陕西响应式网站建设/手机百度识图网页版入口
进程
介绍
进程是系统进行资源分配和调度的一个独立单位。每个进程都有自己的独立内存空间,不同进程通过进程间通信来通信。由于进程占据独立的内存,所以上下文进程间的切换开销(栈、寄存器、虚拟内存、文件句柄等)比较大,但相对比较稳定安全。
进程间通信
● 无名管道
- 无名管道是通过调用 pipe 函数创建的,pipe(int fd[2]) : fd[0] 用于读,fd[1] 用于写
- 只支持半双工通信(单向交替传输);
- 无名管道只能用于父子进程或兄弟进程之间,必须用于具有亲缘关系的进程间的通信。
● FIFO 命名管道
- 有名管道是FIFO文件,存在于文件系统中,可以通过文件路径名来指出。
- 有名管道可以在不具有亲缘关系的进程间进行通信。
- FIFO 常用于客户-服务器应用程序中,FIFO 用作汇聚点,在客户进程和服务器进程之间传递数据。
● 消息队列
- 消息队列,是消息的链接表,存放在内核中。一个消息队列由一个标识符(即队列ID)来标识。
- 消息队列可以独立于读写进程存在,从而避免了 FIFO 中同步管道的打开和关闭时可能产生的困难;
- 读进程可以根据消息类型有选择地接收消息,而不像 FIFO 那样只能默认地接收。
- 消息队列的主要特点是异步处理,主要目的是减少请求响应时间和解耦。
● 信号量
- 信号量(semaphore)与已经介绍过的 IPC 结构不同,它是一个计数器。信号量用于实现进程间的互斥与同步,而不是用于存储进程间通信数据。
- “二进制信号量”:信号量的值在0和1之间跳转,实现同步互斥
● 共享内存
- 进程可以将同一段共享内存连接到它们自己的地址空间,所有进程都可以访问共享内存中的地址,如果某个进程向共享内存内写入数据,所做的改动将立即影响到可以访问该共享内存的其他所有进程。
● 套接字(Sockets)
此方法主要用于在客户端和服务器之间通过网络进行通信。套接字是支持 TCP/IP 的网络通信的基本操作单元,可以看做是不同主机之间的进程进行双向通信的端点,简单的说就是通信的两方的一种约定,用套接字中的相关函数来完成通信过程。
进程同步
● 临界区
- 对临界资源进行访问的那段代码称为临界区
- 为了互斥访问临界资源,每个进程在进入临界区之前都需要先进行检查
● 同步与互斥 (mutex)
- 同步:多个进程按一定顺序执行
- 互斥:多个进程在同一时刻只有一个进程能进入临界区
● 信号量
- 信号量是一个整型变量,可以对其执行down和up操作,也就是常见的P和V操作
- 二进制0/1的信号量可以实现互斥量(mutex)
● 管程
- 管程在功能上和信号量及PV操作类似,属于一种进程同步互斥工具,但是具有与信号量及PV操作不同的属性。
- 引入原因:信号量机制的缺点:进程自备同步操作,P(S)和V(S)操作大量分散在各个进程中,不易管理,易发生死锁。
- 管程机制的目的:
1、把分散在各进程中的临界区集中起来进行管理;
2、防止进程有意或无意的违法同步操作;
3、便于用高级语言来书写程序,也便于程序正确性验证。
死锁
在两个或多个并发进程中,如果每个进程持有某种资源而又都等待别的进程释放它或它们现在保持着的资源,在未改变这种状态之前都不能向前推进,称这一组进程产生了死锁。通俗地讲,就是两个或多个进程被无限期地阻塞、相互等待的一种状态。
产生条件:
- 互斥条件 – 一个资源一次只能被一个进程使用
- 请求保持条件 – 一个进程因请求资源而阻塞时,对已经获得资源保持不放
- 不可抢占条件 – 进程已获得的资源在未使用完之前不能强行剥夺
- 循环等待条件 – 若干进程之间形成一种头尾相接的循环等待资源的关系
死锁处理:
- 预防死锁:破坏产生死锁的4个必要条件中的一个或者多个;实现起来比较简单,但是如果限制过于严格会降低系统资源利用率以及吞吐量
- 避免死锁:在资源的动态分配中,防止系统进入不安全状态(可能产生死锁的状态)-如银行家算法
- 检测死锁:允许系统运行过程中产生死锁,在死锁发生之后,采用一定的算法进行检测,并确定与死锁相关的资源和进程,采取相关方法清除检测到的死锁。实现难度大
- 解除死锁:与死锁检测配合,将系统从死锁中解脱出来(撤销进程或者剥夺资源)。对检测到的和死锁相关的进程以及资源,通过撤销或者挂起的方式,释放一些资源并将其分配给处于阻塞状态的进程,使其转变为就绪态。实现难度大
进程空间分配和堆栈大小
进程的堆栈大小:
- 32位Windows,一个进程栈的默认大小是1M,在vs的编译属性可以修改程序运行时进程的栈大小。
