二叉树的遍历(前序、中序、后序)| C语言
目录
0.写在前面
1.前序遍历
步骤详解
代码实现
2.中序遍历
步骤详解
代码实现
3.后序遍历
步骤详解
代码实现
0.写在前面
认识二叉树结构最简单的方式就是遍历二叉树。所谓遍历二叉树就是按照某种特定的规则,对二叉树的每一个节点进行访问,且每个节点只访问一次。
二叉树遍历的规则一般有四种:前序遍历、中序遍历、后序遍历和层序遍历。其中,前三种较为简单且实现方式大同小异。
1.前序遍历:先访问根节点,再遍历左右子树;
2.中序遍历:先遍历左子树,再访问根节点,再遍历右子树;
3.后序遍历:先遍历左子树,再遍历右子树,再访问根节点。
简单记忆:前(根,左,右)、中(左,根,右)、后(左,右,根)。
在遍历二叉树之前,首先得拥有一棵二叉树。因为目前还没有学习如何构建二叉树,所以此处我们用最原始的办法——申请N个节点,将它们手动拼接为二叉树。
typedef int BTDataType;//二叉树节点的结构
typedef struct BTNode
{BTDataType data;struct BTNode* left;struct BTNode* right;
}BTNode;//定义一个申请新节点的函数
BTNode* BuyBTNode(BTDataType data)
{BTNode* newNode = (BTNode*)malloc(sizeof(BTNode));if (newNode == NULL){perror("malloc fail");exit(-1);}newNode->data = data;newNode->left = NULL;newNode->right = NULL;return newNode;}int main()
{//手动申请节点加连接BTNode* n1 = BuyBTNode(1);BTNode* n2 = BuyBTNode(2);BTNode* n3 = BuyBTNode(3);BTNode* n4 = BuyBTNode(4);BTNode* n5 = BuyBTNode(5);BTNode* n6 = BuyBTNode(6);n1->left = n2;n1->right = n4;n2->left = n3;n4->left = n5;n4->right = n6;return 0;
}
1.前序遍历
前序遍历:先访问根节点,再访问左子树,再访问右子树;
void PrevOrder (BTNode* root)
为了更好的理解前序遍历的规则,接下来展示一下详细步骤。
步骤详解
1.先访问根节点 (data = 1),再访问左子树;
2.再访问左子树的根节点(data = 2),再访问左子树的左子树;
3.依旧先访问根节点(data = 3),此时 n3 节点的左右子树都为 NULL ,则不再往下递归,回到上一层;接着访问上一层的右子树;
4.因为 n2 节点的右子树为 NULL,所以继续返回上一层;访问上一层的右子树;
5.访问右子树的根节点(data = 4),再访问右子树的左子树;先左子树的根节点(data = 5),n5 节点的左右子树都为 NULL,返回上一层访问右子树(data = 6),同样 n6 节点的左右子树都为 NULL,返回上一层。
至此每个节点都访问完毕,总体的访问顺序是这样的:
按照访问顺序打印的结果应该是(空节点用 NULL 表示):
1 2 3 NULL NULL NULL 4 5 NULL NULL 6 NULL NULL
代码实现
按照前序遍历的逻辑,前序遍历的实现肯定是离不开递归。
void PrevOrder(BTNode* root)
{if (root == NULL){ printf("NULL ");//空节点用 NULL 表示return; }printf("%d ", root->data);//前序在前PrevOrder(root->left);PrevOrder(root->right);
}
(凑合着看,有点丑陋hhhhh)
运行程序,看结果是否与之前推理的结果一致:
int main()
{//手动申请节点加连接BTNode* n1 = BuyBTNode(1);BTNode* n2 = BuyBTNode(2);BTNode* n3 = BuyBTNode(3);BTNode* n4 = BuyBTNode(4);BTNode* n5 = BuyBTNode(5);BTNode* n6 = BuyBTNode(6);n1->left = n2;n1->right = n4;n2->left = n3;n4->left = n5;n4->right = n6;PrevOrder(n1);return 0;
}
//推理结果
1 2 3 NULL NULL NULL 4 5 NULL NULL 6 NULL NULL
2.中序遍历
前中后序三种遍历大同小异,实现代码也几乎相同。
void InOrder(BTNode* root)
步骤详解
代码实现
void InOrder(BTNode* root)
{if (root == NULL){printf("NULL ");return;}PrevOrder(root->left);printf("%d ", root->data);//中序在中PrevOrder(root->right);
}
//推理结果
NULL 3 NULL 2 NULL 1 NULL 5 NULL 4 NULL 6 NULL
3.后序遍历
步骤详解
参考1、2。
代码实现
void PostOrder(BTNode* root)
{if (root == NULL){printf("NULL ");return;}PostOrder(root->left);PostOrder(root->right);printf("%d ", root->data);//后序在后
}
相关文章:
二叉树的遍历(前序、中序、后序)| C语言
目录 0.写在前面 1.前序遍历 步骤详解 代码实现 2.中序遍历 步骤详解 代码实现 3.后序遍历 步骤详解 代码实现 0.写在前面 认识二叉树结构最简单的方式就是遍历二叉树。所谓遍历二叉树就是按照某种特定的规则,对二叉树的每一个节点进行访问,…...
