本溪市城乡规划建设委员会网站/东莞网络营销优化
💓博主CSDN主页:麻辣韭菜💓
⏩专栏分类:Linux知识分享⏪
🚚代码仓库:Linux代码练习🚚
🌹关注我🫵带你学习更多Linux知识
🔝
目录
前言
一. 进程间通信介绍
1.进程间通信目的
2.进程间通信发展
3.进程间通信分类
二.管道
用fork来共享管道原理
匿名管道
进程池
前言
从进程控制篇章,我们知道了进程是具有独立性,既然各进程具有独立性,它们之间是互不联系的,那它们是怎么通过一种方式取得联系?为什么要有进程间通信?进程间通信本质是什么?
一. 进程间通信介绍
1.进程间通信目的
- 数据传输:一个进程需要将它的数据发送给另一个进程
- 资源共享:多个进程之间共享同样的资源。
- 通知事件:一个进程需要向另一个或一组进程发送消息,通知它(它们)发生了某种事件(如进程终止时要通知父进程)。
- 进程控制:有些进程希望完全控制另一个进程的执行(如Debug进程),此时控制进程希望能够拦截另
- 一个进程的所有陷入和异常,并能够及时知道它的状态改变。
2.进程间通信发展
- 管道
- System V进程间通信
- POSIX进程间通信
3.进程间通信分类
管道
- 匿名管道pipe
- 命名管道
System V IPC
- System V 消息队列
- System V 共享内存
- System V 信号量
POSIX IPC
- 消息队列
- 共享内存
- 信号量
- 互斥量
- 条件变量
- 读写锁
二.管道
管道是Linux原生能提供的,管道有两种,匿名和命名。
进程间通信的前提,是需要让不同的进程看到同一块“内存”(特定的组织结构)
所以你所谓的进程看到同一块“内存” 其实是不隶属于任何一个进程,应该更强调共享。
那如何让两个进程看到同一块“内存”?
用fork来共享管道原理
在实现之前我们需要了解一个接口函数 pipe
创建管道需要使用
pipe
函数。pipe
函数会返回两个文件描述符,分别代表着管道的两端。这两个文件描述符可以用于在父进程和子进程之间传输数据。pipefd[0]:读下标
pipefd[1]: 写下标
#include <iostream>
#include <sys/types.h>
#include <sys/wait.h>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <string>
#include <unistd.h>
#define N 2void Write(int fd)
{std::string str = "hello, I am child process";pid_t pid = getpid();int number = 0;char buf[1024];while (1){sleep(1);buf[0] = '\0';snprintf(buf, sizeof(buf), "%s-%d- %d\n", str.c_str(), number++, pid);write(fd, buf, strlen(buf));// std::cout <<number << std::endl;// if(number > 5)// break;}
}void Read(int fd)
{char buf[1024];int cnt = 0;while (1){memset(buf, 0, sizeof(buf));size_t n = read(fd, buf, sizeof(buf));if (n > 0){std::cout << "father get a message:[" << getpid() << "]#" << buf << std::endl;}else if (n == 0){printf("father read file done\n");break;}else{std::cout << "father read error" << std::endl;break;}cnt++;if (cnt > 5)break;}
}int main()
{int pipefd[N];int n = pipe(pipefd);if (n < 0){std::cout << "pipe error" << std::endl;return 1;}pid_t pid = fork();if (pid < 0){std::cout << "fork error" << std::endl;}else if (pid == 0){// child processclose(pipefd[0]);Write(pipefd[1]);close(pipefd[1]);exit(0);}else{// parent processRead(pipefd[0]);close(pipefd[0]);// wait child processstd::cout << "father close read fd: " << pipefd[0] << std::endl;sleep(5); // wait child process exitpid_t status = 0;pid_t child_pid = waitpid(pid, &status, 0);if (child_pid < 0){std::cout << "waitpid error" << std::endl;return 2;}std::cout << "wait child success: " << child_pid << " exit code: " << ((status >> 8) & 0xFF)<< " exit signal: " << (status & 0x7F) << std::endl;}sleep(3); // wait father process exitreturn 0;
}
运行代码
管道的特征:
1.具有血缘关系的进程才能进行进程间通信
2.管道只能单向通信
3.父子进程是会进程协同的,同步与互斥——保护管道内数据。
4.管道是面向字节流的 ps:这个我们后面网络在讲
5.管道是基于文件的,而文件的生命周期是随进程的。
下面我们就来挖一挖细节,基于第3点特征衍生出来的管道内的4种情况
读端正常,管道内容为空,读端就要堵塞
读端正常,管道内容写满,读端就要堵塞
读端正常,写段关闭,读端就会读到0,表明读到了文件的结尾,不会阻塞
写段正常写入,读端关闭,OS就会杀掉正在写入的进程。
子进程写代码是有sleep1秒的 而父进程是没有sleep1秒 ,从视频我们可以得出父进程在等待子进程写入到管道中,上一次数据被读到,说明管道的内容空了,而子进程休眠1秒钟这期间对应父进程阻塞1秒钟。
第二种情况 我们让写段写快一点,读段慢一点休眠5秒钟 写段不休眠
读端正常,管道内容写满,读端就要堵塞
第三种情况 我们写代码的number等于5时直接break;
读端正常,写段关闭,读端就会读到0,表明读到了文件的结尾,不会阻塞
第四情况 我们让读端变量cnt == 5时,读端退出。
从第4个结论来说确实OS会杀掉进程,资源有限,都没有人读了,写入后还要写时拷贝,浪费资源。
匿名管道
从上面我们看到3个sleep的父进程是bash 那这样我们可以知道它们是有血缘关系的,
我们在shell打命令行,执行后,然后shell解释我们的命令看到两个|直接创建两个管道,然后再程序替换 然后3个sleep根据重定向原理重定向到管道中。
所以我们以前在命令行执行的管道 | 就是传说之中的匿名管道!!!
进程池