- Linux下进程栈的默认大小是10M,可以通过 ulimit -s查看并修改默认栈大小。
- 默认一个线程要预留1M左右的栈大小,所以进程中有N个线程时,Windows下大概有N*M的栈大小。
- 堆的大小理论上大概等于进程虚拟空间大小-内核虚拟内存大小。windows下,进程的高位2G留给内核,低位2G留给用户,所以进程堆的大小小于2G。Linux下,进程的高位1G留给内核,低位3G留给用户,所以进程堆大小小于3G。
进程的最大线程数:
- 32位windows下,一个进程空间4G,内核占2G,留给用户只有2G,一个线程默认栈是1M,所以一个进程最大开2048个线程。当然内存不会完全拿来做线程的栈,所以最大线程数实际值要小于2048,大概2000个。
- 32位Linux下,一个进程空间4G,内核占1G,用户留3G,一个线程默认8M,所以最多380个左右线程。(ps:ulimit -a 查看电脑的最大进程数,大概7000多个)
PCB
用来记录进程信息的数据结构(管理进程的核心,包含了PID等进程的所有关键信息).
在PCB中,一般包括如下信息:
- 进程的状态:状态科包括新建态、就绪态、运行态、终止态、阻塞态。
- 程序计数器:用于记录进程要执行的下一条指令的地址。
- CPU寄存器这些信息CPU寄存器包括累加器,索引寄存器,堆栈指针,通用寄存器和其他一些条件码信息寄存器。这些信息描述了程序执行的状态,与程序计数器一起保存,以便进程以后的正确执行。
- CPU调度信息:这类信息包括进程的优先级,调度队列的指针和其他调度参数,为操作系统管理进程并进行调度提供支持。
- 内存管理信息:根据操作系统对内存的使用情况,记录下基址,界限寄存器,页表、段表等信息。
- 记账信息:包括CPU时间,实际使用时间,时间界限,使用数据,记账数据,作业和进程数量等。
- I/O状态信息包括分配给进程的I/O设备表,打开的文件列表等。
线程
介绍
线程是进程的一个实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的单位。线程拥有自己的程序计数器、本地方法栈、虚拟机栈,同一个进程中的多个线程可以共享进程所拥有的资源(堆与方法区)。线程间通信主要通过共享内存,上下文切换很快,资源开销较少,但相比进程不够稳定容易丢失数据。
当一个进程中的线程挂掉之后(非正常退出),就会导致该线程占有的资源永远无法释放,从而影响其他线程的正常工作。
进程和线程比较
线程是指进程内的一个执行单元,也是进程内的可调度实体。线程与进程的区别:
- 地址空间:线程是进程内的一个执行单元,进程内至少有一个线程,它们共享进程的地址空间,而进程有自己独立的地址空间
- 资源拥有:进程是资源分配和拥有的单位,同一个进程内的线程共享进程的资源
- 线程是处理器调度的基本单位,但进程不是
- 二者均可并发执行
- 每个独立的进程有一个程序运行的入口、顺序执行序列和程序的出口,但是线程不能够独立执行,必须依存在应用程序中,由应用程序提供多个线程执行控制
线程和携程比较
协程多与线程进行比较
- 一个线程可以多个协程,一个进程也可以单独拥有多个协程。
- 线程进程都是同步机制,而协程则是异步
- 协程能保留上一次调用时的状态,每次过程重入时,就相当于进入上一次调用的状态
线程状态及切换
● 新建状态(New):新创建了一个线程对象。
● 就绪状态(Runnable):线程对象创建后,其他线程调用了该对象的start()方法。该状态的线程位于“可运行线程池”中,变得可运行,等待获取CPU的使用权。即在就绪状态的进程除CPU之外,其它的运行所需资源都已全部获得。
● 运行状态(Running):就绪状态的线程获取了CPU,执行程序代码。
● 阻塞状态(Blocked):阻塞状态是线程因为某种原因放弃CPU使用权,暂时停止运行。直到线程进入就绪状态,才有机会转到运行状态。阻塞的情况分三种:
- 等待阻塞:运行的线程执行wait()方法,该线程会释放占用的所有资源,JVM会把该线程放入“等待池”中。进入这个状态后,是不能自动唤醒的,必须依靠其他线程调用notify()或notifyAll()方法才能被唤醒。
- 同步阻塞:运行的线程在获取对象的同步锁时,若该同步锁被别的线程占用,则JVM会把该线程放入“锁池”中。
- 其他阻塞:运行的线程执行sleep()或join()方法,或者发出了I/O请求时,JVM会把该线程置为阻塞状态。当sleep()状态超时、join()等待线程终止或者超时、或者I/O处理完毕时,线程重新转入就绪状态。
