当前位置: 首页 > news >正文

【人工智能】第四部分:ChatGPT的技术实现

人不走空

                                                                      

      🌈个人主页:人不走空      

💖系列专栏:算法专题

⏰诗词歌赋:斯是陋室,惟吾德馨

目录

      🌈个人主页:人不走空      

💖系列专栏:算法专题

⏰诗词歌赋:斯是陋室,惟吾德馨

4.1 算法与架构

4.1.1 Transformer解码器

4.1.2 自注意力机制的实现

4.1.3 多头注意力机制的实现

4.2 训练方法

4.2.1 预训练

4.2.2 微调

4.3 优化技巧

4.3.1 学习率调度

4.3.2 梯度裁剪

4.3.3 混合精度训练

4.4 模型评估

作者其他作品:



4.1 算法与架构

ChatGPT的核心技术基于Transformer架构,尤其是其解码器部分。为了更深入地理解其技术实现,我们需要详细了解以下几个关键组件和步骤:

4.1.1 Transformer解码器

Transformer解码器由多个解码器层组成,每个层包括以下主要组件:

  • 自注意力机制(Self-Attention Mechanism):用于捕捉输入序列中各个单词之间的关系。
  • 前馈神经网络(Feedforward Neural Network):对每个位置的表示进行非线性变换。
  • 残差连接(Residual Connection)层归一化(Layer Normalization):提高训练的稳定性和速度。

每个解码器层的输出将作为下一层的输入,经过多次堆叠,模型可以捕捉到复杂的语言模式和上下文信息。

4.1.2 自注意力机制的实现

自注意力机制的实现涉及三个步骤:生成查询、键和值向量,计算注意力权重,并加权求和值。

import torch
import torch.nn.functional as F# 输入矩阵 X,形状为 (batch_size, seq_length, d_model)
X = torch.rand(2, 10, 512)  # 例如,batch_size=2, seq_length=10, d_model=512# 生成查询、键和值向量
W_Q = torch.rand(512, 64)
W_K = torch.rand(512, 64)
W_V = torch.rand(512, 64)Q = torch.matmul(X, W_Q)
K = torch.matmul(X, W_K)
V = torch.matmul(X, W_V)# 计算注意力权重
d_k = Q.size(-1)
scores = torch.matmul(Q, K.transpose(-2, -1)) / torch.sqrt(torch.tensor(d_k, dtype=torch.float32))
attention_weights = F.softmax(scores, dim=-1)# 计算加权和
attention_output = torch.matmul(attention_weights, V)

这个简单的实现展示了自注意力机制的核心步骤。多头注意力机制可以通过将查询、键和值向量分割成多个头并分别计算注意力来实现。

4.1.3 多头注意力机制的实现

多头注意力机制将输入向量分成多个子空间,并在每个子空间内独立计算注意力。

# 生成多头查询、键和值向量
num_heads = 8
d_k = 64 // num_heads  # 假设每个头的维度相同Q_heads = Q.view(2, 10, num_heads, d_k).transpose(1, 2)
K_heads = K.view(2, 10, num_heads, d_k).transpose(1, 2)
V_heads = V.view(2, 10, num_heads, d_k).transpose(1, 2)# 分别计算每个头的注意力
attention_heads = []
for i in range(num_heads):scores = torch.matmul(Q_heads[:, i], K_heads[:, i].transpose(-2, -1)) / torch.sqrt(torch.tensor(d_k, dtype=torch.float32))attention_weights = F.softmax(scores, dim=-1)head_output = torch.matmul(attention_weights, V_heads[:, i])attention_heads.append(head_output)# 将多头注意力的输出拼接并线性变换
multi_head_output = torch.cat(attention_heads, dim=-1)
W_O = torch.rand(512, 512)
output = torch.matmul(multi_head_output.transpose(1, 2).contiguous().view(2, 10, -1), W_O)

4.2 训练方法

ChatGPT的训练方法分为预训练和微调两个阶段。下面详细介绍这两个阶段。

4.2.1 预训练

预训练阶段,模型在大规模的无监督文本数据上进行训练。训练的目标是预测给定上下文条件下的下一个单词。预训练采用自回归(Autoregressive)方法,即每次预测一个单词,然后将其作为输入用于下一次预测。

预训练过程通常使用交叉熵损失函数:

# 伪代码示例
for epoch in range(num_epochs):for batch in data_loader:inputs, targets = batch  # inputs 和 targets 是输入序列和目标序列optimizer.zero_grad()outputs = model(inputs)loss = F.cross_entropy(outputs.view(-1, vocab_size), targets.view(-1))loss.backward()optimizer.step()

