当前位置: 首页 > news >正文

建设网站元素搜索引擎/长沙seo推广外包

建设网站元素搜索引擎,长沙seo推广外包,深圳网站建设制作厂家,青海高端网站建设公司第一章 概论统计学习,又称统计机器学习(机器学习),现在提到的 机器学习 往往指的就是 统计机器学习。统计学习研究的对象是数据,其对数据的基本假设是同类数据存在一定的统计规律性,因此可以用概率统计方法…

第一章 概论

统计学习,又称统计机器学习(机器学习),现在提到的 机器学习 往往指的就是 统计机器学习。

统计学习研究的对象是数据,其对数据的基本假设是同类数据存在一定的统计规律性,因此可以用概率统计方法处理他们:用随机变量描述数据中的特征,用概率分布描述数据的统计规律,然后基于数据构建概率统计模型从而对数据进行预测和分析。

  • 统计学习假设数据是独立同分布(i.i.d.)

1.1 统计学习的分类

统计学习方法一般包括一下几种:

  1. 监督学习

  • 监督学习假设输入随机变量X和输出随机变量Y遵循联合概率分布

  • 监督学习的模型可以是概率模型:条件概率分布,也可以是非概率模型:决策函数。对具体的输入做预测,写作。通过学习(训练)得到一个模型为条件概率分布或决策函数

  1. 无监督学习

  • 无监督学习的本质是学习数据中的统计规律或潜在结构。

  • 假设是输入空间,是隐式结构空间,无监督学习要学习的模型可表示为或条件概率分布

  1. 强化学习

  1. 半监督学习与主动学习

统计学习按照模型的种类,可分为:

  1. 概率模型和非概率模型 (二者区别不在于输入与输出映射关系,而在于模型内部结构)

  1. 概率模型:决策树、朴素贝叶斯、隐马尔可夫模型、条件随机场、概率潜在语义分析、潜在狄利克雷分配、高斯混合模型。代表是概率图模型(贝叶斯网络、马尔科夫随机场、条件随机场)

  1. 非概率模型:感知机、支持向量机、k近邻、AdaBoost、k均值、潜在语义分析、神经网络

  1. 线性模型和非线性模型

  1. 线性模型:感知机、线性支持向量机、k近邻、k均值、潜在语义分析

  1. 非线性模型:核函数支持向量机、AdaBoost、神经网络

  1. 参数化模型和非参数化模型

按照算法来分,可以分为:在线学习和批量学习

按照技巧来分,可以分为:贝叶斯学习和核方法

1.2 统计学习三要素

统计学习三要素:模型、策略、算法。

在监督学习中,模型就是所要学习的条件概率分布或决策函数。算法指学习模型的具体计算方法,可以利用已有的最优化算法,有时也需要开发独自的最优化算法。策略是按照什么样的准则从模型的假设空间中选取最优模型。下面主要讲策略。

损失函数度量模型一次预测的好坏,风险函数度量平均意义下模型预测的好坏。

期望风险是模型关于联合分布的期望损失;经验风险是模型关于训练样本集的平均损失。根据大数定律,当样本容量N趋于无穷时,经验风险趋于期望风险。所以一个很自然地想法就是用经验风险估计期望风险。答案现实中样本往往是有限的,所以用经验风险估计期望风险往往不是很理想,要对经验风险进行一定矫正。

这就引出了监督学习两个基本策略:经验风险最小化结构风险最小化

经验风险最小化就是我们在监督学习训练模型的时候,最小化经验风险(训练集的平均损失);结构风险最小化等价于正则化,就是再经验风险上加上表示模型复杂度的正则化项或罚项。

经验或结构风险函数就是最优化的目标函数。

// 泛函:函数的函数。

1.3 泛化能力

泛化误差:学习到的模型对未知数据预测的误差,即为泛化误差。事实上,泛化误差就是所学习到的模型的期望风险。

泛化误差上界:TODO

1.4 生成模型与判别模型

监督学习方法可以分为 生成方法 和 判别方法,学到的模型分别是 生成模型 和 判别模型。

生成模型:由数据学习联合概率分布,然后求出条件概率分布作为预测的模型。即:

  • 这类方法之所以称为生成方法,是因为模型表示了给定输入X产生输出Y的生成关系。

  • 典型的生成模型:朴素贝叶斯法隐马尔可夫模型

判别模型:由数据直接学习决策函数或条件概率分布作为预测的模型。

  • 判别方法关心的是对给定的输入X,应该预测什么样的输出Y

  • 典型的判别模型:k近邻法、感知机、逻辑斯蒂回归模型、最大熵模型、支持向量机、提升方法和条件随机场。

两类方法的优缺点:

  • 生成方法:

  • 生成方法可以还原出联合概率分布,判别方法不能

  • 生成方法的收敛速度更快

  • 当存在隐变量时,仍可以用生成方法学习,但不能用判别方法

  • 判别方法:

  • 判别方法直接学习条件概率或决策函数,直接面对预测,往往学习准确率更高;

  • 由于直接学习,可以对数据进行各种程度上的抽象,定义特征并使用特征,因此可以简化学习问题。

相关文章:

《统计学习方法》(李航)——学习笔记

第一章 概论统计学习,又称统计机器学习(机器学习),现在提到的 机器学习 往往指的就是 统计机器学习。统计学习研究的对象是数据,其对数据的基本假设是同类数据存在一定的统计规律性,因此可以用概率统计方法…...

阿里云EMR集群搭建及使用

目录 1.简介 1.什么是EMR 2.组成 3.与自建hadoop集群对比 4.产品架构 2.使用 1.创建EMR集群 1.登录EMR on ECS控制台 2.软件设置 3.硬件设置 3.基础配置 2.配置 1.组件配置 2.用户管理 3.安全组 4.Gateway 3.组件UI 1.简介 1.什么是EMR EMR是运行在阿里云平台…...

学习streamlit-4

st.slider 今天学习st.slider滑块组件的使用。 st.slider滑块组件通常被用来作为应用的输入,支持整数、浮点数、日期、时间和日期时间。 下面的示例程序包含以下简单功能,以演示st.slider滑块组件: 用户通过调整滑块选择值应用打印出所选…...

高级Oracle DBA面试题及答案

作为高级 Oracle DBA,您将负责 Oracle 数据库基础架构的设计、安装、配置、监控和维护。您还将负责制定和实施备份和恢复计划,并确保数据的安全性和完整性。要成功担任此职位,您需要对 Oracle 数据库架构有深入的了解,并能够有效地…...

程序员成长路线

程序员在成长的过程中,不同的阶段,需要关注的问题点一会都会有所不同,今天给大家分享下自己的感受。 0-1年,入门,掌握语言基础、提高工具的使用熟练度。 工作第一年,主要围绕ssm三件套、mysql、red…...

【Galois工具开发之路】关于类的重新装载思路

思路 当一个java的类文件发生变更,如果动态的热更新这个新的类文件?目前来说,有两种可能的方式 新增一个自定义ClassLoader,名为NC,让NC去load这个新的类文件,这样就完成了新的类定义的替换 但目前Java有…...

哪款蓝牙耳机音质好?内行推荐四款高音质蓝牙耳机

蓝牙耳机经过近几年的快速发展,在音质上的表现也越来越好。哪款蓝牙耳机音质好?最近看到很多人问。接下来,我来给大家推荐四款高音质蓝牙耳机,可以当个参考。 一、南卡小音舱蓝牙耳机 参考价:246 发声单元&#xff…...

Android程序自动在线升级安装

安卓小白分享: Android程序自动在线升级安装.(通过GetSharedDownloadsPath方法) 1>.修改AndroidManifest.template.xml ( 此文件在你DELPHI项目的目录中,如找不到就文件查找吧) 最好把此文件拖到DELPHI, 用DELPHI打开,(这样,它会一行一行格式清楚) 找到文字<%u…...

JS的BroadcastChannel与MessageChannel

BroadcastChannel与MessageChannel BroadcastChannel BroadcastChannel以广播的形式进行通信 BroadcastChannel用于创建浏览器标签页之间的通信 使用BroadcastChannel的浏览器标签页面必须要遵循同源策略 页面1使用BroadcastChannel创建一个频道&#xff0c;页面2使用Broadc…...

nextjs开发 + vercel 部署 ssr ssg

前言 最近想实践下ssr 就打算用nextjs 做一个人博客 &#xff0c; vercel 部署 提供免费域名&#xff0c;来学习实践下ssr ssg nextjs 一个轻量级的react服务端渲染框架 vercel 由 Next.js 的创建者制作 支持nextjs 部署 免费静态网站托管 初始化项目 npx create-next-app p…...