● 死亡状态(Dead):线程执行完了或者因异常退出了run()方法,该线程结束生命周期。
协程
介绍
协程是一种用户态的轻量级线程,协程的调度完全由用户控制。协程拥有自己的寄存器上下文和栈。协程调度切换时,将寄存器上下文和栈保存到其他地方,在切回来的时候,恢复先前保存的寄存器上下文和栈,直接操作栈则基本没有内核切换的开销,可以不加锁的访问全局变量,所以上下文的切换非常快。
● 进程拥有代码和打开的文件资源、数据资源、独立的内存空间。线程从属于进程,是程序的实际执行者。对操作系统来说,线程是最小的执行单元,进程是最小的资源管理单元。
● 线程是比进程更轻量的存在,但同样线程状态切换、线程上下文切换、同步锁这些都是耗费性能的操作;
● 协程,英文Coroutines,是一种比线程更加轻量级的存在。正如一个进程可以拥有多个线程一样,一个线程也可以拥有多个协程。协程不是被操作系统内核所管理,而完全是由程序所控制(也就是在用户态执行)。
● 协程的总结:
- 协程属于线程,即一个线程下面可以开辟多个协程。
- 协程是用户态的轻量级线程。
- 协程拥有自己的寄存器上下文和栈。协程调度切换时,将寄存器上下文和栈保存到其他地方,在切回来的时候,恢复先前保存的寄存器上下文和栈。
- 当多个协程切换时,由于其同属于一个线程,所以可以看作是同步执行的,不存在同时共享资源的情况,可以不加锁的访问全局变量,切换上下文非常快。
用户态和内核态
用户态
当一个进程在执行用户自己的代码时处于用户运行态(用户态),此时特权级最低,为3级,是普通的用户进程运行的特权级,大部分用户直接面对的程序都是运行在用户态。
当一个进程因为系统调用陷入内核代码中执行时处于内核运行态(内核态),此时特权级最高,为0级。执行的内核代码会使用当前进程的内核栈,每个进程都有自己的内核栈。
内核态
用户运行一个程序,该程序创建的进程开始时运行自己的代码,处于用户态。如果要执行文件操作、网络数据发送等操作必须通过write、send等系统调用,这些系统调用会调用内核的代码。
进程会切换到Ring0,然后进入3G-4G中的内核地址空间去执行内核代码来完成相应的操作。内核态的进程执行完后又会切换到Ring3,回到用户态。
这样,用户态的程序就不能随意操作内核地址空间,具有一定的安全保护作用。这说的保护模式是指通过内存页表操作等机制,保证进程间的地址空间不会互相冲突,一个进程的操作不会修改另一个进程地址空间中的数据。
区别
- 用户态执行中的进程,所能访问的内存空间和对象受到限制,其所处于占有的处理机是可被抢占的 ;
- 内核态执行中的进程,则能访问的内存空间和对象不受限制,且所占有的处理机是不允许被抢占的。
进程调度算法
- 先到先服务(FCFS)调度算法 : 从就绪队列中选择一个最先进入该队列的进程为之分配资源,使它立即执行并一直执行到完成或发生某事件而被阻塞放弃占用 CPU 时再重新调度。
- 短作业优先(SJF)的调度算法 : 从就绪队列中选出一个估计运行时间最短的进程为之分配资源,使它立即执行并一直执行到完成或发生某事件而被阻塞放弃占用 CPU 时再重新调度。
- 时间片轮转调度算法 : 时间片轮转调度是一种最古老,最简单,最公平且使用最广的算法,又称 RR(Round robin)调度。每个进程被分配一个时间段,称作它的时间片,即该进程允许运行的时间。
- 多级反馈队列调度算法 :短进程优先的调度算法,仅照顾了短进程而忽略了长进程 。多级反馈队列调度算法既能使高优先级的作业得到响应又能使短作业(进程)迅速完成。因而它是目前被公认的一种较好的进程调度算法。
- 优先级调度 : 为每个流程分配优先级,首先执行具有最高优先级的进程,依此类推。具有相同优先级的进程以 FCFS 方式执行。可以根据内存要求,时间要求或任何其他资源要求来确定优先级。
内存管理
操作系统的内存管理主要负责内存的分配与回收(malloc 函数:申请内存,free 函数:释放内存),另外地址转换也就是将逻辑地址转换成物理地址也是操作系统内存管理做的事情。
逻辑(虚拟)地址和物理地址
虚拟地址
逻辑地址:编程一般是和逻辑地址打交道,比如C语言中的指针里面存储的数值就可以理解成内存的一个地址,这个地址就是逻辑地址,逻辑地址由操作系统决定。
我们使用电脑Windows系统时,很多时候我们点开了很多占内存的软件,这些软件占用的内存可能已经远远超出了电脑本身具有的物理内存。为什么可以这样呢?正是因为虚拟内存 的存在,通过虚拟内存可以让程序可以拥有超过系统物理内存大小的可用内存空间。
