当前位置: 首页 > news >正文

2.6 棋盘覆盖

在一个2*x2‘个方格组成的棋盘中,若怡有一个方格与其他方格不同,则称该方格为

特殊方格,且称该棋盘为一特殊棋盘。显然,特殊方格在棋盘上出现的位置有 4种情形

因而对任何k=0,有4‘种特殊棋盘。图2-4 申的特殊棋益是1=2时 16个特殊棋盘中的一个

在棋盘複盖问题中,要用图2-5 所示的 4种不同形态的工 型骨牌覆盖一个给定的特殊棋

盘上除特殊方格以外的所有方格,且任何 2 个 L 型骨牌不得重叠覆盖。易知,在任何一个

2*x2*的棋盘覆盖中,用到的L 型骨牌个数恰为(45-1)/3。

用分治策咯,可以设计解棋盘復盖问题的一个简捷的算法。当心0时,将2'x2*棋盛分

割为 4个25-x25!子棋盛,如图 2-6(a)所示。特殊方格必位于 4 个较小子棋盘之一中,其余3

个子棋盘中无特殊方格。为了将这 了个无特殊方格的子棋盘转化为特殊棋盘,可以用一个山

型骨牌覆盖这了个较小棋盘的会合处,如图2-6(所示,这了个子棋盘上被L型骨牌覆盖的方

格就成为该棋盘上的特殊方格,从而将原问题转化为 4个较小规模的棋盘覆盖问题。递归地使用

这种分割,直至棋盘简化为 1×1 棋盘。

实现这种分治策略的算法 Chess Board 如下:

void ChessBoard (int tr, int tc, int dr, int dc, int size) {
if (size ==1
return;
int t=tilet+,
s=size/2;
1/後盖左上角子棋盘
if (dr ‹tr+s && de‹tc+s)
ChessBoard (tr, tc, dr, dc, s);
else {
Board[tr+s-1][tc+s-1]=t;
ChessBoard(tr, tc, tr+s-1, tc+s-1, s);
if (dr < tr+s&& de ›= tc+s)
ChessBoard(tr, tc+s, dr, dc, s);
else {
Board[tr+s-11 tc+s] = t;
ChessBoard(tr, tc+s, tr+s-1, tc+s, s);
if (dr ›= tr+s && dc < tc+s)
ChessBoard (tr+s, tc, dr, dc, s);
else {
Board[tr+s][tc+s-1] = t;
ChessBoard(tr+s, tc, tr+s, tc+s-1, s);
if (dr ›= tr+s && dc ›= tc+s)
//L型骨牌号
//分割棋盘
//特殊方格在此栱盘中
//此栱盘中无特殊方格
//用七号山型骨牌覆盖右下角
//覆盖其余方格
//爱盖右上角子棋盘
//特殊方格在此棋盘中
//此棋盘中无特殊方格
//用七号L型骨牌覆盖左下角
//覆盖其余方格
//覆盖左下角子棋盘
//特殊方格在此棋盘中
//用七号山型骨牌覆盖右上角
//覆盖其余方格
//爱盖右下角子棋盘

上述算法中用一个二维整型数组 Board 表示棋甜。BoarcroIrO1是棋盘的左上角方格。

是算法中的一个全局性型交量,用表示工 型骨牌的编号,其初始值为 0。算法的输入珍数是

切:棋盘左上角方格的行号;

dc:特殊方格所在的列号;

tc:棋盘左上角方格的列号;

size: size=2%,棋盘规格为 2*x2%,

dr:特殊方格所在的行号。

设TK是算法 ChessBoard 覆盖

一个2*x2*棋盘所需的时间,则从算法的分治策略可知,

『满足如下递归方程

(O(1)

k= 0

T(k) ={AT(k -1) + O()

解此递归方程可得

7(=0(45。由于覆盖一个242%棋盘所需的L 型骨牌个数为(4'-1/3

故算法 ChessBoard 是一个在渐近意义下最优的算法。

相关文章:

2.6 棋盘覆盖

在一个2*x2‘个方格组成的棋盘中&#xff0c;若怡有一个方格与其他方格不同&#xff0c;则称该方格为特殊方格&#xff0c;且称该棋盘为一特殊棋盘。显然&#xff0c;特殊方格在棋盘上出现的位置有 4种情形因而对任何k0&#xff0c;有4‘种特殊棋盘。图2-4 申的特殊棋益是12时 …...

JMU软件20 大数据技术复习(只写了对比18提纲的变动部分)

原博主 博客主页&#xff1a;https://xiaojujiang.blog.csdn.net/ 原博客链接&#xff1a;https://blog.csdn.net/qq_43058685/article/details/117883940 本复习提纲只适用于JMU软件工程大数据课程&#xff08;ckm授课&#xff09; 具体内容参考老师提纲的考纲&#xff0c;18和…...

