FFA-Net:用于单图像去雾的特征融合注意力网络
摘要
论文链接:https://arxiv.org/pdf/1911.07559v2
在这篇论文中,我们提出了一种端到端的特征融合注意力网络(FFA-Net)来直接恢复无雾图像。FFA-Net架构由三个关键组件组成:
-
一种新颖的特征注意力(FA)模块结合了通道注意力与像素注意力机制,考虑到不同通道特征包含完全不同的加权信息,且雾在图像的不同像素上分布不均匀。FA模块对不同的特征和像素进行非等权重处理,这在处理不同类型的信息时提供了额外的灵活性,扩展了卷积神经网络(CNNs)的表示能力。
-
一个基本块结构由局部残差学习和特征注意力组成,局部残差学习允许如薄雾区域或低频等不太重要的信息通过多个局部残差连接被绕过,从而让主要网络架构专注于更有效的信息。
-
一种基于注意力的不同层级特征融合(FFA)结构,特征权重从特征注意力(FA)模块中自适应地学习,给予重要特征更多的权重。这种结构还可以保留浅层层的信息并将其传递到深层层。
实验结果表明,我们提出的FFANet在定量和定性方面均大幅超越了先前最先进的单图像去雾方法,将SOTS室内测试数据集上已发布的最佳PSNR指标从 30.23 d B 30.23\ \mathrm{dB} 30.23 dB提升至 36.39 d B 36.39\ \mathrm{dB} 36.39 dB。代码已在GitHub上公开可用。
Introduction
作为计算机视觉和人工智能公司关注的基础低级视觉任务,单图像去雾在过去的几十年里吸引了越来越多的关注。
由于大气中存在烟雾、灰尘、烟雾、薄雾和其他悬浮颗粒,在这种大气中拍摄的图像经常会受到颜色失真、模糊、对比度低和其他可见质量下降的影响,并且输入的雾状图像会使得其他视觉任务(如分类、跟踪、人员再识别和对象检测)变得困难。鉴于这种情况,图像去雾旨在从受损的输入中恢复出清晰的图像,这将是高级视觉任务的预处理步骤。大气散射模型(Cartney 1976)(Narasimhan 和 Nayar 2000)(Narasimhan 和 Nayar 2002)为雾效提供了一个简单的近似,其公式如下:
I ( z ) = J ( z ) t ( z ) + A ( 1 − t ( z ) ) \boldsymbol{I}(z) = \boldsymbol{J}(z) t(z) + \boldsymbol{A}(1-t(z)) I(z)=J(z)t(z)+A(1−t(z))
其中, I ( z ) \boldsymbol{I}(z) I(z) 是观察到的雾状图像, A \boldsymbol{A} A 是全局大气光, t ( z ) t(z) t(z) 是介质透射图, J ( z ) \boldsymbol{J}(z) J(z) 是无雾图像。此外,我们有 t ( z ) = e − β d ( z ) t(z) = e^{-\beta d(z)} t(z)=e−βd(z),其中 β \beta β 和 d ( z ) d(z) d(z) 分别是大气散射参数和场景深度。大气散射模型表明,在不知道 A \boldsymbol{A} A 和 t ( z ) t(z) t(z) 的情况下,图像去雾是一个不确定问题。公式(1)也可以表示为:
J ( z ) = ( I ( z ) − A ) t ( z ) + A \boldsymbol{J}(z) = \frac{(I(z) - \boldsymbol{A})}{t(z)} + A J(z)=t(z)(I(z)−A)+A
从公式(1)和(2)中,我们可以注意到,如果我们为捕获的雾状图像正确估计了全局大气光和透射图,我们就可以恢复出一个清晰的无雾图像。
基于大气散射模型,早期的去雾方法做了一系列的工作(Berman, Avidan等人 2016)(Fattal 2014)(He, Sun, Tang 2010)(Jiang等人 2017)(Ju, Gu, Zhang 2017)(Meng等人 2013)(Zhu, Mai, Shao 2015)。DCP是其中基于先验的杰出方法之一,他们提出了暗通道先验,该先验基于室外无雾图像的图像块在至少一个通道中经常具有低强度值的假设。然而,基于先验的方法可能会因为先验在实际中容易被违背而导致透射图估计不准确,所以在某些实际情况下基于先验的方法可能效果不佳。