另外,虚拟内存为每个进程提供了一个一致的、私有的地址空间,它让每个进程产生了一种自己在独享主存的错觉(每个进程拥有一片连续完整的内存空间)。这样会更加有效地管理内存并减少出错。
虚拟内存是计算机系统内存管理的一种技术,虚拟内存的重要意义是它定义了一个连续的虚拟地址空间,并且把内存扩展到硬盘空间。
物理地址
物理地址:真实物理内存中地址,具体一点来说就是内存地址寄存器中的地址。物理地址是内存单元真正的地址。
为什么要有虚拟地址空间
如果直接把物理地址暴露出来的话会带来严重问题,比如可能对操作系统造成伤害以及给同时运行多个程序造成困难。
通过虚拟地址访问内存有以下优势:
(1)程序可以使用一系列相邻的虚拟地址来访问物理内存中不相邻的大内存缓冲区。
(2)程序可以使用一系列虚拟地址来访问大于可用物理内存的内存缓冲区。当物理内存的供应量变小时,内存管理器会将物理内存页(通常大小为 4 KB)保存到磁盘文件。数据或代码页会根据需要在物理内存与磁盘之间移动。
(3)不同进程使用的虚拟地址彼此隔离。一个进程中的代码无法更改正在由另一进程或操作系统使用的物理内存。
内存管理方式
内存管理方式简单点分为连续分配管理方式和非连续分配管理方式。
- 连续分配管理方式:是为一个用户程序分配一个连续的内存空间,常见的有块式管理。
- 非连续分配管理方式:是允许为一个程序使用的内存分布在离散或不相邻的内存中,常见的有页式管理和段式管理。
块式管理
远古时代的计算机操系统的内存管理方式。将内存分为几个固定大小的块,每个块中只包含一个进程。如果程序运行需要内存的话,操作系统就分配给它一块,如果程序运行只需要很小的空间的话,分配的这块内存很大一部分几乎被浪费了。这些在每个块中未被利用的空间,我们称之为碎片。
页式管理
把主存分为大小相等且固定的一页一页的形式,页较小,相比于块式管理的划分力度更大,提高了内存利用率,减少了碎片。页式管理通过页表对应逻辑地址和物理地址。
- 优点:没有外碎片,每个内碎片不超过页的大小。
- 缺点:程序全部装入内存,要求有相应的硬件支持,如地址变换机构缺页中断的产生和选择淘汰页面等都要求有相应的硬件支持。增加了机器成本和系统开销。
段式管理
页式管理虽然提高了内存利用率,但是页式管理其中的页实际并无任何实际意义。 段式管理把主存分为一段段的,每一段的空间又要比一页的空间小很多 。但是,最重要的是段是有实际意义的,每个段定义了一组逻辑信息,例如,有主程序段 MAIN、子程序段 X、数据段 D 及栈段 S 等。 段式管理通过段表对应逻辑地址和物理地址。
- 优点:可以分别编写和编译,可以针对不同类型的段采取不同的保护,可以按段为单位来进行共享,包括通过动态链接进行代码共享。
- 缺点:会产生碎片。
段页式管理
段页式管理机制结合了段式管理和页式管理的优点。简单来说段页式管理机制就是把主存先分成若干段,每个段又分成若干页,也就是说段页式管理机制中段与段之间以及段的内部的都是离散的。
分页管理与分段管理的共同点和区别
共同点 :
- 分页机制和分段机制都是为了提高内存利用率,较少内存碎片。
- 页和段都是离散存储的,所以两者都是离散分配内存的方式。但是,每个页和段中的内存是连续的。
区别 :
- 页的大小是固定的,由操作系统决定;而段的大小不固定,取决于我们当前运行的程序。
- 分页仅仅是为了满足操作系统内存管理的需求,而段是逻辑信息的单位,在程序中可以体现为代码段,数据段,能够更好满足用户的需要。
CPU
CPU调度算法
先了解两个概念:
- 周转时间: 从开始申请执行任务,到执行任务完成
- 响应时间: 从开始申请执行任务到开始执行任务
先来先服务调度算法FCFS:按作业或者进程到达的先后顺序依次调度;(平均周转时间可能会很长 )
短作业优先调度算法SJF:算法从就绪队列中选择估计时间最短的作业进行处理,直到得出结果或者无法继续执行(周转时间短,但是响应时间长 )
高响应比算法HRN:响应比=(等待时间+要求服务时间)/要求服务时间;
时间片轮转调度RR:按到达的先后对进程放入队列中,然后给队首进程分配CPU时间片,时间片用完之后计时器发出中断,暂停当前进程并将其放到队列尾部,循环 ;(响应时间可以得到保证)
多级反馈队列调度算法:目前公认较好的调度算法;设置多个就绪队列并为每个队列设置不同的优先级,第一个队列优先级最高,其余依次递减。优先级越高的队列分配的时间片越短,进程到达之后按FCFS放入第一个队列,如果调度执行后没有完成,那么放到第二个队列尾部等待调度,如果第二次调度仍然没有完成,放入第三队列尾部…。只有当前一个队列为空的时候才会去调度下一个队列的进程。
相关文章:

