory 数据集说明,参考该文件给出的说明,在dataset_info.json 文件中添加配置信息;

参考如下数据集格式,定义自定义数据集;

[{"instruction": "用户指令(必填)","input": "用户输入(选填)","output": "模型回答(必填)","system": "系统提示词(选填)","history": [["第一轮指令(选填)", "第一轮回答(选填)"],["第二轮指令(选填)", "第二轮回答(选填)"]]}
]

新数据集内容如下:
diy.json

[{"instruction": "你是谁?","input": "","output": "我是Qwen,edit by JieShin.","history": []},{"instruction": "你能帮我干些什么?","input": "","output": "我能和你互动问答,我的其他功能正在开发中。","history": []}
]

添加自定义数据集的步骤如下:

  1. diy.json 文件保存到 LLaMA-Factory/data 文件夹下;

在这里插入图片描述

  1. 在 dataset_info.json 文件中,配置数据集
    首先计算 diy.json 文件的sha1sum, sha1sum diy.json
    在这里插入图片描述
    vim dataset_info.json 添加自定义数据集的配置信息, 把 diy.json 文件的sha1 值添加到文件中,"diy" 为该数据集名;
    在这里插入图片描述

3. lora 微调

使用配置好的 diy 数据集进行模型训练;

--model_name_or_path qwen/Qwen-7B,只写模型名,不写绝对路径可运行成功,因为配置了export USE_MODELSCOPE_HUB=1

查看 配置是否生效,输出1 即为配置成功:
echo $USE_MODELSCOPE_HUB

在这里插入图片描述

CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage sft \
--do_train \
--model_name_or_path qwen/Qwen-7B \
--dataset diy \
--template qwen \
--finetuning_type lora \
--lora_target c_attn \
--output_dir /mnt/workspace/llama_factory_demo/qwen/lora/sft \
--overwrite_cache \
--per_device_train_batch_size 4 \
--gradient_accumulation_steps 4 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--save_strategy epoch \
--learning_rate 5e-5 \
--num_train_epochs 50.0 \
--plot_loss \
--fp16

训练完成的lora 权重,保存在下述文件夹中;
--output_dir /mnt/workspace/llama_factory_demo/qwen/lora/sft

模型的训练结果如下:
在这里插入图片描述

lora 训练后的权重如下图所示:
在这里插入图片描述

4. 大模型 + lora 权重,部署

由于llama-factory 不支持 qwen 结合 lora 进行推理,故需要把 lora 权重融合进大模型成一个全新的大模型权重;

可查看如下链接,了解如何合并模型权重:merge_lora GitHub issue

下述是合并 lora 权重的脚本,全新大模型的权重保存到 export_dir 文件夹;

CUDA_VISIBLE_DEVICES=0 python src/export_model.py \--model_name_or_path qwen/Qwen-7B \--adapter_name_or_path /mnt/workspace/llama_factory_demo/qwen/lora/sft/checkpoint-50 \--template qwen \--finetuning_type lora \--export_dir /mnt/workspace/merge_w/qwen \--export_size 2 \--export_legacy_format False

使用融合后到大模型进行推理,model_name_or_path 为融合后的新大模型路径

CUDA_VISIBLE_DEVICES=0 API_PORT=8000 python src/api_demo.py \--model_name_or_path /mnt/workspace/merge_w/qwen \--template qwen \--infer_backend vllm \--vllm_enforce_eager \
~                             

模型请求脚本

curl -X 'POST' \'http://0.0.0.0:8000/v1/chat/completions' \-H 'accept: application/json' \-H 'Content-Type: application/json' \-d '{"model": "string","messages": [{"role": "user","content": "你能帮我做一些什么事情?","tool_calls": [{"id": "call_default","type": "function","function": {"name": "string","arguments": "string"}}]}],"tools": [{"type": "function","function": {"name": "string","description": "string","parameters": {}}}],"do_sample": true,"temperature": 0,"top_p": 0,"n": 1,"max_tokens": 128,"stream": false
}'

