当前位置: 首页 > news >正文

2.6 棋盘覆盖

在一个2*x2‘个方格组成的棋盘中,若怡有一个方格与其他方格不同,则称该方格为

特殊方格,且称该棋盘为一特殊棋盘。显然,特殊方格在棋盘上出现的位置有 4种情形

因而对任何k=0,有4‘种特殊棋盘。图2-4 申的特殊棋益是1=2时 16个特殊棋盘中的一个

在棋盘複盖问题中,要用图2-5 所示的 4种不同形态的工 型骨牌覆盖一个给定的特殊棋

盘上除特殊方格以外的所有方格,且任何 2 个 L 型骨牌不得重叠覆盖。易知,在任何一个

2*x2*的棋盘覆盖中,用到的L 型骨牌个数恰为(45-1)/3。

用分治策咯,可以设计解棋盘復盖问题的一个简捷的算法。当心0时,将2'x2*棋盛分

割为 4个25-x25!子棋盛,如图 2-6(a)所示。特殊方格必位于 4 个较小子棋盘之一中,其余3

个子棋盘中无特殊方格。为了将这 了个无特殊方格的子棋盘转化为特殊棋盘,可以用一个山

型骨牌覆盖这了个较小棋盘的会合处,如图2-6(所示,这了个子棋盘上被L型骨牌覆盖的方

格就成为该棋盘上的特殊方格,从而将原问题转化为 4个较小规模的棋盘覆盖问题。递归地使用

这种分割,直至棋盘简化为 1×1 棋盘。

实现这种分治策略的算法 Chess Board 如下:

void ChessBoard (int tr, int tc, int dr, int dc, int size) {
if (size ==1
return;
int t=tilet+,
s=size/2;
1/後盖左上角子棋盘
if (dr ‹tr+s && de‹tc+s)
ChessBoard (tr, tc, dr, dc, s);
else {
Board[tr+s-1][tc+s-1]=t;
ChessBoard(tr, tc, tr+s-1, tc+s-1, s);
if (dr < tr+s&& de ›= tc+s)
ChessBoard(tr, tc+s, dr, dc, s);
else {
Board[tr+s-11 tc+s] = t;
ChessBoard(tr, tc+s, tr+s-1, tc+s, s);
if (dr ›= tr+s && dc < tc+s)
ChessBoard (tr+s, tc, dr, dc, s);
else {
Board[tr+s][tc+s-1] = t;
ChessBoard(tr+s, tc, tr+s, tc+s-1, s);
if (dr ›= tr+s && dc ›= tc+s)
//L型骨牌号
//分割棋盘
//特殊方格在此栱盘中
//此栱盘中无特殊方格
//用七号山型骨牌覆盖右下角
//覆盖其余方格
//爱盖右上角子棋盘
//特殊方格在此棋盘中
//此棋盘中无特殊方格
//用七号L型骨牌覆盖左下角
//覆盖其余方格
//覆盖左下角子棋盘
//特殊方格在此棋盘中
//用七号山型骨牌覆盖右上角
//覆盖其余方格
//爱盖右下角子棋盘

上述算法中用一个二维整型数组 Board 表示棋甜。BoarcroIrO1是棋盘的左上角方格。

是算法中的一个全局性型交量,用表示工 型骨牌的编号,其初始值为 0。算法的输入珍数是

切:棋盘左上角方格的行号;

dc:特殊方格所在的列号;

tc:棋盘左上角方格的列号;

size: size=2%,棋盘规格为 2*x2%,

dr:特殊方格所在的行号。

设TK是算法 ChessBoard 覆盖

一个2*x2*棋盘所需的时间,则从算法的分治策略可知,

『满足如下递归方程

(O(1)

k= 0

T(k) ={AT(k -1) + O()

解此递归方程可得

7(=0(45。由于覆盖一个242%棋盘所需的L 型骨牌个数为(4'-1/3

故算法 ChessBoard 是一个在渐近意义下最优的算法。

相关文章:

2.6 棋盘覆盖

在一个2*x2‘个方格组成的棋盘中&#xff0c;若怡有一个方格与其他方格不同&#xff0c;则称该方格为特殊方格&#xff0c;且称该棋盘为一特殊棋盘。显然&#xff0c;特殊方格在棋盘上出现的位置有 4种情形因而对任何k0&#xff0c;有4‘种特殊棋盘。图2-4 申的特殊棋益是12时 …...

