六安做网站/网页制作成品模板网站
大家好,在机器学习领域,随着技术的不断发展,将大型语言模型(LLMs)集成到商业产品中已成为一种趋势,同时也带来了许多挑战。为了有效应对这些挑战,数据科学家们转向了一种新型的DevOps实践LLM-OPS,专为大型语言模型的开发和维护而设计。
本文将介绍LLM-OPS的核心思想,并分析这一策略如何帮助数据科学家更高效地运用DevOps的优秀实践,从而在语言模型的开发和部署过程中,提升工作效率和成果的质量。
1.LLM-OPS:大型语言模型的DevOps范式
大型语言模型(LLM)在原型设计阶段展现出了强大的性能,然而其开发过程却颇具挑战性,涉及数据采集、模型调优、部署实施以及持续监控等多个复杂环节。
LLM-OPS提供了解决方案,它全面覆盖了从初步实验、模型迭代、部署实施到持续改进的每一个阶段。LLM-OPS融合了DevOps的优秀实践,为数据科学家们构建起了一个结构化的框架,帮助高效管理和解决开发过程中的复杂问题。
2.DevOps最佳实践在LLM-OPS中的应用
基于DevOps的核心理念,深入分析构筑LLM-OPS基础的重要方法论。从利用Git Flow促进模型开发的协作流程,到通过基础设施即代码(IaC)实现部署环境的一致性保障,逐一审视这些实践如何提升大型语言模型(LLM)部署的效率与稳定性。
2.1 模型开发的Git Flow
LLM-OPS 采用 Git Flow,为数据科学家提供了一套高效的代码管理和版本控制机制。借助明确定义的分支策略和版本管理流程,模型的开发过程变得更加有序、透明,增强了团队协作的效率和追踪性。
2.2 基础设施即代码(IaC)
LLM-OPS鼓励使用“基础设施即代码”,使数据科学家能够以编程方式定义和管理基础设施配置。这种方式保障了不同环境下配置的一致性,降低了部署过程中的风险,提升部署的稳定性和可靠性。
2.3 零信任安全
在LLM-OPS中,安全至关重要。采用零信任安全模型能够确保所有组件和交互都经过验证,增强了LLM部署的整体安全性。
2.4 不可变工件
LLM-OPS强调生成不可变的工件,即模型及其配置的固定版本。这种做法保障了模型的可复现性和操作的透明度,对于满足合规要求和进行审计审查具有重大意义。通过不可变工件,每一次部署都可以精确追溯到源代码和配置,确保了模型运行的一致性和可信度。
3.LLM-OPS相关问题
接下来,一起深入了解LLM-OPS如何运用DevOps的最佳实践来解决数据科学家面临的核心问题。
使用DevOps的LLM上下文学习
3.1 如何构建模型
在持续集成/持续部署(CI/CD)的流程中,LLM-OPS为数据科学家提供了一套简化且自动化的模型构建和部署方案。通过采用Git Flow,LLM-OPS实现了精准的版本控制和团队协作,使多位数据科学家能够无障碍地共同开发项目。同时,基础设施即代码(IaC)的实践确保了在不同环境下基础设施的配置都能保持一致性。此外,LLM-OPS的自动化流程精心设计,涵盖了数据采集、模型微调和部署等关键步骤,极大地简化了数据科学家构建高效模型的整个过程。
3.2. 模型在哪里运行
LLM-OPS赋予数据科学家在选择模型类型和架构方面更大的灵活性,以适配其特定的系统和自动化平台。借助DevOps实践,如容器化和编排技术,LLM-OPS实现了在不同环境中一致且可扩展的部署流程。无论是本地环境、云服务还是混合架构,LLM-OPS都能保障模型与运行环境的完美融合。
上图以AWS为例,展示了在AWS Bedrock或EC2实例上部署LLM模型的多样化选择。这不仅体现了LLM-OPS的灵活性,也突显了其在不同部署场景下的适应性和便捷性。
3.3. 如何测试模型
通过LLM-OPS,大型语言模型的测试变得更加系统化和精确。当VectorDB的数据摄取和配置工作完成后,自动化流程便开始提供全面的测试数据。这些数据包括详尽的性能指标和深入的分析洞察,赋予数据科学家进行细致测试的能力,从而验证模型的性能表现,并据此做出模型是否准备就绪投入部署的明智决策。
3.4. 如何运行VectorDB和访问应用程序
选择合适的VectorDB类型并制定有效的数据摄取策略,对于提升模型的准确性和性能很关键,尤其是在进行上下文学习时。VectorDB能够根据不同的应用程序和需求,在多种数据库环境中灵活部署。例如,对于在EC2上使用ChromaDB进行本地推理的模型,可以将其部署在Kubernetes Pod中,以适应不同的应用场景,并确保与模型训练过程的紧密集成。
此外,数据科学家拥有对模型进行微调的灵活性,这在必要时可以进一步提升模型针对特定任务的性能表现。这种灵活性和可定制性,使得VectorDB成为支持数据科学家工作的强大工具。
4.总结
在当今快速发展的语言模型领域,LLM-OPS代表了一项重要的技术突破,它架起了数据科学与DevOps之间的桥梁。通过整合Git Flow、基础设施即代码(IaC)、零信任安全框架和不可变工件等先进实践,LLM-OPS极大地提升了数据科学家在开发大型语言模型(LLM)时的效率,帮助顺利应对各种挑战。这些综合能力不仅推动了生成式AI技术在众多应用程序中的深度融合,也为未来的技术创新奠定了坚实基础。
展望未来,LLM-OPS不仅预示着最前沿的语言模型技术与弹性DevOps实践的结合,更为大型语言模型的开发和应用开辟了无限新可能,引领我们进入一个充满创新和机遇的新时代。
相关文章:

