当前位置: 首页 > news >正文

向量数据库与图数据库:理解它们的区别

作者:Elastic Platform Team

大数据管理不仅仅是尽可能存储更多的数据。它关乎能够识别有意义的见解、发现隐藏的模式,并做出明智的决策。这种对高级分析的追求一直是数据建模和存储解决方案创新的驱动力,远远超出了传统关系数据库。

这些创新中的两项是向量数据库(vector databases)和图数据库(graph databases)。这两者都是在数据管理方面的重大进步,提供了具有各自独特优势的独特数据结构。但在你能有效选择哪一个最适合你的项目或目标之前,你需要了解它们的工作方式以及它们之间的不同。

这篇博客文章将是你的指南 —— 概述它们的工作原理,它们的相似之处以及它们的不同之处。我们将探讨对比的数据结构,探索它们的理想用例,并帮助你在这两者之间做出选择。为了使这一点更容易,我们将其分为几个部分:

  • 向量数据库的定义和概念
  • 什么是图数据库?
  • 比较向量数据库和图数据库
  • 向量和图数据库的用例
  • 在向量和图数据库之间进行选择

通过阅读本文,你将获得做出明智决定所需的所有信息,从而最大限度地利用你的数据。

向量数据库定义与概念

向量数据库将数据组织成广阔的、多维空间中的点,而不是行和列。每个点代表一条数据,其位置反映了它相对于其他数据的特征。可以将其想象成一个宇宙,其中每颗行星都是一条数据,它们被组织成与相似的行星更近,与相似度较低的行星更远的方式。

它通过将数据存储为高维向量来实现这一点,这些向量是数据特征的数值表示。这些向量捕捉了它们所代表的数据的本质,这就是它们如何能够在多维空间内进行编码和组织的原因。在多维空间中,两个点越接近,它们的基础数据就越相似。

这就是为什么向量数据库擅长相似性搜索的原因。由于向量是基于相似性结构化的,因此你可以快速识别距离查询向量最近的数据点。这使得它们非常适合于许多重要的应用场景:

  • 图像和文档检索:根据内容而不仅仅是关键词查找相似的图像。
  • 个性化推荐:推荐与用户之前互动过的产品或内容类似的内容。
  • 异常检测:识别偏离正常情况的异常数据点,可能表示欺诈或系统错误。
  • 机器学习:高效处理和分析高维数据,用于文本分析、图像分类和自然语言处理等任务。

想要更详细的指南吗?阅读《什么是向量数据库?》以获取完整的介绍。

什么是图数据库?

尽管乍一看它们可能看起来相似,但图数据库以完全不同的方式组织数据。它们不像关系数据库那样使用严格的表,也不像向量数据库那样按相似性组织数据,而是以图结构存储数据。实体由图上的节点表示,关系由边表示。可以将其想象成一个思维导图,其中每个节点都是一个代表人、地点或事物的圆圈,而它们之间的连线(边)显示了它们之间的连接方式。

图数据库的一大优势是它们提供了一种更自然的方式来表示复杂关系。与其他类型的数据库相比,这使得解释连接变得更加容易。图数据库的无模式结构也意味着随着数据的增长,你可以轻松添加新的节点和边,使其既灵活又可扩展。这使得图数据库非常适合许多应用:

  • 实时分析:使用图数据库实时分析流数据,预测未来结果,并优化动态系统。
  • 主数据管理:创建实体的统一视图,解决歧义,并在单个相互连接的图中跟踪实体演化。
  • 网络发现:通过分析网络内的关系,揭示隐藏的连接,识别异常,并预测级联故障。
  • 知识图谱构建:构建智能知识库,回答复杂问题,并通过相互连接的实体和概念驱动智能应用。

比较向量数据库和图数据库

现在你应该了解了每种类型的数据库是什么以及它们如何组织数据。但是,理解向量数据库和图数据库之间微妙的差异也至关重要。进行侧边比较是最简单的方法:

向量数据库图数据库
数据表示数据被构造为广阔的多维空间中的点。 距离较近的点表示相似的内容。 非常适合捕获数据本身内在的相似性,无论连接或关系如何。数据被构造为由边缘(关系)链接的互连节点(实体)的网络。 专注于表示数据点之间的连接和层次结构,提供有关实体如何相互关联的宝贵见解。
查询与检索擅长相似性搜索,有效查找与查询向量相似的数据点。 非常适合图像/文档检索等任务,其中理解内容相似性至关重要。对于导航关系和联系非常有用。 实现网络结构的高效遍历,非常适合社交网络分析、推荐系统和探索知识图谱。
性能和可扩展性由于优化的相似性搜索算法,通常可以很好地扩展大型数据集。 但是,架构更改可能需要重新嵌入数据,从而影响性能。由于无模式特性,高度灵活,可以轻松添加和修改数据。 然而,复杂的查询或大型网络可能会对性能造成压力,需要仔细优化。