随着深度学习的兴起,许多神经网络方法也被提出来估计雾霾效应,包括DehazeNet(Cai等人 2016)的开创性工作,多尺度CNN(MSCNN)(Ren等人 2016),残差学习技术(He等人 2016),四叉树CNN(Kim, Ha, Kwon 2018),以及密集连接的金字塔去雾网络(Zhang和Patel 2018)。与传统的方法相比,深度学习方法试图直接回归中间透射图或最终的无雾图像。随着大数据的应用,它们取得了出色的性能和鲁棒性。
在本文中,我们提出了一种新颖的单图像去雾端到端特征融合网络(表示为FFA-Net)。
以往的基于卷积神经网络(CNN)的图像去雾网络将通道级和像素级的特征视为等同,但雾霾在图像中的分布是不均匀的,非常薄的雾霾区域的权重应该与厚雾霾区域像素的权重有显著差异。此外,DCP(暗通道先验)也发现,在一些像素中,至少在一个颜色(RGB)通道中的强度非常低,这进一步说明了不同通道特征具有完全不同的加权信息。如果我们平等对待它们,将会在不那么重要的信息上花费大量资源进行不必要的计算,网络将缺乏覆盖所有像素和通道的能力。最终,这会极大地限制网络的表示能力。
由于注意力机制(Xu et al. 2015)(Vaswani et al. 2017)(Wang et al. 2018)在神经网络设计中得到了广泛应用,并在网络性能中发挥了重要作用。受到(Zhang et al. 2018)工作的启发,我们进一步设计了一个新颖的特征注意力(FA)模块。FA模块分别在通道级和像素级特征中结合了通道注意力和像素注意力。FA模块以不同的方式处理不同的特征和像素,这可以为处理不同类型的信息提供额外的灵活性。
ResNet(He et al. 2016)的出现使得训练非常深的网络成为可能。我们采用了跳跃连接和注意力机制的思想,并设计了一个基本块,该基本块由多个局部残差学习跳跃连接和特征注意力组成。一方面,局部残差学习允许薄雾霾区域和低频信息通过多个局部残差学习被绕过,使主网络学习更有用的信息。并且,通道注意力进一步提高了FFA-Net的能力。
随着网络层数的加深,浅层特征信息往往难以保留。为了识别和融合不同层级的特征,U-Net(Ronneberger、Fischer和Brox 2015)等网络努力整合浅层和深层信息。类似地,我们提出了一种基于注意力的特征融合结构(FFA),这种结构能够保留浅层信息并将其传递到深层。最重要的是,FFA-Net在将所有特征送入特征融合模块之前,会给不同层级的特征分配不同的权重,这些权重是通过FA模块的自适应学习获得的。这比直接指定权重要好得多。
为了评估不同图像去雾网络的性能,峰值信噪比(PSNR)和结构相似性指数(SSIM)常被用来量化去雾图像的恢复质量。对于人的主观评估,我们还提供了大量从损坏输入中产生的网络输出。我们在广泛使用的去雾基准数据集RESIDE(Li et al. 2018)上验证了FFA-Net的有效性。我们将PSNR和SSIM指标与以前的最先进方法进行了比较。实验表明,FFA-Net在定性和定量上都大幅超越了所有先前的方法。此外,我们进行了许多消融实验来证明FFA-Net的关键组件具有出色的性能。
总的来说,我们的贡献如下:
- 我们提出了一种新颖的单图像去雾端到端特征融合注意力网络FFA-Net。FFA-Net在性能上大幅超越了之前的图像去雾最先进方法,尤其在厚雾区域和纹理细节丰富的区域表现尤为出色。在图像细节和颜色保真度的恢复方面,我们也具有显著的优势,如图1和图8所示。
- 我们提出了一种新颖的特征注意力(FA)模块,该模块结合了通道注意力和像素注意力机制。这个模块在处理不同类型的信息时提供了额外的灵活性,能够更多地关注厚雾像素和更重要的通道信息。
- 我们提出了一种由局部残差学习和特征注意力(FA)组成的基本块。局部残差学习允许薄雾区域和低频信息通过多个跳跃连接被绕过,而特征注意力(FA)则进一步提升了FFA-Net的能力。
- 我们提出了一种基于注意力的特征融合(FFA)结构,该结构能够保留浅层信息并将其传递到深层。此外,它不仅能够融合所有特征,还能够自适应地学习不同层级特征信息的不同权重。最终,它在性能上比其他特征融合方法要好得多。
相关工作
之前,大多数现有的图像去雾方法都依赖于物理散射模型方程的构建,这是一个高度不适定问题,因为传输图和全局大气光是未知的。这些方法大致可以分为两类:基于传统先验的方法和基于现代学习的方法。无论使用哪种方法,关键是求解传输图和大气光。对于传统方法,它们基于不同的图像统计先验,将其用作额外的约束来补偿在腐蚀过程中损失的信息。