根据前面程序控制,和本节的管道知识,我们可以用fork创建多个子进程,父进程写入,子进程读取,根据读取的内容,子进程完成一些相应的事情。这些子进程就好比池子里的水,我们要用的时候直接就可以拿来用。
代码实现
#include "task.hpp"
#include <string>
#include <unistd.h>
#include <cstdlib>#define ProcessNum 5 // 进程个数// 先描述
class channle
{
public:channle(int cmdfd, int slaverid, const std::string &processname): _cmdfd(cmdfd), _slaverid(slaverid), _processname(processname){}public:int _cmdfd; // 发送任务的文件描述符pid_t _slaverid; // 子进程的PIDstd::string _processname; // 子进程的名字
};
对于一个进程池来说,进程多了,我们肯定是要管理起来的,所以定义一个对象方面我们管理,对象定义出来了后,我们就要创建管道和子进程。
void InitProcessPool(std::vector<channel> *channels)
{std::vector<int> oldfds;for (int i = 0; i < ProcessNum; i++){// 创建管道int pipefd[2];int n = pipe(pipefd);if (n < 0){perror("pipe");exit(1);}// 创建子进程pid_t id = fork();if (id < 0){perror("fork");exit(2);}else if (id == 0){ // 子进程for (auto fd : oldfds) //关闭之前继承下来的写端{close(fd);}close(pipefd[1]); // 子进程读,关闭写端。dup2(pipefd[0], 0); // 管道的读端替换成标准输入0close(pipefd[0]);slaver();exit(0);}else{// 父进程close(pipefd[0]); // 父进程写,关闭读端。// 添加channle字段std::string name = "process-" + std::to_string(i);channels->push_back(channel(pipefd[1], id, name)); // 利用零时对象初始化oldfds.push_back(pipefd[1]); // 子进程会继承父进程的写端 方便我们在fork之后关闭写端}}
}
我们再写个Debug测试一下。
void Debug(const std::vector<channel> &channels)
{for (auto &it : channels){std::cout << it._cmdfd << ' ' << it._slaverid << ' ' << it._processname << std::endl;}
}
int main()
{std::vector<channel> channels;InitProcessPool(channels);Debug(channels);return 0;
}
5个子进程创建完毕。那么下一步就是通过cmdfd这个文件描述符父进程写入,子进程读取
我们可以用dup2,我们从键盘读入输入的内容,从管道读取。这样做的好处就是slaver这个函数不用传参
else if (id == 0){ // 子进程close(pipefd[1]); // 子进程读,关闭写端。dup2(pipefd[0],0) //管道的读端替换成标准输入0slaver();exit(0);}
slaver这个函数就是获取任务的函数,怎么获取系统调用read获取,我们通过dup2原本是从标准输入读取,现在从管道里读取。 然后执行相应的任务
void slaver()
{int cmdcode = 0;while (true){int n = read(0, &cmdcode, sizeof(int));if (n == sizeof(int)){std::cout << "slaver say@ get a cmdcode: " << getpid() << " : cmdcode:" << cmdcode << std::endl;if (cmdcode > = 0 && cmdcode < task.size())task.[cmdcode]();}if (n == 0)break;}
}
#pragma once
#include <vector>
#include <iostream>typedef void (*task_t)();void task1()
{std::cout << "lol 刷新日志" << std::endl;
}
void task2()
{std::cout << "lol 更新野区,刷新出来野怪" << std::endl;
}
void task3()
{std::cout << "lol 检测软件是否更新,如果需要,就提示用户" << std::endl;
}
void task4()
{std::cout << "lol 用户释放技能,更新用户的血量和蓝量" << std::endl;
}void LoadTask(std::vector<task_t> *tasks)
{tasks->push_back(task1);tasks->push_back(task2);tasks->push_back(task3);tasks->push_back(task4);
}
现在还有没有任务,我们可以写一个简单的函数把函数的指针放进vector这个容器中然后根据cmdcode下标访问进行函数调用。
有了任务列表我们就要派发任务,这里博主选择随机派发任务,当然你下去实现的时候可以选择轮循方式派发任务。
void ctrlSlaver(const std::vector<channel> &channels)
{while (true){std::cout << "Please Enter@ ";// 1. 选择任务int cmdcode = rand() % tasks.size();// 2. 选择进程int processpos = rand() % channels.size();std::cout << "father say: "<< " cmdcode: " << cmdcode << " already sendto " << channels[processpos]._slaverid << " process name: "<< channels[processpos]._processname << std::endl;// 3. 发送任务write(channels[processpos]._cmdfd, &cmdcode, sizeof(cmdcode));// sleep(1);}
}
最后我们还再利用wiatpid这个函数回收子进程
void QuitProcess(const std::vector<channel> &channels)
{for (const auto &c : channels){close(c._cmdfd);waitpid(c._slaverid, nullptr, 0);}
}
相关文章:

Linux 进程间通信之匿名管道
💓博主CSDN主页:麻辣韭菜💓 ⏩专栏分类:Linux知识分享⏪ 🚚代码仓库:Linux代码练习🚚 🌹关注我🫵带你学习更多Linux知识 🔝 目录 前言 一. 进程间通信介绍 1.进程间通…...

数据结构与算法学习笔记六--数组和广义表(C语言)
目录 前言 1.数组 1.定义 2.初始化 3.销毁 4.取值 5.设置值 6.完整代码 前言 这篇博客主要介绍数据结构中的数组和广义表的用法。 1.数组 在数据结构中,数组是一种线性数据结构,它由一组连续的相同类型的元素组成,每个元素都有一个唯…...

图搜索算法详解
图搜索算法详解 摘要: 图搜索算法是解决路径规划和网络分析问题的关键技术。本文将详细介绍图搜索算法的基本概念、分类以及常见的算法,如广度优先搜索(BFS)、深度优先搜索(DFS)、A*搜索等。同时ÿ…...

安卓中常见的UI控件
TextView(文本视图)EditText(编辑文本)Button(按钮)ImageView(图像视图)ImageButton(图像按钮)CheckBox(复选框)RadioButtonÿ…...

基于Labelme的背部穴位关键点制作
一、穴位定位方法 穴位定位,自春秋时期以来,通过各代医学实践的继承与发展,形成了一套较为科学的定位体系。这套体系基于经络理论,采用“寸”作为测量单位,按照人体比例来进行精确的穴位定位,主要有依据体…...

go-mysql-transfer 同步数据到es
同步数据需要注意的事项 前提条件 1 要同步的mysql 表必须包含主键 2 mysql binlog 必须是row 模式 3 不支持程序运行过程中修改表结构 4 要赋予连接mysql 账号的权限 reload, replication super 权限 如果是root 权限则不需要 安装 go-mysql-transfer git clone…...