【建议收藏】深入浅出Yolo目标检测算法(含Python实现源码)
深入浅出Yolo目标检测算法(含Python实现源码) 文章目录深入浅出Yolo目标检测算法(含Python实现源码)1. One-stage & Two-stage2. Yolo详解2.1 Yolo命名2.2 端到端输入输出2.3 Yolo中的标定框2.4 Yolo网络结构2.5 Yolo的算法流…...
Vue常见的事件修饰符
前言 vue一共给我们准备了6个事件修饰符,前三个比较常用,后三个少见,这里着重讲下前三个 1.prevent:阻止默认事件(常用) 2. stop:阻止事件冒泡(常用) 3. once:事件只触发一次(常用) 4.captrue:使用事件的捕捉模式(不常用) 5.self:只有event…...
【卷积神经网络】激活函数 | Tanh / Sigmoid / ReLU / Leaky ReLU / ELU / SiLU / GeLU
文章目录一、Tanh二、Sigmoid三、ReLU四、Leaky ReLU五、ELU六、SiLU七、Mish本文主要介绍卷积神经网络中常用的激活函数及其各自的优缺点 最简单的激活函数被称为线性激活,其中没有应用任何转换。 一个仅由线性激活函数组成的网络很容易训练,但不能学习…...
刷题记录:牛客NC24048[USACO 2017 Jan P]Promotion Counting 求子树的逆序对个数
传送门:牛客 题目描述 奶牛们又一次试图创建一家创业公司,还是没有从过去的经验中吸取教训–牛是可怕的管理者! 为了方便,把奶牛从 1∼n1\sim n1∼n 编号,把公司组织成一棵树,1 号奶牛作为总裁(这棵树的根…...
MpAndroidChart3最强实践攻略
本篇主要总结下Android非常火爆的一个三方库MpAndroidChart的使用。可能在大多数情况下,我们很少会在Android端去开发图表。但如果说去做一些金融财经类、工厂类、大数据类等的app,那么绝对会用到MpAndroidChart。 一、前言 2018年,那年的我…...
Spring笔记(9):事务管理ACID
一、事务管理 一个数据库事务是一个被视为单一的工作单元操作序列。 事务管理有四个原则,被成为ACID: Atomicity 原子性—— 事务作为独立单元进行操作,整个序列是一体的,操作全都成功或失败。Consistency 一致性—— 引用完整…...
io流 知识点+代码实例
需求 : 如何实现读写文件内部的内容?流 : 数据以先入先出的方式进行流动相当于管道,作用用来传输数据数据源-->流-->目的地流的分类 :流向分 : 以程序为中心输入流输出流操作单元 :字节流 : 万能流字符流 : 只能操作纯文本文件功能分 :节点流 : 真实实现读写的功能流(包…...
【MySQL】P8 多表查询(2) - 连接查询 联合查询
连接查询以及联合查询多表查询概述连接查询内连接隐式内连接显式内连接外连接左外连接右外连接自连接联合查询多表查询概述 建表语句见上一篇博文:https://blog.csdn.net/weixin_43098506/article/details/129402302 e.g.e.g.e.g. select * from emp, dept where e…...
QML动画(Animator)
在Qt5.2之后,引入Animator动画元素。这种方式可以直接所用于Qt Quick的场景图形系统,这使得基于Animator元素的动画及时在ui界面线程阻塞的情况下仍然能通过图形系统的渲染线程来工作,比传统的基于对象和属性的Animation元素能带来更好的用户…...
Git 分支操作【解决分支冲突问题】
1. 什么是分支 在版本控制过程中,同时推进多个任务,为每个任务,我们就可以创建每个任务的单独分支。使用分支意味着程序员可以把自己的工作从开发主线上分离开来,开发自己分支的时候,不会影响主线分支的运行。对于初学…...