DCP(He, Sun, 和 Tang 2010)提出了一个暗通道先验来估计传输图。然而,当场景对象与大气光相似时,这些先验被发现是不可靠的。(Zhu, Mai, 和 Shao 2015)通过为雾霾图像的场景深度创建线性模型,提出了一个简单但强大的颜色衰减先验。(Fattal 2008)提出了一种新的方法来估计雾霾场景中的光学传输,通过消除散射光来增加场景的可见性并恢复无雾场景的对比度。(Berman, Avidan, 等人 2016)提出了一个非局部先验来表征清晰图像,该算法依赖于无雾图像的颜色可以通过几百种不同颜色很好地近似,这些颜色在RGB空间中形成紧密的簇。尽管这些方法已经取得了一系列成功,但这些先验并不鲁棒,无法处理所有情况,如野外无约束的环境。
鉴于深度学习在图像处理任务中的普遍成功以及大型图像数据集的可用性,(Cai et al. 2016)提出了一种基于卷积神经网络的端到端去雾模型DehazeNet,它以雾霾图像为输入,输出其介质传输图,然后通过大气散射模型恢复无雾图像。(Ren et al. 2016)采用了一种多尺度MSCNN,能够从雾霾图像中生成精细的传输图。(Yang and Sun 2018)通过将雾霾相关的先验学习融入到深度网络中,结合了传统基于先验的去雾方法和深度学习方法的优势。(Li et al. 2017)提出的AOD-Net通过轻量级CNN直接生成清晰图像。这种新颖的端到端设计使得AOD-Net易于嵌入到其他深度模型中。门控融合网络(GFN)(Ren et al. 2018)利用手动选择的预处理方法和多尺度估计,这些方法本质上是通用的,有待进一步改进。(Chen et al. 2019)提出了一种端到端的门控上下文聚合网络,用于直接恢复最终的无雾图像,该网络采用了最新的平滑扩张技术,有助于去除广泛使用的扩张卷积引起的网格伪影,同时几乎不需要额外的参数。EPDN(Qu et al. 2019)则嵌入了一个生成对抗网络,后跟一个精心设计的增强器,不依赖于物理散射模型。
特征融合注意力网络(FFA-Net)
在本节中,我们主要介绍我们的特征融合注意力网络FFA-Net。如图2所示,FFA-Net的输入是一张雾霾图像,它首先通过一个浅层特征提取部分,然后输入到具有多个跳跃连接的N个组架构中。N个组架构的输出特征通过我们提出的特征注意力模块进行融合,之后这些特征将被传递到重建部分和全局残差学习结构中,最终得到无雾的输出图像。
此外,每个组架构结合了B个基本块架构和局部残差学习,每个基本块结合了跳跃连接和特征注意力(FA)模块。FA是一个注意力机制结构,由通道注意力(Channel-wise Attention)和像素注意力(Pixel-wise Attention)组成。
特征注意力(FA)
大多数图像去雾网络对通道级和像素级特征都一视同仁,这无法妥善处理雾霾分布不均和加权通道级特征的问题。我们的特征注意力(如图3所示)由通道注意力和像素注意力组成,这为处理不同类型的信息提供了额外的灵活性。
FA对不同的特征和像素区域给予不同的重视,这增加了处理不同类型信息的灵活性,并且可以扩展卷积神经网络的表示能力。关键步骤是如何为每个通道级和像素级特征生成不同的权重。我们的解决方案如下。
通道注意力(CA)
我们的通道注意力主要关注不同通道特征相对于暗通道先验(DCP,由He, Sun, and Tang在2010年提出)具有完全不同的加权信息。首先,我们通过全局平均池化将通道级的全局空间信息纳入通道描述符中。
g c = H p ( F c ) = 1 H × W ∑ i = 1 H ∑ j = 1 W X c ( i , j ) g_{c} = H_{p}(F_{c}) = \frac{1}{H \times W} \sum_{i=1}^{H} \sum_{j=1}^{W} X_{c}(i, j) gc=Hp(Fc)=H×W1∑i=1H∑j=1WXc(i,j)
其中, X c ( i , j ) X_{c}(i, j) Xc(i,j)表示第 c c c个通道 X c X_{c} Xc在位置 ( i , j ) (i, j) (i,j)的值, H p H_{p} Hp是全局池化函数。特征图的形状从 C × H × W C \times H \times W C×H×W变为 C × 1 × 1 C \times 1 \times 1 C×1×1。为了得到不同通道的权重,特征图通过两个卷积层和sigmoid、ReLU激活函数。
C A c = σ ( Conv ( δ ( Conv ( g c ) ) ) ) C A_{c} = \sigma(\text{Conv}(\delta(\text{Conv}(g_{c})))) CAc=σ(Conv(δ(Conv(gc))))