详解LLMOps,将DevOps用于大语言模型开发
大家好,在机器学习领域,随着技术的不断发展,将大型语言模型(LLMs)集成到商业产品中已成为一种趋势,同时也带来了许多挑战。为了有效应对这些挑战,数据科学家们转向了一种新型的DevOps实践LLM-OP…...

牛客NC275 和为S的两个数字【简单 map C++/Java/Go/PHP】
题目 题目链接: https://www.nowcoder.com/practice/390da4f7a00f44bea7c2f3d19491311b 思路 map参考答案C #include <vector> class Solution {public:vector<int> FindNumbersWithSum(vector<int> array, int sum) {vector<int> ans;m…...

ax200/ax201/ax210/ax211/ax411等intel网卡无法开启5G热点问题解决方案汇总
目录 故障原因解决方案windowslinuxkernel < 5.5kernel > 5.5方案1 修改linux内核模块代码(iwlwifi内核模块),重新编译内核模块并重新导入方案2 修改hostapd代码 最后更新于2024.04.28 故障原因 根本原因是因为英特尔在内核中开启了LA…...

JVM的垃圾回收机制(GC机制)
在Java代码运行的过程中,JVM发现 某些资源不需要再使用的时候,就会自动把资源所占的内存给回收掉,就不需要程序员自行操作了。“自动回收资源”就是JVM的“垃圾回收机制”,“垃圾回收机制”也称"GC机制"。 对于Java代码…...

分布式光伏管理系统和一般的光伏管理系统相比有什么区别?
随着全球对可再生能源的关注度日益提高,光伏技术作为其中的佼佼者,已经得到了广泛的应用。在光伏技术中,管理系统扮演着至关重要的角色,它关乎着光伏电站的运行效率、能源产出以及运维成本等多个方面。其中,分布式光伏…...

Linux migrate_type进一步探索
文章接着上回Linux migrate_type初步探索 1、物理页面添加到buddy系统 我们都知道物理内存一开始是由memblock进行分配管理,后面会切换到buddy系统管理。那么接下来我们看一下,memblock管理的物理页面是怎么添加到buddy系统中的。 start_kernel() -&g…...

强化学习:时序差分法【Temporal Difference Methods】
强化学习笔记 主要基于b站西湖大学赵世钰老师的【强化学习的数学原理】课程,个人觉得赵老师的课件深入浅出,很适合入门. 第一章 强化学习基本概念 第二章 贝尔曼方程 第三章 贝尔曼最优方程 第四章 值迭代和策略迭代 第五章 强化学习实例分析:GridWorld…...