JMU软件20 大数据技术复习(只写了对比18提纲的变动部分)

原博主 博客主页&#xff1a;https://xiaojujiang.blog.csdn.net/ 原博客链接&#xff1a;https://blog.csdn.net/qq_43058685/article/details/117883940 本复习提纲只适用于JMU软件工程大数据课程&#xff08;ckm授课&#xff09; 具体内容参考老师提纲的考纲&#xff0c;18和…...

MySQL底层存储B-Tree和B+Tree原理分析

1.B-Tree的原理分析 &#xff08;1&#xff09;什么是B-Tree B-树&#xff0c;全称是 Balanced Tree&#xff0c;是一种多路平衡查找树。 一个节点包括多个key (数量看业务)&#xff0c;具有M阶的B树&#xff0c;每个节点最多有M-1个Key。 节点的key元素个数就是指这个节点能…...

基于Vue+Vue-cli+webpack搭建渐进式高可维护性前端实战项目

本文是专栏《手把手带你做一套毕业设计毕业设计》的实战第一篇&#xff0c;将从Vue脚手架安装开始&#xff0c;逐步带你搭建起一套管理系统所需的架构。当然&#xff0c;在默认安装完成之后&#xff0c;会对文件目录进行初步的细化拆分&#xff0c;以便后续功能迭代和维护所用。…...

第十三章:Java反射机制

第十三章&#xff1a;Java反射机制 13.1&#xff1a;Java反射机制概述 Java Reflection ​ Reflection(反射)是被视为动态语言的关键&#xff0c;反射机制允许程序在执行期借助于Reflection API取得任何类的内部信息&#xff0c;并能直接操作任意对象的内部属性及方法。 ​ 加…...

iLok USB不识别怎么办?

我的iLok USB坏了吗&#xff1f; 我的iLok USB没有被系统或软件识别。 如果您的iLok USB未被识别&#xff0c;问题可能出在iLok USB、iLok软件或受保护的软件。 提示如果您使用USB集线器&#xff0c;请确保您使用正确的集线器电源适配器。排除硬件&#xff1a;将iLok USB直接插…...

【LeetCode与《代码随想录》】二叉树篇:做题笔记与总结-JavaScript版

文章目录代码随想录144. 二叉树的前序遍历94. 二叉树的中序遍历145. 二叉树的后序遍历102.二叉树的层序遍历226.翻转二叉树101. 对称二叉树104.二叉树的最大深度111.二叉树的最小深度222.完全二叉树的节点个数110.平衡二叉树257. 二叉树的所有路径404.左叶子之和513.找树左下角…...

机器人运动|浅谈Time Elastic Band算法

前言在自主移动机器人路径规划的学习与开发过程中&#xff0c;我接触到Time Elastic Band算法&#xff0c;并将该算法应用于实际机器人&#xff0c;用于机器人的局部路径规划。在此期间&#xff0c;我也阅读了部分论文、官方文档以及多位大佬的文章&#xff0c;在此对各位大佬的…...

【Linux】网络基础(1)

前言 相信没有网络就没有现在丰富的世界。本篇笔记记录我在Linux系统下学习网络基础部分知识&#xff0c;从关于网络的各种概念和关系开始讲起&#xff0c;逐步架构起对网络的认识&#xff0c;对网络编程相关的认知。 我的上一篇Linux文章呀~ 【Linux】网络套接字编程_柒海啦的…...

限流算法详解

限流是我们经常会碰到的东西&#xff0c;顾名思义就是限制流量。它能保证我们的系统不会被突然的流量打爆&#xff0c;保证系统的稳定运行。像我们生活中&#xff0c;地铁就会有很多护栏&#xff0c;弯弯绕绕的&#xff0c;这个就是一种限流。像我们抢茅台&#xff0c;肯定大部…...

Spark/Hive

Spark/HiveHive 原理Spark with HiveSparkSession Hive Metastorespark-sql CLI Hive MetastoreBeeline Spark Thrift ServerHive on SparkHive 擅长元数据管理Spark 擅长高效的分布式计算 Spark Hive 集成 : Hive on Spark : Hive 用 Spark 作为底层的计算引擎时Spark w…...

HashMap底层的实现原理(JDK8)

目录一、知识点回顾二、HashMap 的 put() 和 get() 的实现2.1 map.put(k, v) 实现原理2.2 map.get(k) 实现原理三、HashMap 的常见面试题3.1 为何随机增删、查询效率都很高&#xff1f;3.2 为什么放在 HashMap 集合 key 部分的元素需要重写 equals 方法?3.3 HashMap 的 key 为…...