其中, σ \sigma σ是sigmoid函数, δ \delta δ是ReLU函数。
最后,我们将输入 F c F_{c} Fc 与通道权重 C A c C A_{c} CAc 进行逐元素相乘。
F c ∗ = C A c ⊗ F c F_{c}^{*} = C A_{c} \otimes F_{c} Fc∗=CAc⊗Fc
像素注意力(PA)
考虑到雾霾在图像不同像素上的分布是不均匀的,我们提出了一个像素注意力(PA)模块,让网络更加关注信息丰富的特征,如雾霾浓厚的像素和高频图像区域。
与CA类似,我们直接将CA的输出 F ∗ F^{*} F∗ 输入到带有ReLU和sigmoid激活函数的两个卷积层中。特征图的形状从 C × H × W C \times H \times W C×H×W 变为 1 × H × W 1 \times H \times W 1×H×W。
P A = σ ( Conv ( δ ( Conv ( F ∗ ) ) ) ) P A = \sigma\left(\text{Conv}\left(\delta\left(\text{Conv}\left(F^{*}\right)\right)\right)\right) PA=σ(Conv(δ(Conv(F∗))))
最后,我们将 F ∗ F^{*} F∗ 和 P A P A PA 进行逐元素相乘, F ~ \tilde{F} F~ 是特征注意力(FA)模块的输出。
F ~ = F ∗ ⊗ P A \tilde{F} = F^{*} \otimes P A F~=F∗⊗PA
为了直观地展示特征注意力(FA)机制的有效性,我们打印了组结构输出的通道级和像素级特征权重图。我们可以清楚地看到,不同的特征图以不同的权重自适应地学习。图4显示,雾霾浓厚的图像像素区域以及物体的边缘和纹理具有更大的权重。像素注意力(PA)机制使FFA-Net更加关注高频和雾霾浓厚的像素区域。图5展示了一个 3 × 64 3 \times 64 3×64 大小的图表,三行分别对应三个组架构在通道方向上输出的特征图权重,说明不同的特征自适应地学习了完全不同的权重。
基础块结构
如图6所示,基础块结构由局部残差学习和特征注意力(FA)模块组成。局部残差学习允许通过多个局部残差连接绕过不太重要的信息(如薄雾或低频区域),使主网络专注于有效信息。
实验结果表明,这种结构可以进一步提高网络性能和训练稳定性。局部残差学习的效果可以在图7中看到,具体细节可以在消融研究部分查看。
组架构和全局残差学习
我们的组架构结合了B个基础块结构和跳跃连接模块。连续的B个块增加了FFA-Net的深度和表达能力。而跳跃连接使得FFA-Net能够绕过训练困难。在FFA-Net的末尾,我们使用一个两层的卷积网络实现和一个长捷径全局残差学习模块来添加一个恢复部分。最后,我们恢复了所需的去雾图像。
特征融合注意力
如上所述,首先,我们在通道方向上拼接G个组架构输出的所有特征图。进一步地,我们通过特征注意力(FA)机制获得的自适应学习权重来融合这些特征。通过这种方式,我们可以保留低层信息并将其传递到深层,使FFA-Net更加关注有效信息,如浓雾区域、高频纹理和颜色保真度,这得益于权重机制。
损失函数
均方误差(MSE)或L2损失是单一图像去雾任务中最广泛使用的损失函数。然而,(Lim et al. 2017)指出,在许多图像恢复任务中,使用L1损失进行训练在PSNR和SSIM指标上比L2损失取得了更好的性能。遵循相同的策略,我们默认采用简单的L1损失。尽管许多去雾算法也使用感知损失和GAN损失,但我们选择优化L1损失。
L ( Θ ) = 1 N ∑ i = 1 N ∥ I g t i − F F A ( I haze i ) ∥ L(\Theta)=\frac{1}{N} \sum_{i=1}^{N}\left\|I_{g t}^{i}-FFA\left(I_{\text{haze}}^{i}\right)\right\| L(Θ)=N1∑i=1N Igti−FFA(Ihazei)
其中, Θ \Theta Θ 表示FFA-Net的参数, I g t I_{g t} Igt 表示真实值(ground truth), I haze I_{\text{haze}} Ihaze 表示输入图像。
实现细节