4.2.2 微调

微调阶段,模型在特定任务或领域的数据上进一步训练。微调可以通过监督学习和强化学习两种方式进行。

  1. 监督学习微调:使用带标注的数据进行训练,优化特定任务的性能。例如,在对话生成任务中,使用对话数据对模型进行微调。

  2. 强化学习微调:通过与环境的交互,优化特定的奖励函数。强化学习微调通常使用策略梯度方法,例如Proximal Policy Optimization (PPO)。

 
# 伪代码示例
for epoch in range(num_epochs):for batch in data_loader:inputs, targets = batchoptimizer.zero_grad()outputs = model(inputs)rewards = compute_rewards(outputs, targets)loss = -torch.mean(torch.sum(torch.log(outputs) * rewards, dim=1))loss.backward()optimizer.step()

4.3 优化技巧

为了提高ChatGPT的性能和效率,通常会采用一些优化技巧:

4.3.1 学习率调度

学习率调度器(Learning Rate Scheduler)可以根据训练进度动态调整学习率,从而提高模型的收敛速度和性能。

from torch.optim.lr_scheduler import StepLRoptimizer = torch.optim.Adam(model.parameters(), lr=0.001)
scheduler = StepLR(optimizer, step_size=10, gamma=0.1)for epoch in range(num_epochs):for batch in data_loader:inputs, targets = batchoptimizer.zero_grad()outputs = model(inputs)loss = F.cross_entropy(outputs.view(-1, vocab_size), targets.view(-1))loss.backward()optimizer.step()scheduler.step()

4.3.2 梯度裁剪

梯度裁剪(Gradient Clipping)用于防止梯度爆炸,尤其是在训练深层神经网络时。

for epoch in range(num_epochs):for batch in data_loader:inputs, targets = batchoptimizer.zero_grad()outputs = model(inputs)loss = F.cross_entropy(outputs.view(-1, vocab_size), targets.view(-1))loss.backward()torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)optimizer.step()

4.3.3 混合精度训练

混合精度训练(Mixed Precision Training)使用半精度浮点数进行计算,可以显著减少计算资源和内存使用,同时保持模型性能。

from torch.cuda.amp import GradScaler, autocastscaler = GradScaler()for epoch in range(num_epochs):for batch in data_loader:inputs, targets = batchoptimizer.zero_grad()with autocast():outputs = model(inputs)loss = F.cross_entropy(outputs.view(-1, vocab_size), targets.view(-1))scaler.scale(loss).backward()scaler.step(optimizer)scaler.update()

4.4 模型评估

在训练和微调过程中,对模型进行评估是确保其性能和质量的关键步骤。常用的评估指标包括困惑度(Perplexity)、准确率(Accuracy)、BLEU分数(BLEU Score)等。

# 伪代码示例
model.eval()
total_loss = 0.0with torch.no_grad():for batch in eval_data_loader:inputs, targets = batchoutputs = model(inputs)loss = F.cross_entropy(outputs.view(-1, vocab_size), targets.view(-1))total_loss += loss.item()perplexity = torch.exp(torch.tensor(total_loss / len(eval_data_loader)))
print(f"Perplexity: {perplexity}")

下一部分将探讨ChatGPT在不同应用场景中的实际案例和未来发展方向。


作者其他作品:

【Java】Spring循环依赖:原因与解决方法

OpenAI Sora来了,视频生成领域的GPT-4时代来了

[Java·算法·简单] LeetCode 14. 最长公共前缀 详细解读

【Java】深入理解Java中的static关键字

[Java·算法·简单] LeetCode 28. 找出字a符串中第一个匹配项的下标 详细解读

了解 Java 中的 AtomicInteger 类

算法题 — 整数转二进制,查找其中1的数量

深入理解MySQL事务特性:保证数据完整性与一致性

Java企业应用软件系统架构演变史 

相关文章:

【人工智能】第四部分:ChatGPT的技术实现

人不走空 🌈个人主页:人不走空 💖系列专栏:算法专题 ⏰诗词歌赋:斯是陋室,惟吾德馨 目录 🌈个人主页:人不走空 💖系列专栏:算法专题 ⏰诗词歌…...

小程序配置自定义tabBar及异形tabBar配置操作

什么是tabBar? 小程序的tabbar是指小程序底部的一组固定导航按钮,通常包含2-5个按钮,用于快速切换小程序的不同页面。每个按钮都有一个图标和文本标签,点击按钮可以切换到对应的页面。tabbar通常放置在小程序的底部,以…...