使用案例

为了更好地理解向量数据库和图数据库之间的差异,让我们比较一下每种数据库在同一领域内的应用。这不仅展示了它们的对比,还展示了如何将它们结合起来以取得出色的成果:

欺诈检测

  • 向量数据库:通过分析交易模式和用户信息来识别欺诈交易。根据学习到的相似性配置文件检测消费习惯、购买地点或设备指纹中的异常。
  • 图数据库:揭示连接在一起的个体或交易的可疑网络。通过分析涉嫌欺诈尝试中涉及的实体之间的关系来识别欺诈活动。

科学研究

  • 向量数据库:分析像蛋白质序列、基因表达或化学化合物等复杂的数据结构。比较不同的数据集并基于多维特性识别相似性,从而导致新的科学发现。
  • 图数据库:建模生物通路或分子相互作用。探索实体之间错综复杂的关系,并可视化复杂系统,以深入了解生物过程。

电子商务

  • 向量数据库:分析产品属性,如图片、文字描述和技术规格。根据内容相似性推荐相似产品,使建议更加相关并吸引人。
  • 图数据库:捕捉用户与产品之间的互动,如购买、浏览历史和愿望清单。根据用户与具有相似品味的其他用户的相似性推荐产品,创造更个性化的购物体验。

媒体和娱乐

  • 向量数据库:分析内容特征,如音乐类型、文章主题或电影主题。根据固有的内容相似性推荐类似的歌曲、电影或文章,满足个人偏好。
  • 图数据库:探索用户与内容之间的关系,如观看历史、阅读列表或社交媒体分享。根据具有相似兴趣的用户之间的连接推荐内容,促进参与和发现。

释放数据的全部潜力

在大数据领域航行需要强大的工具,而向量数据库和图数据库在这个信息空间中处于创新的地位。但是选择适合你需求的正确模型可能是令人望而生畏的。

仔细评估上述因素,并了解每种技术的独特优势。你将得出一系列因素的列表,这些因素将指导你的决策,帮助你选择适合的数据库模型,释放数据的全部潜力。

接下来你应该做什么

当你准备好时,以下是我们可以帮助你为你的业务带来更好搜索体验的四种方式:

  • 开始免费试用,看看 Elastic 如何帮助你的业务。
  • 参观我们的解决方案,了解 Elasticsearch 平台的工作方式以及我们的解决方案将如何满足你的需求。
  • 了解向量数据库如何驱动人工智能搜索。
  • 通过电子邮件、LinkedIn、Twitter 或 Facebook 将本文与你认识的人分享,让他们也享受阅读的乐趣。

本文中描述的任何特性或功能的发布和时间安排均由 Elastic 自行决定。 当前不可用的任何特性或功能可能无法按时交付或根本无法交付。

在这篇博文中,我们可能使用或引用了第三方生成人工智能工具,这些工具由其各自所有者拥有和运营。 Elastic 对第三方工具没有任何控制权,我们对其内容、操作或使用不承担任何责任,也不对你使用此类工具可能产生的任何损失或损害负责。 使用人工智能工具处理个人、敏感或机密信息时请务必谨慎。 你提交的任何数据都可能用于人工智能培训或其他目的。 无法保证你提供的信息将得到安全或保密。 在使用之前,你应该熟悉任何生成式人工智能工具的隐私惯例和使用条款。

Elastic、Elasticsearch、ESRE、Elasticsearch Relevance Engine 和相关标志是 Elasticsearch N.V. 的商标、徽标或注册商标。 在美国和其他国家。 所有其他公司和产品名称均为其各自所有者的商标、徽标或注册商标。

原文:Vector database vs. graph database: Understanding the differences | Elastic Blog

相关文章:

向量数据库与图数据库:理解它们的区别

作者:Elastic Platform Team 大数据管理不仅仅是尽可能存储更多的数据。它关乎能够识别有意义的见解、发现隐藏的模式,并做出明智的决策。这种对高级分析的追求一直是数据建模和存储解决方案创新的驱动力,远远超出了传统关系数据库。 这些创…...

WIN7用上最新版Chrome

1.下载WIN10最新版Chrome的离线安装包 谷歌浏览器 Chrome 最新版离线安装包下载地址 v123.0.6312.123 - 每日自动更新 | 异次元软件 文件名称:123.0.6312.123_chrome_installer.exe。 123.0.6312.123_chrome_installer.exe 文件右键解压缩得到 chrome.7z&#x…...

node.jd版本降级/升级

第一步.先清空本地安装的node.js版本 按健winR弹出窗口,键盘输入cmd,然后敲回车(或者鼠标直接点击电脑桌面最左下角的win窗口图标弹出,输入cmd再点击回车键) 进入命令控制行窗口,输入where node,查看本地…...

python+playwright 学习-88 禁止加载图片等资源

前言 对于爬虫的小伙伴来说,有时候只需抓取页面的文本,不用加载图片,可以加快操作页面速度,那么我们可以设置禁止加载图片等资源。 禁止图片加载 根据url地址的后缀,图片资源后缀一般是png,jpg,jpeg,gif等格式。 from playwright.sync_api import sync_playwrightwith…...