在本节中,我们将详细说明我们提出的FFA-Net的实现细节。组结构(Group Structure)的数量G设置为3。在每个组结构中,我们将基本块结构(Basic Block Structure)的数量B设置为19。除了通道注意力(Channel Attention)模块的卷积核大小为1x1之外,我们设置所有卷积层的滤波器大小为3x3。除了通道注意力模块之外,所有特征图的尺寸都保持不变。每个组结构输出64个滤波器。
实验
数据集和指标
(Li et al. 2018)提出了一个名为RESIDE的图像去雾基准,它包含了从深度数据集(NYU Depth V2,由Silberman et al. 2012提出)和立体数据集(Middlebury Stereo datasets,由Scharstein和Szeliski 2003提出)中生成的室内和室外场景下的合成有雾图像。RESIDE的室内训练集包含1399张清晰图像和由相应清晰图像生成的13990张有雾图像。全局大气光的范围从0.8到1.0,散射参数的变化范围为0.04到0.2。为了与之前的最先进方法进行比较,我们采用了PSNR和SSIM指标,并在合成目标测试集(SOTS)中进行了综合比较测试,该测试集包含500张室内图像和500张室外图像。我们还在真实有雾图像上进行了主观评估测试。
训练设置
我们在RGB通道上训练FFA-Net,并通过随机旋转90、180、270度和水平翻转来增强训练数据集。从大小为 240 × 240 240 \times 240 240×240的有雾图像块中提取两个作为FFA-Net的输入。整个网络在室内和室外图像上分别训练了 5 × 1 0 5 5 \times 10^{5} 5×105和 1 × 1 0 6 1 \times 10^{6} 1×106步。我们使用Adam优化器,其中 β 1 \beta 1 β1和 β 2 \beta 2 β2分别取默认值0.9和0.999。
初始学习率设置为 1 × 1 0 − 4 1 \times 10^{-4} 1×10−4,我们采用余弦退火策略(He et al. 2019)来通过余弦函数从初始值调整学习率到0。假设总批次数为 T T T, η \eta η是初始学习率,那么在批次 t t t时,学习率 η t \eta_{t} ηt计算为:
η t = 1 2 ( 1 + cos ( t π T ) ) η \eta_{t}=\frac{1}{2}\left(1+\cos \left(\frac{t \pi}{T}\right)\right) \eta ηt=21(1+cos(Ttπ))η
我们使用PyTorch(Paszke et al. 2017)在RTX 2080Ti GPU上实现了我们的模型。
RESIDE数据集上的结果
在本节中,我们将从定量和定性两个方面将FFA-Net与之前的先进图像去雾算法进行比较。
我们与四种不同的先进去雾算法进行了比较,分别是DCP、AOD-Net、DehazeNet和GCANet。比较结果如表1所示。
为了方便起见,我们引用的PSNR和SSIM指标来自(Li et al. 2018)和(Qu et al. 2019)。可以看出,我们提出的FFA-Net在PSNR和SSIM方面大幅超越了所有四种不同的先进方法。此外,我们在图8中给出了视觉效果的比较以进行定性评估。
从室内和室外的结果来看,前三行是室内结果,后三行是室外结果。我们可以观察到DCP由于其潜在的先验假设而遭受严重的颜色失真,因此它丢失了图像的深度细节。AOD-Net无法完全去除雾气,并且倾向于输出低亮度的图像。相比之下,DehazeNet恢复的图像相对于真实情况来说亮度过高。GCANet在处理高频细节信息(如纹理、边缘和第五行中的蓝天)时的表现总是不尽如人意。
对于真实有雾图像的结果,我们的网络能够神奇地发现第一行图像深处隐约可见的塔。更重要的是,我们网络的结果几乎完全符合真实场景的信息,如第二行中带有纹理的湿路和雨滴。然而,我们发现第二行GCANet结果中的建筑物表面存在不存在的斑点。从其他网络恢复的图像并不令人满意。我们的网络在图像细节的现实表现和颜色保真度方面显然更加优越。
消融分析
为了进一步证明FFA-Net架构的优越性,我们通过考虑FFA-Net中不同的模块进行了消融研究。我们主要关注以下因素:1) FA(特征注意力)模块;2) 局部残差学习(LRL)与FA的结合;3) 特征融合注意力(FFA)结构。我们将图像裁剪为 48 × 48 48 \times 48 48×48作为输入,训练了 3 × 1 0 5 3 \times 10^{5} 3×105步,其他配置与我们的实现细节相同。结果如表2所示。