操作系统-整理

进程 介绍 进程是系统进行资源分配和调度的一个独立单位。每个进程都有自己的独立内存空间&#xff0c;不同进程通过进程间通信来通信。由于进程占据独立的内存&#xff0c;所以上下文进程间的切换开销&#xff08;栈、寄存器、虚拟内存、文件句柄等&#xff09;比较大&#…...

系统换行符的思考

各系统换行符 换行符&#xff0c;也即是回车换行&#xff0c;因为表示为Carriage-Return和Line-Feed。 回车用Return-Carrige表示&#xff0c;简写为CR&#xff0c;字符表示为\r。 换行用Line-Feed表示&#xff0c;简写为LF&#xff0c;字符表示为\n。 由于历史原因&#xf…...

Wwise集成到unreal

1、Wwise集成到Unreal 1.1 安装必要的软件 安装unreal 5.1&#xff1b;安装Audiokinetic Launcher&#xff1b;集成版本是Wwise 2021.1.12.7973。Audiokinetic Launcher下载地址&#xff1a; https://www.audiokinetic.com/zh/thank-you/launcher/windows/?refdownload&pl…...

前端秘籍之=>八股文经卷=>(原生Js篇)【持续更新中...】

大家好&#xff0c;最近想了想&#xff0c;打算总结归纳一版前端八股文经卷&#xff0c;给大家提供学习参考&#xff0c;如果帮助到大家&#xff0c;请大家&#xff0c;一键三连支持一下&#xff0c;你们的支持会激励我更加努力的更新更多有用的知识&#xff0c;博主先在这里谢…...

【Python安装配置教程】

Python由荷兰数学和计算机科学研究学会的吉多范罗苏姆于1990年代初设计&#xff0c;作为一门叫做ABC语言的替代品。Python提供了高效的高级数据结构&#xff0c;还能简单有效地面向对象编程。Python语法和动态类型&#xff0c;以及解释型语言的本质&#xff0c;使它成为多数平台…...

Spring-Retry失败重试

文章目录 重试的场景引入依赖启动类serviceController@Retryable参数@Recover注意事项重试的场景 1、网络波动需要,导致请求失败,需要重发。 2、发送消息失败,需要重发,重发失败要记录日志 … 引入依赖 <!-- spring-retry--> <dependency><groupId>or…...

【目标检测 DETR】通俗理解 End-to-End Object Detection with Transformers,值得一品。

文章目录DETR1. 亮点工作1.1 E to E1.2 self-attention1.3 引入位置嵌入向量1.4 消除了候选框生成阶段2. Set Prediction2.1 N个对象2.2 Hungarian algorithm3. 实例剖析4. 代码4.1 配置文件4.1.1 数据集的类别数4.1.2 训练集和验证集的路径4.1.3 图片的大小4.1.4 训练时的批量…...

项目ER图和资料

常用的数据类型 模型类 一对多 from app import db import datetimeclass BaseModel(db.Model):__abstract__ Truecreate_time db.Column(db.DateTime,defaultdatetime.datetime.now())update_time db.Column(db.DateTime,defaultdatetime.datetime.now())class Role(db.M…...

剑指 Offer 20. 表示数值的字符串(java+python)

请实现一个函数用来判断字符串是否表示数值&#xff08;包括整数和小数&#xff09;。 数值&#xff08;按顺序&#xff09;可以分成以下几个部分&#xff1a; 若干空格 一个 小数 或者 整数 &#xff08;可选&#xff09;一个 ‘e’ 或 ‘E’ &#xff0c;后面跟着一个 整数…...

程序员的逆向思维

前要&#xff1a; 为什么你读不懂面试官提问的真实意图&#xff0c;导致很难把问题回答到面试官心坎上? 为什么在面试结束时&#xff0c;你只知道问薪资待遇&#xff0c;不知道如何高质量反问? 作为一名程序员&#xff0c;思维和技能是我们职场生涯中最重要的两个方面。有时候…...

吐血整理学习方法,2年多功能测试成功进阶自动化测试,月薪23k+......

目录&#xff1a;导读前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结&#xff08;尾部小惊喜&#xff09;前言 测试进阶方向 测试进…...

mysql慢查询:pt-query-digest 分析

"某些SQL语句执行效率慢"&#xff0c;这个问题总体上分为两类&#xff1a; 出现了慢查询语句某些查询语句没有使用索引 由于数据的写入量非常大&#xff0c;所以要想直接打开慢查询日志来查看到底哪些语句有问题几乎是不可能的&#xff0c;因为日志的刷新速度太快了…...

git的使用整合

git的下载和安装暂时不论述了&#xff0c;将git安装后会自动配置环境变量&#xff0c;所以环境变量也不需要配置。 一、初始化配置 打开git bash here(使用linux系统下运行的口令)&#xff0c;弹出一个类似于cmd的窗口。 &#xff08;1&#xff09;配置属性 git config --glob…...