MySQL底层存储B-Tree和B+Tree原理分析

1.B-Tree的原理分析 &#xff08;1&#xff09;什么是B-Tree B-树&#xff0c;全称是 Balanced Tree&#xff0c;是一种多路平衡查找树。 一个节点包括多个key (数量看业务)&#xff0c;具有M阶的B树&#xff0c;每个节点最多有M-1个Key。 节点的key元素个数就是指这个节点能…...

基于Vue+Vue-cli+webpack搭建渐进式高可维护性前端实战项目

本文是专栏《手把手带你做一套毕业设计毕业设计》的实战第一篇&#xff0c;将从Vue脚手架安装开始&#xff0c;逐步带你搭建起一套管理系统所需的架构。当然&#xff0c;在默认安装完成之后&#xff0c;会对文件目录进行初步的细化拆分&#xff0c;以便后续功能迭代和维护所用。…...

第十三章:Java反射机制

第十三章&#xff1a;Java反射机制 13.1&#xff1a;Java反射机制概述 Java Reflection ​ Reflection(反射)是被视为动态语言的关键&#xff0c;反射机制允许程序在执行期借助于Reflection API取得任何类的内部信息&#xff0c;并能直接操作任意对象的内部属性及方法。 ​ 加…...

iLok USB不识别怎么办?

我的iLok USB坏了吗&#xff1f; 我的iLok USB没有被系统或软件识别。 如果您的iLok USB未被识别&#xff0c;问题可能出在iLok USB、iLok软件或受保护的软件。 提示如果您使用USB集线器&#xff0c;请确保您使用正确的集线器电源适配器。排除硬件&#xff1a;将iLok USB直接插…...

【LeetCode与《代码随想录》】二叉树篇:做题笔记与总结-JavaScript版

文章目录代码随想录144. 二叉树的前序遍历94. 二叉树的中序遍历145. 二叉树的后序遍历102.二叉树的层序遍历226.翻转二叉树101. 对称二叉树104.二叉树的最大深度111.二叉树的最小深度222.完全二叉树的节点个数110.平衡二叉树257. 二叉树的所有路径404.左叶子之和513.找树左下角…...

机器人运动|浅谈Time Elastic Band算法

前言在自主移动机器人路径规划的学习与开发过程中&#xff0c;我接触到Time Elastic Band算法&#xff0c;并将该算法应用于实际机器人&#xff0c;用于机器人的局部路径规划。在此期间&#xff0c;我也阅读了部分论文、官方文档以及多位大佬的文章&#xff0c;在此对各位大佬的…...

【Linux】网络基础(1)

前言 相信没有网络就没有现在丰富的世界。本篇笔记记录我在Linux系统下学习网络基础部分知识&#xff0c;从关于网络的各种概念和关系开始讲起&#xff0c;逐步架构起对网络的认识&#xff0c;对网络编程相关的认知。 我的上一篇Linux文章呀~ 【Linux】网络套接字编程_柒海啦的…...

限流算法详解

限流是我们经常会碰到的东西&#xff0c;顾名思义就是限制流量。它能保证我们的系统不会被突然的流量打爆&#xff0c;保证系统的稳定运行。像我们生活中&#xff0c;地铁就会有很多护栏&#xff0c;弯弯绕绕的&#xff0c;这个就是一种限流。像我们抢茅台&#xff0c;肯定大部…...

Spark/Hive

Spark/HiveHive 原理Spark with HiveSparkSession Hive Metastorespark-sql CLI Hive MetastoreBeeline Spark Thrift ServerHive on SparkHive 擅长元数据管理Spark 擅长高效的分布式计算 Spark Hive 集成 : Hive on Spark : Hive 用 Spark 作为底层的计算引擎时Spark w…...

HashMap底层的实现原理(JDK8)

目录一、知识点回顾二、HashMap 的 put() 和 get() 的实现2.1 map.put(k, v) 实现原理2.2 map.get(k) 实现原理三、HashMap 的常见面试题3.1 为何随机增删、查询效率都很高&#xff1f;3.2 为什么放在 HashMap 集合 key 部分的元素需要重写 equals 方法?3.3 HashMap 的 key 为…...

操作系统-整理

进程 介绍 进程是系统进行资源分配和调度的一个独立单位。每个进程都有自己的独立内存空间&#xff0c;不同进程通过进程间通信来通信。由于进程占据独立的内存&#xff0c;所以上下文进程间的切换开销&#xff08;栈、寄存器、虚拟内存、文件句柄等&#xff09;比较大&#…...

系统换行符的思考

各系统换行符 换行符&#xff0c;也即是回车换行&#xff0c;因为表示为Carriage-Return和Line-Feed。 回车用Return-Carrige表示&#xff0c;简写为CR&#xff0c;字符表示为\r。 换行用Line-Feed表示&#xff0c;简写为LF&#xff0c;字符表示为\n。 由于历史原因&#xf…...