模型推理得到了和数据集中一样的结果,这说明 lora 微调生效了;
在这里插入图片描述

以为设置了 "stop": "<|endoftext|>",模型会在遇到结束符自动结束,但模型依然推理到了最长的长度后结束,设置的 stop 并没有生效;

在这里插入图片描述

llama-factory的作者表示还没有支持stop,万一未来支持了stop功能,大家可以关注这个issue support “stop” in api chat/completions #3114

问题

虽然设置了 "temperature": 0 , 但是模型的输出结果依然变动很大,运行3-4次后,才出现训练数据集中的结果;

参考资料

  • api 参数列表
  • 使用LLaMa-Factory简单高效微调大模型
    展示了支持的大模型列表;

相关文章:

llama-factory SFT系列教程 (二),大模型在自定义数据集 lora 训练与部署

文章目录 简介支持的模型列表2. 添加自定义数据集3. lora 微调4. 大模型 lora 权重&#xff0c;部署问题 参考资料 简介 文章列表&#xff1a; llama-factory SFT系列教程 (一)&#xff0c;大模型 API 部署与使用llama-factory SFT系列教程 (二)&#xff0c;大模型在自定义数…...

C语言游戏实战(11):贪吃蛇大作战(多人对战)

成果展示&#xff1a; 贪吃蛇&#xff08;多人对战&#xff09; 前言&#xff1a; 这款贪吃蛇大作战是一款多人游戏&#xff0c;玩家需要控制一条蛇在地图上移动&#xff0c;吞噬其他蛇或者食物来增大自己的蛇身长度和宽度。本游戏使用C语言和easyx图形库编写&#xff0c;旨在…...

腾讯测试岗位的面试经历与经验分享【一面、二面与三面】

腾讯两个月的实习一转眼就结束了,回想起当时面试的经过,感觉自己是跌跌撞撞就这么过了,多少有点侥幸.马上腾讯又要来校招了,对于有意愿想投腾讯测试岗位的同学们,写了一些那时候面试的经历和自己的想法,算不上经验&#xff0c;仅供参考吧! 一面 — —技术基础&#xff0c;全面…...

手机移动端网卡信息获取原理分析

有些场景我们需要获取当前手机上的网卡信息&#xff08;如双卡双待、Wifi等&#xff09;。本文准备研究一下这块的原理&#xff0c;以便更好的掌握相关技术原理。 1、底层系统接口 getifaddrs 使用 getifaddrs 接口可以达到我们的目的&#xff0c;该接口会返回本地所有网卡的信…...

无人新零售引领的创新浪潮

无人新零售引领的创新浪潮 在数字化时代加速演进的背景下&#xff0c;无人新零售作为商业领域的一股新兴力量&#xff0c;正以其独特的高效性和便捷性重塑着传统的购物模式&#xff0c;开辟了一条充满创新潜力的发展道路。 依托人脸识别、物联网等尖端技术&#xff0c;无人新…...

SD-WAN提升企业网络体验

在现代企业中&#xff0c;网络体验已成为提升工作效率与业务质量的关键因素。SD-WAN技术的出现&#xff0c;以其独特的优势&#xff0c;为企业提供了优化网络连接、加速数据传输、提升服务质量和应用访问体验&#xff0c;以及增强网络稳定性的解决方案。接下来&#xff0c;我们…...

Docker搭建Let‘s Encrypt

Let’s Encrypt是一个免费、开放和自动化的证书颁发机构&#xff08;CA&#xff09;&#xff0c;它提供了一种简单、无需重复的机制来获取和更新SSL/TLS证书。Let’s Encrypt Docker镜像允许用户在容器化环境中轻松部署和使用Let’s Encrypt的服务。 主要功能包括&#xff1a;…...