Linux:Redis7.2.4的简单在线部署(1)

注意:我写的这个文章是以最快速的办法去搭建一个redis的基础环境,作用是为了做实验简单的练习,如果你想搭建一个相对稳定的redis去使用,可以看我下面这个文章 Linux:Redis7.2.4的源码包部署(2)-…...

HackMyVM-Connection

目录 信息收集 arp nmap WEB web信息收集 dirsearch smbclient put shell 提权 系统信息收集 suid gdb提权 信息收集 arp ┌─[rootparrot]─[~/HackMyVM] └──╼ #arp-scan -l Interface: enp0s3, type: EN10MB, MAC: 08:00:27:16:3d:f8, IPv4: 192.168.9.115 S…...

Prometheus接入AlterManager配置邮件告警(基于K8S环境部署)

目录 一.配置Alertmanager告警发送至邮箱二.Prometheus接入AlertManager三.部署PrometheusAlterManager(放到一个Pod中)四. 测试告警 基于 此环境做实验 一.配置Alertmanager告警发送至邮箱 1.创建AlertManager ConfigMap资源清单 vim alertmanager-cm.yaml --- kind: Confi…...

find方法

find() 方法用于在数组中查找符合条件的第一个元素&#xff0c;并返回该元素。如果找到匹配的元素&#xff0c;则返回该元素的值&#xff1b;如果未找到匹配的元素&#xff0c;则返回 undefined。 例如: const firstWithdrawal movements.find(mov > mov < 0); consol…...

TLS v1.3 导致JetBrains IDE jdk.internal.net.http.common CPU占用高

开发环境 GoLand版本&#xff1a;2022.3.4 问题原因 JDK 中的 TLS v1.3 实现引起 解决办法 使用 SOCKS 代理代替HTTP代理 禁用 Space 和 Code With Me 插件 禁用 TLS v1.3&#xff0c;参考&#xff1a;https://stackoverflow.com/questions/54485755/java-11-httpclient-…...

计算机网络 2.2数据传输方式

第二节 数据传输方式 一、数据通信系统模型 添加图片注释&#xff0c;不超过 140 字&#xff08;可选&#xff09; 1.数据终端设备&#xff08;DTE&#xff09; 作用&#xff1a;用于处理用户数据的设备&#xff0c;是数据通信系统的信源和信宿。 设备&#xff1a;便携计算机…...

陇剑杯 流量分析 webshell CTF writeup

陇剑杯 流量分析 链接&#xff1a;https://pan.baidu.com/s/1KSSXOVNPC5hu_Mf60uKM2A?pwdhaek 提取码&#xff1a;haek目录结构 LearnCTF ├───LogAnalize │ ├───linux简单日志分析 │ │ linux-log_2.zip │ │ │ ├───misc日志分析 │ │ …...

【测试开发学习历程】python常用的模块(下)

目录 8、MySQL数据库的操作-pymysql 8.1 连接并操作数据库 9、ini文件的操作-configparser 9.1 模块-configparser 9.2 读取ini文件中的内容 9.3 获取指定建的值 10 json文件操作-json 10.1 json文件的格式或者json数据的格式 10.2 json.load/json.loads 10.3 json.du…...

GCDAsynSocket之TCP简析

GCDAsynSocket是一个开源的基于GCD的异步的socket库。它支持IPV4和IPV6地址&#xff0c;TLS/SSL协议。同时它支持iOS端和Mac端。本篇主要介绍一下GCDAsynSocket中的TCP用法和实现。 首先通过下面这个方法初始化一个GCDAsynSocket对象。 - (id)initWithDelegate:(id<GCDAsyn…...

大型网站系统架构演化实例_1.单体架构和垂直架构

大型网站的技术挑战主要来自于庞大的用户&#xff0c;高并发的访问和海量的数据&#xff0c;任何简单的业务一旦需要处理数以P计的数据和面对数以亿计的用户&#xff0c;问题就会变得很棘手。通常大型网站架构主要解决这类问题。 1.第一阶段&#xff1a;单体架构 大型网站都是…...