数据结构-二叉树-二叉搜索树
一、概念 二叉搜索树又称二叉排序树,它或者是一棵空树,或者具有以下性质的二叉树: 若它的左子树不为空,则左树上所有节点的值都小于根节点的值。 若它的右子树不为空,则右子树上所有节点的值都大于根节点的值。 它…...

Linux 磁盘管理命令df du dd
文章目录 3.Linux 磁盘管理命令3.1 df:显示报告文件系统磁盘使用信息案例练习 3.2 du:显示目录或者文件所占的磁盘空间案例练习 3.3 dd:磁盘操作案例练习 3.Linux 磁盘管理命令 3.1 df:显示报告文件系统磁盘使用信息 作用&#x…...

Leetcode 3138. Minimum Length of Anagram Concatenation
Leetcode 3138. Minimum Length of Anagram Concatenation 1. 解题思路2. 代码实现 题目链接:3138. Minimum Length of Anagram Concatenation 1. 解题思路 这一题的话我们首先统计出来所有的字母出现的频率。 然后,我们只需要从头开始重新计数一下&…...

IT廉连看——UniApp——样式绑定
IT廉连看——UniApp——样式绑定 一、样式绑定 两种添加样式的方法: 1、第一种写法 写一个class属性,然后将css样式写在style中。 2、第二种写法 直接把style写在class后面 添加一些效果:字体大小 查看效果 证明这样添加样式是没有问题的…...

垃圾的flinkcdc
在 MySQL 中,创建表时使用反引号 将表名或字段名括起来的作用是: 保留字和关键字: 使用反引号可以避免使用MySQL的保留字和关键字作为表名或字段名时产生的冲突。比如,你可以创建一个名为 select 或 order 的表: sqlCopy Code C…...

关于视频号小店,常见问题解答,开店做店各方面详解
大家好,我是电商笨笨熊 视频号小店作为今年风口,一个新推出的项目,凭借着自身流量加用户群体的优势吸引了不少的电商玩家。 但对于很多玩家来说,视频号小店完全是一个新的项目、新的领域,因此也会存在很多的疑问&…...

Debian mariadb 10.11设定表名 大小写不敏感方法
目录 问题表现:应用中查询 表提示 表不存在 处理步骤: 1、查询表名大小写敏感情况: show global variables like %case%; 2、修改mariadb 配置设置大小写 不敏感 mysql 配置大小写不敏感 mariadb 10.11设置表名大小写不敏感 /etc/mysq…...

常用六大加密软件排行榜|好用加密文件软件分享
为了保障数据安全,越来越多的企业开始使用文件加密软件。哪款加密软件适合企业哪些办公场景呢? 今天就给大家推荐一下文件加密软件排行榜的前六名: 1.域智盾 这款软件专为企业和政府机构设计,提供全面的文件保护解决方案。 点…...

百川2模型解读
简介 Baichuan 2是多语言大模型,目前开源了70亿和130亿参数规模的模型。在公开基准如MMLU、CMMLU、GSM8K和HumanEval上的评测,Baichuan 2达到或超过了其他同类开源模型,并在医学和法律等垂直领域表现优异。此外,官方还发布所有预…...

云原生专栏丨基于K8s集群网络策略的应用访问控制技术
在当今云计算时代,Kubernetes已经成为容器编排的事实标准,它为容器化应用提供了强大的自动化部署、扩展和管理能力。在Kubernetes集群中,网络策略(Network Policy)作为对Pod间通信进行控制的关键功能,对保障应用安全和隔离性起到了…...

MySQL 优化 - index_merge 导致查询偶发变慢
文章目录 前言问题描述原因分析总结 前言 今天遇到了一个有意思的问题,线上数据库 CPU 出现了偶发的抖动。定位到原因是一条查询语句偶发变慢造成的,随后通过调整表中的索引解决。 问题描述 下方是脱敏后的 SQL 语句: select oss_path f…...