外包干了3天,技术就明显退步了。。。。。
先说一下自己的情况,本科生,19年通过校招进入广州某软件公司,干了接近4年的功能测试,今年年初,感觉自己不能够在这样下去了,长时间呆在一个舒适的环境会让一个人堕落!而我已经在一个企业干了四年的功能测试…...

将要上市的自动驾驶新书《自动驾驶系统开发》中摘录各章片段 1
以下摘录一些章节片段: 1. 概论 自动驾驶系统的认知中有一些模糊的地方,比如自动驾驶系统如何定义的问题,自动驾驶的研发为什么会有那么多的子模块,怎么才算自动驾驶落地等等。本章想先给读者一个概括介绍,了解自动驾…...

String、StringBuilder、StringBuffer之间的区别是什么?
在Java中,String、StringBuilder 和 StringBuffer 是处理字符串的三个类,其中 String 是不可变对象,而 StringBuilder 和 StringBuffer 是可变对象。这些类在字符串操作方面具有不同的特性和用途。 String String 类表示不可变的字符序列&a…...

docker系列8:容器卷挂载(上)
目录 传送门 从安装redis说起 什么是容器卷挂载 操作系统的挂载 日志文件一般是"首恶元凶" 挂载命令 容器卷挂载 卷挂载命令 启动时挂载 查看挂载卷信息 容器卷管理 查看卷列表 创建容器卷 具名挂载与匿名挂载 具名挂载 传送门 docker系列1ÿ…...

痉挛性斜颈患者自己做哪些运动对脖子好?
痉挛性斜颈(Dystonia)是一种罕见的神经系统疾病,其特点是颈部肌肉痉挛,导致头部姿势异常倾斜或扭曲。而在治疗痉挛性斜颈中,运动疗法是非常重要的一部分。下面将介绍一些痉挛性斜颈患者可以自己进行的运动,…...

数据结构——二叉树链式结构的实现(上)
二叉树概念 再看二叉树基本操作前,再回顾下二叉树的概念, 二叉树是: 1. 空树 2. 非空:根节点,根节点的左子树、根节点的右子树组成的。 从概念中可以看出,二叉树定义是递归式的 二叉树构成࿱…...

数据结构内容概览
0. 绪论 绪论01——复杂度度量 绪论02——复杂度分析 绪论03——递归分析 绪论04——算法分析 绪论05——动态规划 算法设计与优化——前n项和计算 算法设计优化——对于任意非负整数,统计其二进制展开中数位1的总数 算法设计优化——Fibonacci数 算法设计优化——…...

当Linux系统运行时间长了之后,会出现磁盘空间不足提示,需要及时进行清理
Linux系统(CentOS 7)的磁盘空间不足时,可以采取以下步骤进行清理: 查找并删除大文件: 使用du和find命令可以找到并删除大文件。例如,要查找/目录下大于100MB的文件,可以运行: find /…...

【Flask 系统教程 4】Jinjia2模版和语法
Jinjia2 模板 模板的介绍 Jinja2 是一种现代的、设计优雅的模板引擎,它是 Python 的一部分,由 Armin Ronacher 开发。Jinja2 允许你在 HTML 文档中嵌入 Python 代码,以及使用变量、控制结构和过滤器来动态生成内容。它的语法简洁清晰&#…...

与 Apollo 共创生态:七周年大会心得
与 Apollo 共创生态:七周年大会心得 前言 4月19日,百度Apollo迎来七周年,历经七年的不懈追求与创新,Apollo开放平台已陆续推出了13个版本,汇聚了来自全球170多个国家与地区的16万名开发者及220多家合作伙伴。作为一名…...

『FPGA通信接口』DDR(4)DDR3内存条SODIMMs读写测试
文章目录 前言1.MIG IP核配置2.测试程序3.DDR应用4.传送门 前言 不论是DDR3颗粒还是DDR3内存条,xilinx都是通过MIG IP核实现FPGA与DDR的读写。本文区别于DDR颗粒,记录几个与颗粒配置不同的地方。关于DDR的原理与MIG IP的简介,请查看前面文章&…...

Element UI 快速入门指南
Element UI 快速入门指南 Element UI 是一个基于 Vue.js 的组件库,提供了丰富的 UI 组件和工具,可以帮助开发人员快速构建现代化的 Web 应用程序。本文将介绍如何快速入门使用 Element UI,并展示一些常用的组件和功能。 安装 Element UI 使…...