Good Idea, 利用MySQL JSON特性优化千万级文库表

&#x1f473;我亲爱的各位大佬们好&#x1f618;&#x1f618;&#x1f618; ♨️本篇文章记录的为 利用MySQL JSON特性优化千万级文库表 相关内容&#xff0c;适合在学Java的小白,帮助新手快速上手,也适合复习中&#xff0c;面试中的大佬&#x1f649;&#x1f649;&#x1f…...

【python游戏制作】快来跟愤怒的小鸟一起攻击肥猪们的堡垒吧

前言 嗨喽~大家好呀&#xff0c;这里是魔王呐 ❤ ~! 为了防止/报复偷走鸟蛋的肥猪们&#xff0c;鸟儿以自己的身体为武器&#xff0c; 仿佛炮弹一样去攻击肥猪们的堡垒&#xff0c;保卫自己的鸟蛋 这个游戏大家没玩过的想必也听说过~ 今天就给大家分享一下用python写的愤怒的…...

ARM 学习(一)

ARM 处理器的运行模式ARM处理器共有7种运行模式&#xff0c;如下表所示&#xff1a;处理器模式描述用户模式&#xff08;User&#xff09;正常程序运行模式中断模式&#xff08;IRQ&#xff09;用于通常的中断处理快速中断模式&#xff08;FIQ&#xff09;用于高速传输和通道处…...

深入分析Java的序列化与反序列化

序列化是一种对象持久化的手段。普遍应用在网络传输、RMI等场景中。本文通过分析ArrayList的序列化来介绍Java序列化的相关内容。主要涉及到以下几个问题&#xff1a; 怎么实现Java的序列化 为什么实现了java.io.Serializable接口才能被序列化 transient的作用是什么 怎么自…...

、Tomcat源码分析-类加载器

接下来&#xff0c;我们再来看下 tomcat 是如何创建 common 类加载器的。关键代码如下所示&#xff0c;在创建类加载器时&#xff0c;会读取相关的路径配置&#xff0c;并把路径封装成 Repository 对象&#xff0c;然后交给 ClassLoaderFactory 创建类加载器。 Bootstrap.java…...

反转链表相关的练习(下)

目录 一、回文链表 二、 重排链表 三、旋转链表 一、回文链表 给你一个单链表的头节点 head &#xff0c;请你判断该链表是否为回文链表。如果是&#xff0c;返回 true &#xff1b;否则&#xff0c;返回 false 。 示例 1&#xff1a; 输入&#xff1a;head [1,2,2,1] 输…...

2.进程和线程

1.进程1.1 终止正常退出(自愿)出错退出(自愿)严重错误(非自愿)被其他进程杀死(非自愿)1.2 状态就绪态&#xff1a;可运行&#xff0c;但因为其他进程正在运行而暂时停止阻塞态&#xff1a;除非某种外部事件发生&#xff0c;否则进程不能运行1.3 实现一个进程在执行过程中可能被…...

C++回顾(十四)—— 函数模板

14.1 概述 所谓函数模板(function template)&#xff0c;实际上是建立一个通用函数&#xff0c;其函数类型和形参类型不具体指定&#xff0c;用一个虚拟的类型来代表。这个通用函数就称为函数模板。凡是函数体相同的函数都可以用这个模板来代替&#xff0c;不必定义多个函数&a…...

如何做好项目各干系人的管理及应对?

如何更好地识别、分析和管理项目关系人&#xff1f;主要有以下几个方面&#xff1a; 1、项目干系人的分析 一般对项目干系人的分析有2种方法&#xff0c; 方法一&#xff1a;权利&#xff08;影响&#xff09;&#xff0c;即对项目可以产生影响的人&#xff1b; 方法二&#xf…...

Elasticsearch使用系列-ES增删查改基本操作+ik分词

一、安装可视化工具KibanaES是一个NoSql数据库应用。和其他数据库一样&#xff0c;我们为了方便操作查看它&#xff0c;需要安装一个可视化工具 Kibana。官网&#xff1a;https://www.elastic.co/cn/downloads/kibana和前面安装ES一样&#xff0c;选中对应的环境下载&#xff0…...