操作系统-整理
进程 介绍 进程是系统进行资源分配和调度的一个独立单位。每个进程都有自己的独立内存空间,不同进程通过进程间通信来通信。由于进程占据独立的内存,所以上下文进程间的切换开销(栈、寄存器、虚拟内存、文件句柄等)比较大&#…...

系统换行符的思考
各系统换行符 换行符,也即是回车换行,因为表示为Carriage-Return和Line-Feed。 回车用Return-Carrige表示,简写为CR,字符表示为\r。 换行用Line-Feed表示,简写为LF,字符表示为\n。 由于历史原因…...

Wwise集成到unreal
1、Wwise集成到Unreal 1.1 安装必要的软件 安装unreal 5.1;安装Audiokinetic Launcher;集成版本是Wwise 2021.1.12.7973。Audiokinetic Launcher下载地址: https://www.audiokinetic.com/zh/thank-you/launcher/windows/?refdownload&pl…...

前端秘籍之=>八股文经卷=>(原生Js篇)【持续更新中...】
大家好,最近想了想,打算总结归纳一版前端八股文经卷,给大家提供学习参考,如果帮助到大家,请大家,一键三连支持一下,你们的支持会激励我更加努力的更新更多有用的知识,博主先在这里谢…...

【Python安装配置教程】
Python由荷兰数学和计算机科学研究学会的吉多范罗苏姆于1990年代初设计,作为一门叫做ABC语言的替代品。Python提供了高效的高级数据结构,还能简单有效地面向对象编程。Python语法和动态类型,以及解释型语言的本质,使它成为多数平台…...