盘点全球10大女性技术先驱
盘点全球10大女性技术先驱 人们普遍认为技术是男性主导的领域,但事实,技术或编程与性别无关,几乎任何人都可以成为技术大神。已经有很多案例证明女性同样可以在技术领域施展才能。在女神节来临之际,我为大家盘点一下为编程做出卓越…...
C++之dynamic_cast
C之dynamic_cast前言dynamic_castNote:示例:前言 dynamic_cast运算符牵扯到的面向对象的多态性跟程序运行时的状态,所以不能完全的使用传统的转换方式来替代。因此是最常用,最不可缺少的一个运算符,与static_cast一样,dynamic_cas…...
JavaScript 箭头函数、函数参数
箭头函数: 箭头函数是一种更加简洁的函数书写方式箭头函数本身没有作用域(无this)箭头函数的this指向上一层,上下文决定其this基本语法:参数 > 函数体 a. 基本用法 let fn v > v; //等价于 let fn function(…...
JavaScript_Object.keys() Object.values()
目录 一、Object.keys() 二、Object.values() 一、Object.keys() Object.keys( ) 的 用法 : 作用 :遍历对象 { } 返回结果:返回 对象中 每一项 的 key 值 返回值 : 是一个 *** [ 数 组 ] *** 例子 ( 1 ) : <script>// 1. 定义一个对象var obj …...
扬帆优配|高送转+高分红+高增长潜力股揭秘
高送转且高分红的高增加股票,有望跑赢大盘。 此前七连阴的泽宇智能,今日早盘大幅高开。到上午收盘,该股飙涨9.3%,位居涨幅榜前列。音讯面上,3月7日晚间,泽宇智能发表2022年年报,年报显现&#x…...
基于transformer的多帧自监督深度估计 Multi-Frame Self-Supervised Depth with Transformers
Multi-Frame Self-Supervised Depth with Transformers基于transformer的多帧自监督深度估计0 Abstract 多帧深度估计除了学习基于外观的特征外,也通过特征匹配利用图像之间的几何关系来改善单帧估计。我们采用深度离散的核极抽样来选择匹配像素,并通过一…...
设计模式: 单例模式
目录单例模式应用场景实现步骤涉及知识点设计与实现单例模式 通过单例模式的方法创建的类在当前进程中只有一个实例; 应用场景 配置管理 日志记录 线程池 连接池 内存池 对象池 消息队列 实现步骤 将类的构造方法定义为私有方法 定义一个私有的静态实例 提供一…...
idea编辑XML文件出现:Tag name expected报错
说明 Tag name expected解释其实就是:需要标记名称,也就是符号不能直接使用的意思 XML (eXtensible Markup Language) 是一种标记语言,用于存储和传输数据。在 XML 中,有些字符被视为特殊字符,这些字符在 XML 中具有…...
第十三届蓝桥杯省赛C++ A组 爬树的甲壳虫(简单概率DP)
题目如下: 思路 or 题解: 概率DP 状态定义: dp[i]dp[i]dp[i] 表示从树根到第 iii 层的期望 状态转移: dp[i](dp[i−1]1)∗11−pdp[i] (dp[i - 1] 1) * \frac{1}{1-p}dp[i](dp[i−1]1)∗1−p1 这个式子的意思是:…...
手动集成Tencent SDK遇到的坑!!!
手动集成的原因 由于腾讯未把Tencent SDK上传到Github中,所以我们不能通过Cocoapods的方式集成,只能通过官方下载其SDK手动集成。 Tencent SDK手动集成步骤 1.访问腾讯开放平台SDK下载界面,找到并下载iOS_SDK_V3.5.1。(目前最新…...
三天吃透mybatis面试八股文
本文已经收录到Github仓库,该仓库包含计算机基础、Java基础、多线程、JVM、数据库、Redis、Spring、Mybatis、SpringMVC、SpringBoot、分布式、微服务、设计模式、架构、校招社招分享等核心知识点,欢迎star~ Github地址:https://github.com/…...
SpringBoot整合Quartz以及异步调用
文章目录前言一、异步方法调用1、导入依赖2、创建异步执行任务线程池3、创建业务层接口和实现类4、创建业务层接口和实现类二、测试定时任务1.导入依赖2.编写测试类,开启扫描定时任务3.测试三、实现定时发送邮件案例1.邮箱开启IMAP服务2.导入依赖3.导入EmailUtil4.编…...
Golang 中 Slice的分析与使用(含源码)
文章目录1、slice结构体2、slice初始化3、append操作4、slice截取5、slice深拷贝6、值传递还是引用传递参考文献众所周知,在golang中,slice(切片)是我们最常使用到的一种数据结构,是一种可变长度的数组,本篇…...