07-PL/SQL基础(if语句,case语句,循环语句)

本章主要内容&#xff1a; 1.PL/SQL的基本构成&#xff1a;declare,begin,exception,end; 2.结构控制语句:IF语句,CASE语句 3.循环结构&#xff1a;loop循环&#xff0c;for loop循环&#xff0c;while loop循环 PL/SQL的基本构成 特点 PL/SQL语言是SQL语言的扩展&#xff…...

信捷 XDH Ethercat A_VELMOVE

本文描述信捷 EthercatA_VELMOVE指令&#xff0c;以设定的速度持续运行 上图中&#xff0c;在M100的上升沿&#xff0c;执行A_VELMOVE指令。A_VELMOVE HD100 D100 M101 K0HD100输入参数起始地址 &#xff0c;HD118输入参数末尾地址HD100~HD103,双精度浮点数&#xff08;64位&am…...

【专项训练】分治、回溯

分治、回溯其实就是递归,只是是递归的一个细分,是一种特殊的递归 碰到一个题目,你就找他的重复性 最近重复性:根据重复性怎么构造以及如何分解,包括:分治、回溯 最优重复性:动态规划 本质:找重复性、分解问题、组合子问题的结果 回溯:试错! 50. Pow(x, n) https:…...

Linux上安装配置ZooKeeper

Linux上安装配置ZooKeeper 下载压缩文件 将压缩文件拷贝到指定目录下 执行命令 tar -zxvf [apache-zookeeper-3.5.7-bin.tar.gz] -C [/opt/module/]注&#xff1a;第一个括号里面是压缩文件名称&#xff0c;第二个括号里面是解压到指定的目录 进入到解压后的文件夹当中&am…...

idea leetcode插件无法登录

em 2022某天 leetcode-cn.com 改为了 leetcode.cn so , 如果是版本比较老idea leetcode插件, 就无法使用了. 因为用的旧域名 先说解决办法: 2.0 先把旧版本卸载了 2.1 ideaplugin官网找到本地idea版本下可安装的最高版本的leetcode.cn 假设是 leetcode-editor-6.9.zip 2.2 下…...

VR会议不断升级,为商务会谈打造云端洽谈服务!

VR会议不断升级&#xff0c;为商务会谈打造云端洽谈服务。在商务合作中&#xff0c;对客户需求的理解以及与客户讲解方案都需要建立在一个有效的沟通上&#xff0c;因此VR会议的用武之地就有了&#xff0c;以VR全景技术为核心&#xff0c;通过同屏互动和全景通信技术&#xff0…...

Ubuntu系统开机自动挂载NTFS硬盘【超实用】

由于跑深度学习实验(图像分割)f非常消耗内存&#xff0c;系统盘sda1内存小&#xff0c;配置了一个大容量得出NTFS机械盘&#xff0c;网上招了一些资料如何挂在&#xff0c;但是每次开机得手动挂载一遍才能使用硬盘&#xff0c;非常不方便&#xff0c;还容易造成数据丢失。 Step…...

淘宝十年资深架构师吐血总结淘宝的数据库架构设计和采用的技术手段。

淘宝十年资深架构师吐血总结淘宝的数据库架构设计和采用的技术手段。 文章目录淘宝十年资深架构师吐血总结淘宝的数据库架构设计和采用的技术手段。本文导读1.分库分表2.数据冗余3.异步复制4.读写分离总结本文导读 淘宝的数据库架构设计采用了分布式数据库技术&#xff0c;通过…...

训练自己的GPT2-Chinese模型

文章目录效果抢先看准备工作环境搭建创建虚拟环境训练&预测项目结构模型预测续写训练模型遇到的问题及解决办法显存不足生成的内容一样文末效果抢先看 准备工作 从GitHub上拉去项目到本地&#xff0c;准备已训练好的模型百度网盘&#xff1a;提取码【9dvu】。 gpt2对联训…...

springcloud3 fegin服务超时的配置和日志级别的配置2

一 fegin的概述 1.1 fegin的默认超时时间 默认fegin客户端只等待1秒钟&#xff0c;超过1秒钟&#xff0c;直接会返回错误。 1.2 架构图 1.2.1 说明 1.2.2 启动操作 1.先启动9001,9002 eureka 2.启动9003 服务提供者 3.启动9006消费者 1.3 情况验证 1.3.1 正常默认情…...