SpringBoot自动连接数据库的解决方案
在一次学习设计模式的时候,沿用一个旧的boot项目,想着简单,就把数据库给关掉了,结果报错 Consider the following: If you want an embedded database (H2, HSQL or Derby), please put it on the classpath. 没有数据库的需…...

Docker-10 Docker Compose
一、前言 通过前面几篇文章的学习,我们可以通过Dockerfile文件让用户很方便的定义一个单独的应用容器。然而,在日常工作中,经常会碰到需要多个容器相互配合来完成某项任务的情况,或者开发一个Web应用,除了Web服务容器本身,还需要数据库服务容器、缓存容器,甚至还包括负…...

new mars3d.control.MapSplit({实现点击卷帘两侧添加不同图层弹出不同的popup
new mars3d.control.MapSplit({实现点击卷帘两侧添加不同图层弹出不同的popup效果: 左侧: 右侧: 说明:mars3d的3.7.12以上版本才支持该效果。 示例链接: 功能示例(Vue版) | Mars3D三维可视化平台 | 火星科技 相关代…...

数据库中虚拟表和临时表的区别?
虚拟表(Virtual Table)和临时表(Temporary Table)在数据库系统中都用于处理暂时性的数据存储需求,但它们的概念和用途有所不同: 虚拟表(通常是视图View): 虚拟表&#…...

Node.js -- mongoose
文章目录 1. 介绍2. mongoose 连接数据库3. 插入文件4. 字段类型5. 字段值验证6. 文档处理6.1 删除文档6.2 更新文档6.3 读取文档 7. 条件控制8. 个性化读取9. 代码模块化 1. 介绍 Mongoose是一个对象文档模型库,官网http://www.mongoosejs.net/ 方便使用代码操作mo…...

保持亮灯:监控工具如何确保 DevOps 中的高可用性
在快速发展的 DevOps 领域,保持高可用性 (HA) 至关重要。消费者期望应用程序具有全天候响应能力和可访问性。销售损失、客户愤怒和声誉受损都是停机的后果。为了使 DevOps 团队能够在问题升级为中断之前主动检测、排除故障并解决问题,监控工具成为这种情…...

DRF版本组件源码分析
DRF版本组件源码分析 在restful规范中要去,后端的API中需要体现版本。 3.6.1 GET参数传递版本 from rest_framework.versioning import QueryParameterVersioning单视图应用 多视图应用 # settings.pyREST_FRAMEWORK {"VERSION_PARAM": "versi…...

C#算法之希尔排序
算法释义:希尔排序,也被称为缩小增量排序,是一种有效的排序算法,它是插入排序的一种更高效的改进版,通过比较一定间隔的元素来工作,然后逐步较少间隔来排序。 小编的理解啊,希尔排序的本质就是不…...

校园餐厅预约系统(请打开git自行访问)
校园餐厅预约系统详细介绍 项目地址:https://gitee.com/zhang—xuan/online_booking_system 服务端部分 Socket类 作用:创建socket连接,作为服务端与客户端通信的基础。 Sock_Obj类 基类:定义了服务端需要的基本操作和属性。 派生…...

【双曲几何-05 庞加莱模型】庞加来上半平面模型的几何属性
文章目录 一、说明二、双曲几何的上半平面模型三、距离问题四、弧长微分五、面积问题 一、说明 庞加莱圆盘模型是表示双曲几何的一种方法,对于大多数用途来说它都非常适合几何作图。然而,另一种模型,称为上半平面模型,使一些计算变…...

Bookends for Mac:文献管理工具
Bookends for Mac,一款专为学术、研究和写作领域设计的文献管理工具,以其强大而高效的功能深受用户喜爱。这款软件支持多种文件格式,如PDF、DOC、RTF等,能够自动提取文献的关键信息,如作者、标题、出版社等,…...

SpringEL表达式编译模式SpelCompilerMode详解
目前网上没有搜到关于SpringEL表达式编译模式SpelCompilerMode的详细讲解,都是对官方文档的翻译,并没有详细说明根本差异。 该文章为个人原创,谢绝抄袭 SpringEL表达式官方文档:https://docs.spring.io/spring-framework/reference/core/expressions.html 在构建SpringE…...