瀑布开发与敏捷开发的区别,以及从瀑布转型敏捷项目管理的5大注意事项
事实证明,瀑布开发管理模式并不适合所有的软件项目,但敏捷项目管理却对大多数项目有效。那么当团队选择转型敏捷的时候有哪些因素必须注意?敏捷开发最早使用者大多是小型、独立的团队,他们通常致力于小型、独立的项目。正是他们的…...
“华为杯”研究生数学建模竞赛2007年-【华为杯】A题:建立食品卫生安全保障体系数学模型及改进模型的若干理论问题(附获奖论文)
赛题描述 我国是一个拥有13亿人口的发展中国家,每天都在消费大量的各种食品,这批食品是由成千上万的食品加工厂、不可计数的小作坊、几亿农民生产出来的,并且经过较多的中间环节和长途运输后才为广大群众所消费,加之近年来我国经济发展迅速而环境治理没有能够完全跟上,以…...
基于JavaWeb学生选课系统开发与设计(附源码资料)
文章目录1. 适用人群2. 你将收获3.项目简介4.技术实现5.运行部分截图5.1.管理员模块5.2.教师模块5.3.学生模块1. 适用人群 本课程主要是针对计算机专业相关正在做毕业设计或者是需要实战项目的Java开发学习者。 2. 你将收获 提供:项目源码、项目文档、数据库脚本…...
centos7 oracle19c安装||新建用户|| ORA-01012: not logged on
总共分三步 1.下载安装包:里面有一份详细的安装教程 链接:https://pan.baidu.com/s/1Of2a72pNLZ-DDIWKrTQfLw?pwd8NAx 提取码:8NAx 2.安装后,执行初始化:时间较长 /etc/init.d/oracledb_ORCLCDB-19c configure 3.配置环境变量,不配置环境变量,sq…...
【算法设计-分治】递归与尾递归
文章目录1. 阶乘尾递归:递归的进一步优化2. 斐波那契数列3. 最大公约数(GCD)4. 上楼梯5. 汉诺塔(1)输出移动过程输出移动步数5. 汉诺塔(2)输出移动过程输出移动步数6. 杨辉三角形7. 完全二叉树1…...
HTML 编辑器
文章目录 HTML 编辑器HTML 编辑器推荐编辑器下载网站HBuilder步骤 1: 新建 HTML 文件步骤 2: 另存为 HTML 文件步骤 3: 在浏览器中运行这个 HTML 文件HTML 编辑器 HTML 编辑器推荐 可以使用专业的 HTML 编辑器来编辑 HTML,我为大家推荐几款常用的编辑器: Notepad++:Windows…...
只做域名跳转和关停网站/网站ip查询站长工具
618剁手党们熬夜蹲点“买买买”的“战争”刚结束,物流运输就紧随其后拉起了战线。面对每逢“佳节”必“爆仓”的快递包裹,依旧准时准点的送达到我们每个人手中,这背后的运输环节离不开一群默默付出的“骑士”——卡车司机。 作为中国公路货运…...
网页空间结构/seo学堂
DOM结构 首先,先上效果图: 首先说明一下,本文的一些细节或者技巧是建立在我的另外一篇文章上的,如果你在读的过程中,有什么地方不太清楚的,可以先去看看那篇文章,或许可以找到答案。 左侧是 mar…...
wordpress部署php/网络推广是诈骗吗
53. 最大子数组和 - 力扣(LeetCode) 一、题目 给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。 子数组 是数组中的一个连续部分。 示例 1࿱…...
手机怎么做弹幕小视频网站/站外推广渠道
UIView 继承于UIResponder 所遵守的协议有 NSCoding 、UIAppearance、 UIAppearanceContainer UIDynamicItem、 NSObject 从继承的类我们就可以看出 UIView 这个类可以响应手势 那么我们就从它的属性开始这一旅程吧 UIView 之属性篇 Pro…...
郴州市做网站/seo怎么收费
按照常理,对于某一单元行需要显示时,使用:display:block属性,不需要显示时使用display:none属性,而且这样做在IE浏 览器中显示正常,没有任何问题。 但是当用Firefox浏览时却出现了布局错乱的问题ÿ…...
重庆做网站建设哪家好/免费的seo网站下载
2019独角兽企业重金招聘Python工程师标准>>> 在“高并发,海量数据,分布式,NoSql,云计算......”概念满天飞的年代,相信不少朋友都听说过甚至常与人提起“集群,负载均衡”等, 但不是所…...