XCPC第九站———背包问题!

1.01背包问题 我们首先定义一个二维数组f&#xff0c;其中f[i][j]表示在前i个物品中取且总体积不超过j的取法中的最大价值。那么我们如何得到f[i][j]呢&#xff1f;我们运用递推的思想。由于第i个物品只有选和不选两种情况&#xff0c;当不选第i个物品时&#xff0c;f[i][j]f[i…...

【软考 系统架构设计师】论文范文④ 论基于构件的软件开发

>>回到总目录<< 文章目录 论基于构件的软件开发范文摘要正文论基于构件的软件开发 软件系统的复杂性不断增长、软件人员的频繁流动和软件行业的激烈竞争迫使软件企业提高软件质量、积累和固化知识财富,并尽可能地缩短软件产品的开发周期。 集软件复用、分布式对…...

spring-integration-redis中分布式锁RedisLockRegistry的使用

pom依赖&#xff1a;<!-- redis --><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-redis</artifactId></dependency><dependency><groupId>org.springframework.integ…...

城市通电(prim算法)

acwing3728 蓝桥杯集训每日一题 平面上遍布着 n 座城市&#xff0c;编号 1∼n。 第 i 座城市的位置坐标为 (xi,yi) 不同城市的位置有可能重合。 现在要通过建立发电站和搭建电线的方式给每座城市都通电。 一个城市如果建有发电站&#xff0c;或者通过电线直接或间接的与建…...

【动态规划】

动态规划1引言题目509. 斐波那契数70. 爬楼梯746. 使用最小花费爬楼梯小结53. 最大子数组和结语引言 蓝桥杯快开始了啊&#xff0c;自从报名后还没认真学过算法有(>﹏<)′&#xff0c;临时抱一下佛脚&#xff0c;一起学学算法。 题目 509. 斐波那契数 斐波那契数 &am…...

ucloud网站开发/搜索风云榜百度

0、环境 本文操作系统: CentOS 7.2.1511 x86_64MySQL 版本: 5.7.16 1、卸载系统自带的 mariadb-lib [rootcentos-linux ~]# rpm -qa|grep mariadbmariadb-libs-5.5.44-2.el7.centos.x86_64 [rootcentos-linux ~]# rpm -e mariadb-libs-5.5.44-2.el7.centos.x86_64 --nodeps 2、…...

做外贸自己建网站/深圳seo教程

最近更新的博客 华为OD机试 - 简易压缩算法(Python) | 机试题算法思路 【2023】 华为OD机试题 - 获取最大软件版本号(JavaScript) 华为OD机试 - 猜字谜(Python) | 机试题+算法思路 【2023】 华为OD机试 - 删除指定目录(Python) | 机试题算法思路 【2023】 华为OD机试 …...

众创空间文化建设网站/夫唯seo视频教程

我试图使用下划线模板引擎渲染一个html表.首先我从服务器得到这样的JSON响应{CurrentModel: {Heading: "Home",Id: "pages/193",Metadata: {Name: "Home",Title: null,Keywords: null,Description: null,DisplayInMenu: true,Published: "/…...

海口网络公司网站建设/网络营销的概念和特点

delphi中的并发并发 作者&#xff1a;中国论坛网收集 来源&#xff1a;[url]http://www.51one.net[/url] 加入时间&#xff1a;2004-8-25 翻译&#xff1a;taowen&#xff08;taowen.bitapf.org&#xff09;原文&#xff1a;《Indy In Depth》 Concurrency在多线程的环境&#…...

做网站建设的网站/微博推广技巧

1.jobs [-lrs]:观察目前的背景中的工作状态,参数&#xff0c;-l&#xff1a;除了列出job number与指令串之外&#xff0c;同时列出PID的号码-r&#xff1a;进列出正在背景run的工作-s&#xff1a;仅列出正在背景中暂停的工作指令执行后的号表示最近最后被放到背景的工作号码&am…...

重庆网站建设的价格低/怎么样建一个网站

原文链接&#xff1a;【Go最佳实践1】单元测试的另一种写法 引言 go中单元测试有3种类型&#xff1a; unit test&#xff1a;单元测试benchmark&#xff1a;基准测试example&#xff1a;例子 第一种、第二种比较常见&#xff0c;在各种书籍都有介绍&#xff0c;主要是 第3种…...