如果我们完全按照论文中的实现细节进行训练,则PSNR将达到 35.77 d B 35.77 \mathrm{dB} 35.77dB。结果表明,我们考虑的每个因素都在网络性能中起着重要作用,尤其是FFA结构。我们也可以清楚地看到,即使我们仅使用FA结构,我们的网络也能与先前的最先进方法相媲美。LRL在提高网络性能的同时使网络训练更加稳定。FA机制和特征融合(FFA)的结合将我们的结果提升到了非常高的水平。
结论
在本文中,我们提出了一种端到端的特征融合注意力网络(FFA-Net),并展示了它在单图像去雾方面的强大能力。尽管我们的FFA-Net结构很简单,但它大幅超越了先前的最先进方法。我们的网络在图像细节和颜色保真度的恢复方面具有强大的优势,有望解决其他低级视觉任务,如去雨、超分辨率、去噪。FFA-Net中的FFA和其他有效模块在图像恢复算法中发挥着重要作用。
致谢。本工作部分得到了中国国家重点研发计划(合同号:2016YFB0402001)的支持。
相关文章:
FFA-Net:用于单图像去雾的特征融合注意力网络
摘要 论文链接:https://arxiv.org/pdf/1911.07559v2 在这篇论文中,我们提出了一种端到端的特征融合注意力网络(FFA-Net)来直接恢复无雾图像。FFA-Net架构由三个关键组件组成: 一种新颖的特征注意力(FA&…...
网工内推 | 联通公司,云计算售前,AWS认证优先
01 联通数字科技有限公司 🔷招聘岗位:云计算售前工程师 🔷职责描述: 1.了解私有云,公有云,混合云等云计算技术知识,了解云计算行业现状及发展趋势。 2.承担区域项目售前工作支持,为…...
[Redis]Zset类型
Zset有序集合相对于字符串、列表、哈希、集合来说会有一些陌生。 它保留了集合不能有重复成员的特点,但与集合不同的是,有序集合中的每个元素都有一个唯一的浮点类型的分数(score)与之关联,着使得有序集合中的元素是可…...
【云原生】Kubernetes----Ingress对外服务
目录 引言 一、K8S对外方式 (一)NodePort 1.作用 2.弊端 3.示例 (二)externalIPs 1.作用 2.弊端 3.示例 (三)LoadBalancer 1.作用 2.弊端 (四)Ingress 二、Ingress的…...
项目管理之maven svn
管理jar包之间依赖关系 编译、打包、清理、测试等一系列构建工具 一、Maven的标志 1、每一个maven工程都有一个pom.xml maven项目坐标 <groupId>com.aaa</groupId>//项目路径 <artifactId>web</artifactId>项目名称 <version>0.0.1-SNAPS…...
Redis篇 list类型在Redis中的命令操作
list在redis基本的命令 一.基本命令1.lpush和range2.lpushx rpushx3.lpop rpop4.lindex linsert llen5.lrem6.ltrim lset7.blpop brpop 一.基本命令 list在redis中相当于数组或者顺序表. 1.lpush和range 2.lpushx rpushx 3.lpop rpop 4.lindex linsert llen 如果要插入的列表中…...
【C++课程学习】:类和对象(上)(类的基础详细讲解)
🎁个人主页:我们的五年 🔍系列专栏:C课程学习 🎉欢迎大家点赞👍评论📝收藏⭐文章 目录 🍟1.1类的引出: 🍟1.2类的结构: 🍟1.3类的…...
HTML 转义字符(escape characters)及其对应的符号(symbols)
以下是常见的 HTML 转义字符及其对应的符号,这些可以用于在 HTML 或 JSX 中避免解析错误和特殊字符的冲突: 空格 ( ): 或 引号: 单引号():'、‘、、’双引号("&#x…...
CPASSOC代码详解
加载环境 library("MASS") require(MASS) # Modern Applied Statistics with S,"S"指的是S语言,由贝尔实验室的约翰钱伯斯(John Chambers)等人开发。S语言是R语言的前身,许多R语言的语法和功能都…...
dirfuzz-web敏感目录文件扫描工具
dirfuzz介绍 dirfuzz是一款基于Python3的敏感目录文件扫描工具,借鉴了dirsearch的思路,扬长避短。在根据自身实战经验的基础上而编写的一款工具,经过断断续续几个月的测试、修改和完善。 项目地址:https://github.com/ssrc-c/di…...