CentOS常用命令有哪些?
目录 一、CentOS常用命令有哪些? 二、不熟悉命令怎么办? 场景一:如果是文件操作,可以使用FileZilla工具来完成 场景二:安装CentOS桌面 一、CentOS常用命令有哪些? CentOS 系统中有许多常用命令及其用法…...

cmd查看局域网内所有设备ip
说明:最近碰到一个新问题,就是有一个安卓设备,安装了一个app导致死机了,app设置了开机重启,所以,无论重启还是关机,都是进来就白屏, 这可把人愁坏了,直接死循环了 无论…...

5.3作业
这个声明定义了一个名为 s 的数组,数组包含 10 个元素,每个元素都是一个函数指针。(1)C (2)D (3)C (4)DE (5)C8 11 14(1)int IsFull(sequeue *seqn) { return ((seqn->frnt ((seqn->rear 1) % N)) ? 1 : 0); } (2)int IsEmpty(sequ…...

java-Spring-mvc-(请求和响应)
目录 📌HTTP协议 超文本传输协议 请求 Request 响应 Response 🎨请求方法 GET请求 POST请求 📌HTTP协议 超文本传输协议 HTTP协议是浏览器与服务器通讯的应用层协议,规定了浏览器与服务器之间的交互规则以及交互数据的格式…...

亚马逊测评工作室如何轻松实现高收益,跨境电商揭秘汇率差赚钱术
随着跨境电商在国内市场的持续繁荣,众多电商卖家纷纷将目光投向了这一充满活力的领域。面对国内市场的激烈竞争,许多卖家选择向外拓展,寻求更广阔的发展空间。其中,亚马逊成为了众多卖家的不二选择,毕竟老外的市场还是…...

unity中 UnityWebRequest.Post和 UnityWebRequest uwr = new UnityWebRequest两种方法有什么区别
在Unity中,UnityWebRequest.Post 和 UnityWebRequest uwr new UnityWebRequest(...) 是两种不同的方式来创建和发送HTTP POST请求,但它们之间有一些关键的区别和用法上的差异。 1. UnityWebRequest.Post (静态方法) UnityWebRequest.Post 是一个静态方…...

Java学习-练习试用Java实现求素数
以下是使用Java语言试着编写的求1-100内的素数的程序: public class PrimeNumbers {public static void main(String[] args) {System.out.println("Prime numbers between 1 and 100 are:");for (int i 2; i < 100; i) {if (isPrime(i)) {System.ou…...

最近学习发现一个background-blend-mode,这是CSS的一个新成员吧!这里分享记录一下
介绍 background-blend-mode CSS 属性定义该元素的背景图片,以及背景色如何混合。 混合模式应该按background-image CSS 属性同样的顺序定义。如果混合模式数量与背景图像的数量不相等,它会被截取至相等的数量。在所有的元素中。在SVG,它适…...

虚幻引擎5 Gameplay框架(二)
Gameplay重要类及重要功能使用方法(一) 配置LOG类及PlayerController的网络机制 探索验证GamePlay重要函数、类的执行顺序与含义 我们定义自己的日志,专门建立一个存放自己日志的类,这个类继承自BlueprintFunctionLibrary 然后…...

云原生Kubernetes: K8S 1.29版本 部署Sonarqube
一、实验 1.环境 (1)主机 表1 主机 主机架构版本IP备注masterK8S master节点1.29.0192.168.204.8 node1K8S node节点1.29.0192.168.204.9node2K8S node节点1.29.0192.168.204.10已部署Kuboard (2)master节点查看集群 1&…...

读天才与算法:人脑与AI的数学思维笔记19_深度数学
1. 深度数学 1.1. 组合与选择,是发明新事物的两个不可或缺的条件 1.1.1. 保尔瓦雷里(Paul Valry) 1.2. 利用以往的数学定理证明过程训练算法,以发现新的定理 1.3. 谷歌设在伦敦的总部整体有一种现代牛津大学的感觉,…...

Springboot+Vue项目-基于Java+MySQL的旅游网站系统(附源码+演示视频+LW)
大家好!我是程序猿老A,感谢您阅读本文,欢迎一键三连哦。 💞当前专栏:Java毕业设计 精彩专栏推荐👇🏻👇🏻👇🏻 🎀 Python毕业设计 &…...