Spring-Retry失败重试
文章目录 重试的场景引入依赖启动类serviceController@Retryable参数@Recover注意事项重试的场景 1、网络波动需要,导致请求失败,需要重发。 2、发送消息失败,需要重发,重发失败要记录日志 … 引入依赖 <!-- spring-retry--> <dependency><groupId>or…...

【目标检测 DETR】通俗理解 End-to-End Object Detection with Transformers,值得一品。
文章目录DETR1. 亮点工作1.1 E to E1.2 self-attention1.3 引入位置嵌入向量1.4 消除了候选框生成阶段2. Set Prediction2.1 N个对象2.2 Hungarian algorithm3. 实例剖析4. 代码4.1 配置文件4.1.1 数据集的类别数4.1.2 训练集和验证集的路径4.1.3 图片的大小4.1.4 训练时的批量…...

项目ER图和资料
常用的数据类型 模型类 一对多 from app import db import datetimeclass BaseModel(db.Model):__abstract__ Truecreate_time db.Column(db.DateTime,defaultdatetime.datetime.now())update_time db.Column(db.DateTime,defaultdatetime.datetime.now())class Role(db.M…...

剑指 Offer 20. 表示数值的字符串(java+python)
请实现一个函数用来判断字符串是否表示数值(包括整数和小数)。 数值(按顺序)可以分成以下几个部分: 若干空格 一个 小数 或者 整数 (可选)一个 ‘e’ 或 ‘E’ ,后面跟着一个 整数…...

程序员的逆向思维
前要: 为什么你读不懂面试官提问的真实意图,导致很难把问题回答到面试官心坎上? 为什么在面试结束时,你只知道问薪资待遇,不知道如何高质量反问? 作为一名程序员,思维和技能是我们职场生涯中最重要的两个方面。有时候…...

吐血整理学习方法,2年多功能测试成功进阶自动化测试,月薪23k+......
目录:导读前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结(尾部小惊喜)前言 测试进阶方向 测试进…...

mysql慢查询:pt-query-digest 分析
"某些SQL语句执行效率慢",这个问题总体上分为两类: 出现了慢查询语句某些查询语句没有使用索引 由于数据的写入量非常大,所以要想直接打开慢查询日志来查看到底哪些语句有问题几乎是不可能的,因为日志的刷新速度太快了…...

git的使用整合
git的下载和安装暂时不论述了,将git安装后会自动配置环境变量,所以环境变量也不需要配置。 一、初始化配置 打开git bash here(使用linux系统下运行的口令),弹出一个类似于cmd的窗口。 (1)配置属性 git config --glob…...

XCPC第九站———背包问题!
1.01背包问题 我们首先定义一个二维数组f,其中f[i][j]表示在前i个物品中取且总体积不超过j的取法中的最大价值。那么我们如何得到f[i][j]呢?我们运用递推的思想。由于第i个物品只有选和不选两种情况,当不选第i个物品时,f[i][j]f[i…...

【软考 系统架构设计师】论文范文④ 论基于构件的软件开发
>>回到总目录<< 文章目录 论基于构件的软件开发范文摘要正文论基于构件的软件开发 软件系统的复杂性不断增长、软件人员的频繁流动和软件行业的激烈竞争迫使软件企业提高软件质量、积累和固化知识财富,并尽可能地缩短软件产品的开发周期。 集软件复用、分布式对…...

spring-integration-redis中分布式锁RedisLockRegistry的使用
pom依赖:<!-- redis --><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-redis</artifactId></dependency><dependency><groupId>org.springframework.integ…...

城市通电(prim算法)
acwing3728 蓝桥杯集训每日一题 平面上遍布着 n 座城市,编号 1∼n。 第 i 座城市的位置坐标为 (xi,yi) 不同城市的位置有可能重合。 现在要通过建立发电站和搭建电线的方式给每座城市都通电。 一个城市如果建有发电站,或者通过电线直接或间接的与建…...

【动态规划】
动态规划1引言题目509. 斐波那契数70. 爬楼梯746. 使用最小花费爬楼梯小结53. 最大子数组和结语引言 蓝桥杯快开始了啊,自从报名后还没认真学过算法有(>﹏<)′,临时抱一下佛脚,一起学学算法。 题目 509. 斐波那契数 斐波那契数 &am…...