单链表讲解

一.链表的概念以及结构 链表是一种物理结构上不连续&#xff0c;逻辑结构上连续的存储结构&#xff0c;数据元素的逻辑顺序是通过链表中的指针链接次序实现的。 链表的结构与火车是类似的&#xff0c;一节一节的&#xff0c;数据就像乘客一样在车厢中一样。 与顺序表不同的…...

DFS算法系列 回溯

DFS算法系列-回溯 文章目录 DFS算法系列-回溯1. 算法介绍2. 算法应用2.1 全排列2.2 组合2.3 子集 3. 总结 1. 算法介绍 回溯算法是一种经典的递归算法&#xff0c;通常被用来解决排列问题、组合问题和搜索问题 基本思想 从一个初始状态开始&#xff0c;按一定的规则向前搜索&…...

Linux C应用编程:MQTT物联网

1 MQTT通信协议 MQTT&#xff08;Message Queuing Telemetry Transport&#xff0c;消息队列遥测传 输&#xff09;是一种基于客户端-服务端架构的消息传输协议&#xff0c;如今&#xff0c;MQTT 成为了最受欢迎的物联网协议&#xff0c;已广泛应用于车联网、智能家居、即时聊…...

企业常用Linux文件命令相关知识+小案例

远程连接工具无法连接VMWARE&#xff1a; 如果发现连接工具有时连不上&#xff0c;ip存在&#xff0c;这时候我们查看网络编辑器&#xff0c;更多配置&#xff0c;看vnet8是不是10段&#xff0c;nat设置是否是正确的&#xff1f; 软件重启一下虚机还原一下网络编辑器 查看文件…...

Istio介绍

1.什么是Istio Istio是一个开源的服务网格&#xff08;Service Mesh&#xff09;框架&#xff0c;它提供了一种简单的方式来为部署在Kubernetes等容器编排平台上的微服务应用添加网络功能。Istio的核心功能包括&#xff1a; 服务治理&#xff1a;Istio能够帮助管理服务之间的…...

代码随想录算法训练营第四十七天|leetcode115、392题

一、leetcode第392题 本题要求判断s是否为t的子序列&#xff0c;因此设置dp数组&#xff0c;dp[i][j]的含义是下标为i-1的子串与下标为j-1的子串相同字符的个数&#xff0c;可得递推公式是通过s[i-1]和t[j-1]是否相等区分。 具体代码如下&#xff1a; class Solution { publ…...

将Ubuntu18.04默认的python3.6升级到python3.8

1、查看现有的 python3 版本 python3 --version 2、安装 python3.8 sudo apt install python3.8 3、将 python3.6 和 3.8 添加到 update-alternatives sudo update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.6 1 sudo update-alternatives --insta…...

Python和Java哪个更适合后端开发?

Python和Java都是强大的后端开发语言&#xff0c;它们各自有鲜明的特点和适用场景。选择哪一个更适合后端开发&#xff0c;主要取决于具体的项目需求、团队技术栈、个人技能偏好以及长期发展考虑等因素。 下面是两者在后端开发中的优势和劣势&#xff1a; 「Python&#xff1…...

Python+pytest接口自动化之cookie绕过登录(保持登录状态)

前言 我们今天来聊聊pythonpytest接口自动化之cookie绕过登录&#xff08;保持登录状态&#xff09;&#xff0c;在编写接口自动化测试用例或其他脚本的过程中&#xff0c;经常会遇到需要绕过用户名/密码或验证码登录&#xff0c;去请求接口的情况&#xff0c;一是因为有时验证…...

什么数据集成(Data Integration):如何将业务数据集成到云平台?

说到数据集成&#xff08;Data Integration&#xff09;&#xff0c;简单地将所有数据倒入数据湖并不是解决办法。 在这篇文章中&#xff0c;我们将介绍如何轻松集成数据、链接不同来源的数据、将其置于合适的环境中&#xff0c;使其具有相关性并易于使用。 数据集成&#xff1…...

国外EDM邮件群发多少钱?哪个软件好?