解析《动物园规则怪谈》【逻辑】

鉴赏《动物园规则怪谈》【逻辑】 前言版权推荐鉴赏《动物园规则怪谈》推理游客正方“它”方其他物品 不同规则或纸条的对比联系出现的地方及联系游客入园历程:被“它”污染的过程鉴赏升华 最后 前言 2024-5-31 13:05:38 以下内容源自《【逻辑】》 仅供学习交流使用…...

上传RKP 证书签名请求息上传到 Google 的后端服务器

上传证书签名请求 1.准备环境:OK pip3 install google-auth2.13.0 requests2.28下载 device_info_uploader.py 。 没找到先跳过 选项 1:通过 GCP 帐户使用 device_info_uploader.py 运行脚本。 ./device_info_uploader.py --credentials /secure/s…...

Debian和ubuntu 嵌入式的系统的 区别

随着开源操作系统的日益流行,Debian和Ubuntu这两个基于Linux的发行版本成为了众多开发者和系统管理员的首选。它们各自拥有独特的优势和特点,那么,在选择时,哪一个更适合你呢?接下来,我们将深入探讨两者的关…...

HTML旋转照片盒子

效果图 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><meta http-equiv"X-UA-Compatible" content…...

【UE5 刺客信条动态地面复刻】实现无界地面01:动态生成

2024.6.4更新 昨天半夜意识到生成Cube的方案不合适&#xff0c;又开始到处找动态地面的方法&#xff0c;发现了我想要的效果直接可以用nigara实现&#xff01;&#xff01;&#xff01;&#xff01; 于是这个部分就暂时告一段落&#xff0c;今季开始新的方向的学习。 为了快速…...

AI产品经理系列-如何使用kimi快速撰写用户故事(含提示词)

在AI时代&#xff0c;可能人人都可成为产品经理。 之前我们聊过如何使用kimi协助完成产品需求文档&#xff0c;如何写竞品分析报告&#xff0c;这一篇我们聊聊用户故事&#xff0c;如何使用kimi协助撰写产品需求文档中的用户故事。 在此之前我们先了解下什么是用户故事&#…...

MySQL索引与事务

前言&#x1f440;~ 紧接着数据库的相关知识&#xff0c;今天讲解MySQL面试中频繁被问到的知识点&#xff0c;索引与事务!!! 如果各位对文章的内容感兴趣的话&#xff0c;请点点小赞&#xff0c;关注一手不迷路&#xff0c;如果内容有什么问题的话&#xff0c;欢迎各位评论纠正…...

『大模型笔记』从基础原理出发提升深度学习性能

从基础原理出发提升深度学习性能 文章目录 一. 从基础原理出发提升深度学习性能1.1. 计算(compute)1.2. 带宽(Bandwidth)1.2.1 关于内存带宽成本的推理(Reasoning about Memory-Bandwidth Costs)1.3. 开销(Overhead)二. 总结三. 参考文献Making Deep Learning Go Brrrr F…...

【二叉树】Leetcode 222. 完全二叉树的节点个数【简单】

完全二叉树的节点个数 你一棵 完全二叉树 的根节点 root &#xff0c;求出该树的节点个数。 完全二叉树 的定义如下&#xff1a;在完全二叉树中&#xff0c;除了最底层节点可能没填满外&#xff0c;其余每层节点数都达到最大值&#xff0c;并且最下面一层的节点都集中在该层最…...

golang界面设计器,全网少见

今天登录govcl的网站&#xff0c;无意中看到有个简易UI设计器。 对于golang的UI专用设计器&#xff0c;还没在网上真正见过。 之前也用govcl来做过两三个桌面应用&#xff0c;好用是好用&#xff0c;不过要安装Lazarus的IDE来拖动设计UI&#xff0c;还要配置很多东西&#xff0…...

如何在GlobalMapper中加载高清卫星影像?

GlobalMapper在GIS行业几乎无人不知&#xff0c;无人不晓&#xff0c;但它可以直接加载卫星影像也许就不是每个人都知道的了。 这里就来分享一下如何在GlobalMapper中加载高清卫星影像&#xff0c;并可以在文末查看领取软件安装包和图源的方法。 如何加载高清图源 首先&…...

【机器学习】解锁AI密码:神经网络算法详解与前沿探索

&#x1f440;传送门&#x1f440; &#x1f50d;引言&#x1f340;神经网络的基本原理&#x1f680;神经网络的结构&#x1f4d5;神经网络的训练过程&#x1f686;神经网络的应用实例&#x1f496;未来发展趋势&#x1f496;结语 &#x1f50d;引言 随着人工智能技术的飞速发…...