计算机发展史 | 从起源到现代技术的演进
computer | Evolution from origins to modern technology 今天没有参考资料哈哈 PPT:(评论区?) 早期计算工具 算盘 -算盘是一种手动操作的计算辅助工具,起源于中国,迄今已有2600多年的历史,是…...
45-3 护网溯源 - 为什么要做溯源工作
官网:CVERC-国家计算机病毒应急处理中心 西工大遭网络攻击再曝细节!13名攻击者身份查明→ (baidu.com) 护网溯源是指通过技术手段追踪网络攻击的来源和行为,其重要性体现在以下几个方面: 安全防御:了解攻击源头可以帮助组织加强网络安全防御,及时采取措施防止攻击的再次…...
【JavaEE 进阶(二)】Spring MVC(下)
❣博主主页: 33的博客❣ ▶️文章专栏分类:JavaEE◀️ 🚚我的代码仓库: 33的代码仓库🚚 🫵🫵🫵关注我带你了解更多进阶知识 目录 1.前言2.响应2.1返回静态界面2.2返回数据2.3返回HTML代码 3.综合练习3.1计算器3.2用户登…...
光波长 深入程度
UV深入程度(UVC, UVB, UVA)https://mp.weixin.qq.com/s?__bizMzkwNTM0Njk3MA&mid2247483934&idx1&sn92d1ba67ead404e7714af11ec0526786&chksmc0f868ebf78fe1fd0610493e6f49a5d90835a20a829a900746906cda12f2fa12…...
MySQL数据库常见工具的基础使用_1
在上一篇文章中提到了对MySQL数据库进行操作的一些常见工具 mysqlcheck mysqlcheck是一个用于数据库表的检查,修复,分析和优化的一个客户端程序 分析的作用是查看表的关键字分布,能够让sql生成正确的执行计划(支持InnoDB,MyISAM,NDB)检查的作用是检查…...
C语言中指针的说明
什么是指针? 在C语言当中,我们可以将指针理解为内存当中存储的地址,就像生活当中,一个小区里面,在小区里面有很单元,每一栋单元,单元内的房间有着不同的房间号,我们可以同过几栋几单…...
webrtc vp8/9视频编解码介绍
文章目录 一、libvpx项目介绍libvpx基本概念编码器使用流程解码器使用流程示例代码:官方文档和资源二、VP8/9在WebRTC中的应用2.1 VP82.2 VP92.3如何选择哪种编码方式2.4 vp9编码的主要步骤2.5 vp9解码C++代码示例注意事项三、webrtc在音视频传输中是怎样选择vp8还是vp9<...
【机器学习300问】107、自然语言处理(NLP)领域有哪些子任务?
自然语言处理(NLP)是计算机科学、人工智能和语言学领域的一个交叉学科,致力于让计算机能够理解、解析、生成和与人类的自然语言进行互动。自然语言指的是人们日常交流使用的语言,如英语、汉语等,与计算机编程语言相对。…...
面试被问准备多久要孩子?这样回答
听说有人面试被问到多久要孩子的问题,当时觉得很尴尬,不知如何回答,怕回答的不好不被录用,其实你可以这样回答,让面试官心满意足。 A 面试官:结婚了吗? 我:结婚了 面试官࿱…...
HCIP-Datacom-ARST自选题库__多种协议简答【11道题】
1.BGP/MPLSIP VPN的典型组网场景如图所示,PE1和PE2通过LoopbackO建立MP-IBGP,PE1和PE2之间只传递VPN路由,其中PE1BGP进程的部分配置已在图中标出,则编号为0的命令不是必须的。(填写阿拉伯数字) 3 2.在如图所示的Hub&Spok…...
C# 泛型函数
1.非约束 using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks;namespace MyGeneirc {public class GeneircMethod{/// <summary>/// 泛型方法解决,一个方法,满足不同参数类型…...
C# Onnx E2Pose人体关键点检测
C# Onnx E2Pose人体关键点检测 目录 效果 模型信息 项目 代码 下载 效果 模型信息 Inputs ------------------------- name:inputimg tensor:Float[1, 3, 512, 512] --------------------------------------------------------------- Outputs ---…...