Wwise集成到unreal

1、Wwise集成到Unreal 1.1 安装必要的软件 安装unreal 5.1&#xff1b;安装Audiokinetic Launcher&#xff1b;集成版本是Wwise 2021.1.12.7973。Audiokinetic Launcher下载地址&#xff1a; https://www.audiokinetic.com/zh/thank-you/launcher/windows/?refdownload&pl…...

前端秘籍之=>八股文经卷=>(原生Js篇)【持续更新中...】

大家好&#xff0c;最近想了想&#xff0c;打算总结归纳一版前端八股文经卷&#xff0c;给大家提供学习参考&#xff0c;如果帮助到大家&#xff0c;请大家&#xff0c;一键三连支持一下&#xff0c;你们的支持会激励我更加努力的更新更多有用的知识&#xff0c;博主先在这里谢…...

【Python安装配置教程】

Python由荷兰数学和计算机科学研究学会的吉多范罗苏姆于1990年代初设计&#xff0c;作为一门叫做ABC语言的替代品。Python提供了高效的高级数据结构&#xff0c;还能简单有效地面向对象编程。Python语法和动态类型&#xff0c;以及解释型语言的本质&#xff0c;使它成为多数平台…...

Spring-Retry失败重试

文章目录 重试的场景引入依赖启动类serviceController@Retryable参数@Recover注意事项重试的场景 1、网络波动需要,导致请求失败,需要重发。 2、发送消息失败,需要重发,重发失败要记录日志 … 引入依赖 <!-- spring-retry--> <dependency><groupId>or…...

【目标检测 DETR】通俗理解 End-to-End Object Detection with Transformers,值得一品。

文章目录DETR1. 亮点工作1.1 E to E1.2 self-attention1.3 引入位置嵌入向量1.4 消除了候选框生成阶段2. Set Prediction2.1 N个对象2.2 Hungarian algorithm3. 实例剖析4. 代码4.1 配置文件4.1.1 数据集的类别数4.1.2 训练集和验证集的路径4.1.3 图片的大小4.1.4 训练时的批量…...

项目ER图和资料

常用的数据类型 模型类 一对多 from app import db import datetimeclass BaseModel(db.Model):__abstract__ Truecreate_time db.Column(db.DateTime,defaultdatetime.datetime.now())update_time db.Column(db.DateTime,defaultdatetime.datetime.now())class Role(db.M…...

Zustand 状态管理库:极简而强大的解决方案

Zustand 是一个轻量级、快速和可扩展的状态管理库&#xff0c;特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...

MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例

一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...

安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件

在选煤厂、化工厂、钢铁厂等过程生产型企业&#xff0c;其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进&#xff0c;需提前预防假检、错检、漏检&#xff0c;推动智慧生产运维系统数据的流动和现场赋能应用。同时&#xff0c;…...

可靠性+灵活性:电力载波技术在楼宇自控中的核心价值

可靠性灵活性&#xff1a;电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中&#xff0c;电力载波技术&#xff08;PLC&#xff09;凭借其独特的优势&#xff0c;正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据&#xff0c;无需额外布…...

Mac软件卸载指南,简单易懂!

刚和Adobe分手&#xff0c;它却总在Library里给你写"回忆录"&#xff1f;卸载的Final Cut Pro像电子幽灵般阴魂不散&#xff1f;总是会有残留文件&#xff0c;别慌&#xff01;这份Mac软件卸载指南&#xff0c;将用最硬核的方式教你"数字分手术"&#xff0…...

MySQL 8.0 OCP 英文题库解析(十三)

Oracle 为庆祝 MySQL 30 周年&#xff0c;截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始&#xff0c;将英文题库免费公布出来&#xff0c;并进行解析&#xff0c;帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...

IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)

文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...

大数据学习(132)-HIve数据分析

​​​​&#x1f34b;&#x1f34b;大数据学习&#x1f34b;&#x1f34b; &#x1f525;系列专栏&#xff1a; &#x1f451;哲学语录: 用力所能及&#xff0c;改变世界。 &#x1f496;如果觉得博主的文章还不错的话&#xff0c;请点赞&#x1f44d;收藏⭐️留言&#x1f4…...

《C++ 模板》

目录 函数模板 类模板 非类型模板参数 模板特化 函数模板特化 类模板的特化 模板&#xff0c;就像一个模具&#xff0c;里面可以将不同类型的材料做成一个形状&#xff0c;其分为函数模板和类模板。 函数模板 函数模板可以简化函数重载的代码。格式&#xff1a;templa…...

4. TypeScript 类型推断与类型组合

一、类型推断 (一) 什么是类型推断 TypeScript 的类型推断会根据变量、函数返回值、对象和数组的赋值和使用方式&#xff0c;自动确定它们的类型。 这一特性减少了显式类型注解的需要&#xff0c;在保持类型安全的同时简化了代码。通过分析上下文和初始值&#xff0c;TypeSc…...