Java如何实现pdf转base64以及怎么反转?

问题需求 今天在做发送邮件功能的时候&#xff0c;发现邮件的附件部分&#xff0c;比如pdf文档&#xff0c;要求先把pdf转为base64&#xff0c;邮件才会发送。那接下来就先看看Java 如何把 pdf文档转为base64。 两种方式&#xff0c;一种是通过插件 jar 包的方式引入&#xf…...

动态规划5:62. 不同路径

动态规划解题步骤&#xff1a; 1.确定状态表示&#xff1a;dp[i]是什么 2.确定状态转移方程&#xff1a;dp[i]等于什么 3.初始化&#xff1a;确保状态转移方程不越界 4.确定填表顺序&#xff1a;根据状态转移方程即可确定填表顺序 5.确定返回值 题目链接&#xff1a;62. …...

Python编程学习第一篇——Python零基础快速入门(五)-列表(List)

今天我们来一起学习Python的列表&#xff08;list&#xff09;&#xff0c;Python中的列表&#xff08;List&#xff09;是一种有序、可变的数据结构&#xff0c;可以用来存储多个值。列表可以包含不同类型的数据&#xff0c;例如整数、浮点数、字符串等。以下是关于Python列表…...

c# - 运算符 << 不能应用于 long 和 long 类型的操作数

Compiler Error CS0019 c# - 运算符 << 不能应用于 long 和 long 类型的操作数 处理方法 特此记录 anlog 2024年5月30日...

问题排查|记录一次基于mymuduo库开发的服务器错误排查(回响服务器无法正常工作)

问题背景&#xff1a; 服务器程序如下&#xff1a; #include <mymuduo/TcpServer.h> #include <mymuduo/Logger.h>#include <string> #include <functional>class EchoServer { public:EchoServer(EventLoop *loop,const InetAddress &addr, con…...

中介模式实现聊天室

中介者模式的核心逻辑就是解耦对象‘多对多’的相互依赖关系。当遇到一大堆混乱的对象呈现“网状结构”&#xff0c;利用通过中介者模式解耦对象之间的通讯。 代码案例 抽象中介类 public abstract class AbstractChatRoom {public abstract void notice(String message , Us…...

浅谈 React Hooks

React Hooks 是 React 16.8 引入的一组 API&#xff0c;用于在函数组件中使用 state 和其他 React 特性&#xff08;例如生命周期方法、context 等&#xff09;。Hooks 通过简洁的函数接口&#xff0c;解决了状态与 UI 的高度解耦&#xff0c;通过函数式编程范式实现更灵活 Rea…...

【解密LSTM、GRU如何解决传统RNN梯度消失问题】

解密LSTM与GRU&#xff1a;如何让RNN变得更聪明&#xff1f; 在深度学习的世界里&#xff0c;循环神经网络&#xff08;RNN&#xff09;以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而&#xff0c;传统RNN存在的一个严重问题——梯度消失&#…...

ESP32读取DHT11温湿度数据

芯片&#xff1a;ESP32 环境&#xff1a;Arduino 一、安装DHT11传感器库 红框的库&#xff0c;别安装错了 二、代码 注意&#xff0c;DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...

第25节 Node.js 断言测试

Node.js的assert模块主要用于编写程序的单元测试时使用&#xff0c;通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试&#xff0c;通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...

python如何将word的doc另存为docx

将 DOCX 文件另存为 DOCX 格式&#xff08;Python 实现&#xff09; 在 Python 中&#xff0c;你可以使用 python-docx 库来操作 Word 文档。不过需要注意的是&#xff0c;.doc 是旧的 Word 格式&#xff0c;而 .docx 是新的基于 XML 的格式。python-docx 只能处理 .docx 格式…...

Matlab | matlab常用命令总结

常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...

【JavaSE】绘图与事件入门学习笔记

-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角&#xff0c;以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向&#xff0c;距离坐标原点x个像素;第二个是y坐标&#xff0c;表示当前位置为垂直方向&#xff0c;距离坐标原点y个像素。 坐标体系-像素 …...

【开发技术】.Net使用FFmpeg视频特定帧上绘制内容

目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法&#xff0c;当前调用一个医疗行业的AI识别算法后返回…...

【生成模型】视频生成论文调研

工作清单 上游应用方向&#xff1a;控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...

人机融合智能 | “人智交互”跨学科新领域

本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...