YOLO10:手把手安装教程与使用说明
目录 前言一、YOLO10检测模型二、YOLO安装过程1.新建conda的环境 yolo10安装依赖包测试 总结 前言 v9还没整明白,v10又来了。而且还是打败天下无敌手的存在,连最近很火的RT-DETR都被打败了。那么,笑傲目标检测之林的v10又能持续多久呢&#…...
EasyRecovery2024永久免费crack激活码注册码
在数字化时代,数据已经成为我们生活和工作中不可或缺的一部分。无论是个人用户还是企业用户,都面临着数据丢失的风险。一旦数据丢失,可能会给我们的工作带来极大的不便,甚至可能对企业造成重大损失。因此,数据安全和恢…...
Linux Centos内网环境中安装mysql5.7详细安装过程
一、下载安装包 下载地址(可下载历史版本): https://downloads.mysql.com/archives/community 二、解压到安装路径 tar -zxvf mysql-5.7.20-linux-glibc2.12-x86_64.tar.gz三、重命名 mv /usr/local/mysql-5.7.20-linux-glibc2.12-x86_64 …...
新字符设备驱动实验学习
register_chrdev 和 unregister_chrdev 这两个函数是老版本驱动使用的函数,现在新的字符设备驱动已经不再使用这两个函数,而是使用Linux内核推荐的新字符设备驱动API函数。新字符设别驱动API函数在驱动模块加载的时候自动创建设备节点文件。 分配和释放…...
篇1:Mapbox Style Specification
目录 引言 地图创建与样式加载 Spec Reference Root sources type:vector矢量瓦片...
实时监控与报警:人员跌倒检测算法的实践
在全球范围内,跌倒事件对老年人和儿童的健康与安全构成了重大威胁。据统计,跌倒是老年人意外伤害和死亡的主要原因之一。开发人员跌倒检测算法的目的是通过技术手段及时发现和响应跌倒事件,减少因延迟救助而造成的严重后果。这不仅对老年人群…...
LeetCode25_K个一组翻转链表
. - 力扣(LeetCode) 一、题目描述 二、过程模拟 1. 第一步 2. 第二步:子链表分组 3. 第三步:断开前后两组 4. 第四步:翻转start到end的部分 5. 第五步:连接翻转好的前半部分和未翻转的后半部分ÿ…...
电脑突然提示:“failed to load steamui.dll”是什么情况?分享几种解决steamui.dll丢失的方法
相信有一些用户正在面临一个叫做“failed to load steamui.dll”的问题,这种情况多半发生在试图运行某个程序时,系统会提示一条错误消息:“failed to load steamui.dll”。那么,为何steamui.dll文件会丢失,又应该如何解…...
建设网站价格/html制作网站
1. 缓存穿透访问一个不存在的key,缓存不起作用,请求会穿透到DB,流量大时DB会挂掉。解决方案:采用布隆过滤器(bloomfilter就类似于一个hash set),使用一个足够大的bitmap,用于存储可能访问的key,…...
洛阳网站设计开发/网站的营销策略
1、安装Brat只能在Linux下运行。先从官网下载安装包http://brat.nlplab.org/index.html,注意解压到一个不包含中文字符的目录下,不然安装后会报错。然后进入到brat-v1.3_Crunchy_Frog目录下。使用命令./install 就可以安装了。他会提示你输入登录名、密码…...
wordpress网站被黑了/中国搜索引擎有哪些
作者:Ben Edgington编辑:南风eth2.news 的第65次更新。01以太坊发展路线图变化Danny Ryan 反对使用术语 Eth1 和 Eth2。作为“What s New in Eth2”(Eth2进展更新) 系类文章的创建者和管理者,这对我是一个小小的打击!????但是…...
备案期间网站关闭/百度百科搜索入口
为何要写这样一篇文章 来我们这个实验室里读研的学生可能自从来到这里的第一天就觉得自己的命运很苦逼。他们读本科时主修的是机械设计、制造以及自动化之类的专业,毕业时 的简历上也顶多是写写擅长 MS Word、PowerPoint、UGNX、AutoCAD 之类的应用软件。他们有限的…...
上饶网站建设/网络营销做得好的酒店
1.产生大量黑点 lightmap uv重叠,把模型generate lightmap uv打钩...
山东济南网站建设/发软文的平台
写在前面消失一个半月,我又回来啦。消失的这一个月都在忙于准备实习答辩和秋招,暂时没有更新文章。秋招也算是进行到一半了,今年数据分析岗位工作的竞争是异常激烈,目前投递了30公司,做了8、9家笔试,至今没…...