在当今全球化市场环境下&#xff0c;电子邮件营销作为最有效的数字营销渠道之一&#xff0c;其影响力不容忽视。而高效精准的EDM&#xff08;Electronic Direct Mail&#xff09;邮件营销策略更是企业拓展海外市场、提升品牌知名度的关键手段。云衔科技以其创新的智能EDM邮件营…...

C语言入门算法——回文数

题目描述&#xff1a; 若一个数&#xff08;首位不为零&#xff09;从左向右读与从右向左读都一样&#xff0c;我们就将其称之为回文数。 例如&#xff1a;给定一个十进制数 56&#xff0c;将 56 加 65&#xff08;即把 56 从右向左读&#xff09;&#xff0c;得到 121 是一个…...

OceanBase—操作实践

文档结构 1、概念简介2、核心设计3、操作实践3.3、数据同步 官方文档&#xff1a;https://www.oceanbase.com/docs/oceanbase-database-cn 1、概念简介 版本分为社区版和企业版&#xff0c;其中企业版兼容MySQL 和Oracle数据库语法&#xff1b; 2、核心设计 存储层 复制层 …...

linux之kylin系统nginx的安装

一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源&#xff08;HTML/CSS/图片等&#xff09;&#xff0c;响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址&#xff0c;提高安全性 3.负载均衡服务器 支持多种策略分发流量…...

Cesium1.95中高性能加载1500个点

一、基本方式&#xff1a; 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...

解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八

现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet&#xff0c;点击确认后如下提示 最终上报fail 解决方法 内核升级导致&#xff0c;需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...

Python爬虫实战:研究feedparser库相关技术

1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...

如何在看板中有效管理突发紧急任务

在看板中有效管理突发紧急任务需要&#xff1a;设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP&#xff08;Work-in-Progress&#xff09;弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中&#xff0c;设立专门的紧急任务通道尤为重要&#xff0c;这能…...

C++ Visual Studio 2017厂商给的源码没有.sln文件 易兆微芯片下载工具加开机动画下载。

1.先用Visual Studio 2017打开Yichip YC31xx loader.vcxproj&#xff0c;再用Visual Studio 2022打开。再保侟就有.sln文件了。 易兆微芯片下载工具加开机动画下载 ExtraDownloadFile1Info.\logo.bin|0|0|10D2000|0 MFC应用兼容CMD 在BOOL CYichipYC31xxloaderDlg::OnIni…...

AI,如何重构理解、匹配与决策?

AI 时代&#xff0c;我们如何理解消费&#xff1f; 作者&#xff5c;王彬 封面&#xff5c;Unplash 人们通过信息理解世界。 曾几何时&#xff0c;PC 与移动互联网重塑了人们的购物路径&#xff1a;信息变得唾手可得&#xff0c;商品决策变得高度依赖内容。 但 AI 时代的来…...

Angular微前端架构:Module Federation + ngx-build-plus (Webpack)

以下是一个完整的 Angular 微前端示例&#xff0c;其中使用的是 Module Federation 和 npx-build-plus 实现了主应用&#xff08;Shell&#xff09;与子应用&#xff08;Remote&#xff09;的集成。 &#x1f6e0;️ 项目结构 angular-mf/ ├── shell-app/ # 主应用&…...

GruntJS-前端自动化任务运行器从入门到实战

Grunt 完全指南&#xff1a;从入门到实战 一、Grunt 是什么&#xff1f; Grunt是一个基于 Node.js 的前端自动化任务运行器&#xff0c;主要用于自动化执行项目开发中重复性高的任务&#xff0c;例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...

GitFlow 工作模式(详解)

今天再学项目的过程中遇到使用gitflow模式管理代码&#xff0c;因此进行学习并且发布关于gitflow的一些思考 Git与GitFlow模式 我们在写代码的时候通常会进行网上保存&#xff0c;无论是github还是gittee&#xff0c;都是一种基于git去保存代码的形式&#xff0c;这样保存代码…...