2024蓝桥杯——宝石问题

先展示题目 声明 以下代码仅是我的个人看法&#xff0c;在自己考试过程中的优化版&#xff0c;本人考试就踩了很多坑&#xff0c;我会—一列举出来。代码可能很多&#xff0c;但是总体时间复杂度不高只有0(N) 函数里面的动态数组我没有写开辟判断和free&#xff0c;这里我忽略…...

three.js加载模型报错,Error: THREE.GLTFLoader: No DRACOLoader instance provided.

three.js加载模型报错&#xff0c;Error: THREE.GLTFLoader: No DRACOLoader instance provided. 原因&#xff1a;该模型是压缩过的&#xff0c;需要 DRACOLoader 我们先找到该文件夹 node_modules three examples jsm libs draco 将draco拷贝到public下 import { GLTFLoad…...

Spring VS Spring Boot

目录 定义 Spring Spring Boot 区别 优劣对比 Spring Spring的优势 Spring的劣势 Spring Boot Spring Boot的优势 Spring Boot的劣势 适用场景 Spring的适用场景 Spring Boot的适用场景 初学者如何选择学习 定义 Spring Spring是一个轻量级的、开源的Java开发…...

Linux入门(Linux介绍,安装,常用命令,防火墙的设置,注意事项)

目录 一、Linux介绍 1. Linux简介 1 什么是Linux 2 Linux的应用 3 为什么要学习Linux 2. Linux分类 1 按照市场需求分 2 按照原生程度分 3.小结 二、Linux安装 1. vmware介绍 2. 安装VMWare 3. 安装CentOS 4. 登录查看ip 5. 远程连接工具 1 使用FinalShell连接L…...

vue2创建项目的两种方式,配置路由vue-router,引入element-ui

提示&#xff1a;vue2依赖node版本8.0以上 文章目录 前言一、创建项目基于vue-cli二、创建项目基于vue/cli三、对吧两种创建方式四、安装Element ui并引入五、配置路由跳转四、效果五、参考文档总结 前言 使用vue/cli脚手架vue create创建 使用vue-cli脚手架vue init webpack创…...

MySql 表中的id突然变很大,如何给id重新排序

目录 一、场景 二、解决方法 一、场景 我们在开发过程中&#xff0c;难免遇到id突然增大的情况。 由于id突然增大很多&#xff0c;我们重新增加数据时候id会默认加1 那么如何让id 重新从1按顺序排序呢 二、解决方法 点击编辑表&#xff0c;然后新建一个字段id2&#xff0c;将…...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度​

一、引言&#xff1a;多云环境的技术复杂性本质​​ 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时&#xff0c;​​基础设施的技术债呈现指数级积累​​。网络连接、身份认证、成本管理这三大核心挑战相互嵌套&#xff1a;跨云网络构建数据…...

Flask RESTful 示例

目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题&#xff1a; 下面创建一个简单的Flask RESTful API示例。首先&#xff0c;我们需要创建环境&#xff0c;安装必要的依赖&#xff0c;然后…...

FastAPI 教程:从入门到实践

FastAPI 是一个现代、快速&#xff08;高性能&#xff09;的 Web 框架&#xff0c;用于构建 API&#xff0c;支持 Python 3.6。它基于标准 Python 类型提示&#xff0c;易于学习且功能强大。以下是一个完整的 FastAPI 入门教程&#xff0c;涵盖从环境搭建到创建并运行一个简单的…...

【算法训练营Day07】字符串part1

文章目录 反转字符串反转字符串II替换数字 反转字符串 题目链接&#xff1a;344. 反转字符串 双指针法&#xff0c;两个指针的元素直接调转即可 class Solution {public void reverseString(char[] s) {int head 0;int end s.length - 1;while(head < end) {char temp …...

Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

Rust 异步编程

Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...

OpenLayers 分屏对比(地图联动)

注&#xff1a;当前使用的是 ol 5.3.0 版本&#xff0c;天地图使用的key请到天地图官网申请&#xff0c;并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能&#xff0c;和卷帘图层不一样的是&#xff0c;分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...

九天毕昇深度学习平台 | 如何安装库?

pip install 库名 -i https://pypi.tuna.tsinghua.edu.cn/simple --user 举个例子&#xff1a; 报错 ModuleNotFoundError: No module named torch 那么我需要安装 torch pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple --user pip install 库名&#x…...

#Uniapp篇:chrome调试unapp适配

chrome调试设备----使用Android模拟机开发调试移动端页面 Chrome://inspect/#devices MuMu模拟器Edge浏览器&#xff1a;Android原生APP嵌入的H5页面元素定位 chrome://inspect/#devices uniapp单位适配 根路径下 postcss.config.js 需要装这些插件 “postcss”: “^8.5.…...

Go 并发编程基础:通道(Channel)的使用

在 Go 中&#xff0c;Channel 是 Goroutine 之间通信的核心机制。它提供了一个线程安全的通信方式&#xff0c;用于在多个 Goroutine 之间传递数据&#xff0c;从而实现高效的并发编程。 本章将介绍 Channel 的基本概念、用法、缓冲、关闭机制以及 select 的使用。 一、Channel…...