秒懂算法 | DP概述和常见DP面试题
动态(DP)是一种算法技术,它将大问题分解为更简单的子问题,对整体问题的最优解决方案取决于子问题的最优解决方案。本篇内容介绍了DP的概念和基本操作;DP的设计、方程推导、记忆化编码、递推编码、滚动数组以及常见的DP面试题。 01、DP概述 1. DP问题的特征 下面以斐波那…...

【C++提高编程】C++全栈体系(二十五)
C提高编程 第四章 STL- 函数对象 一、函数对象 1. 函数对象概念 概念: 重载函数调用操作符的类,其对象常称为函数对象函数对象使用重载的()时,行为类似函数调用,也叫仿函数 本质: 函数对象(仿函数)是一个类&…...

【云原生】k8s核心技术—集群安全机制 Ingress Helm 持久化存储-20230222
文章目录一、k8s集群安全机制1. 概述2. RBAC——基于角色的访问控制二、Ingress三、Helm1. 引入2. 使用功能Helm可以解决哪些问题3. 介绍4. 3个重要概念5. helm 版本变化6. helm安装及配置仓库7. 使用helm快速部署应用8. 自己创建chart9. 实现yaml高效复用四、持久化存储1.nfs—…...

【Linux】实现简易的Shell命令行解释器
大家好我是沐曦希💕 文章目录一、前言二、准备工作1.输出提示符2.输入和获取命令3.shell运行原理4.内建命令5.替换三、整体代码一、前言 前面学到了进程创建,进程终止,进程等待,进程替换,那么通过这些来制作一个简易的…...

再获认可!腾讯安全NDR获Forrester权威推荐
近日,国际权威研究机构Forrester发布最新研究报告《The Network Analysis And Visibility Landscape, Q1 2023》(以下简称“NAV报告”),从网络分析和可视化(NAV)厂商规模、产品功能、市场占有率及重点案例等…...

代码审计之旅之百家CMS
前言 之前审计的CMS大多是利用工具,即Seay昆仑镜联动扫描出漏洞点,而后进行审计。感觉自己的能力仍与零无异,因此本次审计CMS绝大多数使用手动探测,即通过搜索危险函数的方式进行漏洞寻找,以此来提升审计能力…...

ONLYOFFICE中利用chatGPT帮助我们策划一场生日派对
近日,人工智能chatGPT聊天机器人爆火,在去年年底发布后,仅仅两个月就吸引了全球近一亿的用户,成为史上最快的应用消费程序,chatGPT拥有强大的学习和交互能力 可以被学生,教师,上班族各种职业运…...

Java面试题-线程(一)
在典型的 Java 面试中, 面试官会从线程的基本概念问起, 如:为什么你需要使用线程,如何创建线程,用什么方式创建线程比较好(比如:继承 thread 类还是调用 Runnable 接口),…...

一篇普通的bug日志——bug的尽头是next吗?
文章目录[bug 1] TypeError: method object is not subscriptable[bug 2] TypeError: unsupported format string passed to numpy.ndarray.__format__[bug 3] ValueError:Hint: Expected dtype() paddle::experimental::CppTypeToDataType<T>::Type()[bug 4] CondaSSLE…...

Vue 3 第八章:Watch侦听器
文章目录Watch侦听器1. 基础概念1.1. Watch的基本用法例子1:监听单个ref的值,直接监听例子2:监听多个ref的值,采用数组形式例子3:深度监听例子4:监听reactive响应式对象单一属性,采用回调函数的…...

GlassFish的安装与使用
一、产品下载与安装glassfish下载地址:https://download.oracle.com/glassfish/5.0.1/release/index.html下载后解压即完成安装,主要目录说明:bin目录:为asadmin命令所在目录。glassfish为主目录:glassfish\bin目录为命…...

【java】Java 重写(Override)与重载(Overload)
文章目录重写(Override)方法的重写规则Super 关键字的使用重载(Overload)重载规则实例重写与重载之间的区别总结重写(Override) 重写是子类对父类的允许访问的方法的实现过程进行重新编写, 返回值和形参都不能改变。即外壳不变,核心重写! 重写的好处在于…...