多目标优化-NSGA-II
文章目录
- 一、前置知识
- NSGA-II
- 帕累托前沿
- 二、算法流程
- 1.NSGA
- 2.NSGA-II
一、前置知识
1.NSGA(非支配排序遗传算法):旨在同时优化多个冲突的目标函数,寻找帕累托前沿上的解集。
什么是多个冲突的目标: 比如你看上了一辆车,你既想要它便宜,又想要它的配置达到Top水平,那这两个目标就是相互冲突的。
NSGA-II
NSGA-II其实就是NSGA算法的改进,缩减了算法的时间复杂度,其中NS是非支配排序,GA是遗传算法。
帕累托前沿
- 支配关系:
通俗来说就是A的能力比B强则A就能支配B。
满足两个条件:
(1)X的解不比Y差 (2)X解中至少有一个解比Y好,如果满足这两个条件,那说明X可以支配Y。

- 如上图(默认函数值越小越好):A可以支配D,B可以支配D,A和B相互无法支配
这些相互无法支配的解构成了非支配解(帕累托解)。
这些非支配解组成的集合称之为 帕累托最优集 ,这些解在目标空间中形成了 帕累托前沿。
-
帕累托前沿(Pareto Front) 是多目标优化问题中的一个关键概念,它是 帕累托最优解集(Pareto Optimal Set) 在目标空间中的表示。帕累托前沿是目标空间中所有帕累托解的集合,它展示了不同目标之间的最佳权衡。
-
对于这些非支配解和其右上方的解很容易进行比较,但是这些非支配解之间如何比较?我们引入了一个新的标准-拥挤距离

拥挤度较高的解(即周围解较为稀疏,远离其他解)会被认为更优。这有助于保持解集的多样性和均匀性,避免解决方案集中在帕累托前沿的某些区域。
二、算法流程
1.NSGA

也就是对于种群中的每个个体,如图中的A依次会和剩余的所有个体进行比较,如果A被其它个体支配,则A被支配数加1,等每个个体的dominatecount被统计后就查找被支配数为0的个体并列为第一层,并记录下来,随后pop去掉这一层的个体,dominatecount清零后继续寻找第二层。一直等pop为0结束。
2.NSGA-II
在NSGA上进行改进,降低了时间复杂度。

相关文章:
多目标优化-NSGA-II
文章目录 一、前置知识NSGA-II帕累托前沿 二、算法流程1.NSGA2.NSGA-II 一、前置知识 1.NSGA(非支配排序遗传算法):旨在同时优化多个冲突的目标函数,寻找帕累托前沿上的解集。 什么是多个冲突的目标: 比如你看上了一辆车,你既想要它便宜,又…...
元宇宙数字藏品交易所,未来发展的大趋势
随着科技的飞速进步,元宇宙以其独特的魅力为数字世界绘制了一幅前所未有的宏伟蓝图。在这一宏大的背景下,数字藏品交易所作为连接虚拟与现实的桥梁,正以其卓越的优势,引领着数字藏品市场迈向新的高度。 首先,元宇宙为…...
通配符https数字证书260
随着越来越多的人开始使用互联网,互联网上的信息变得繁杂,用户很难识别网站信息的真实性,为了维护互联网的环境,开发者开始使用https证书对网站传输数据进行加密和身份认证,以此来保护用户的隐私以及标示网站的真实性。…...
C++ | Leetcode C++题解之第133题克隆图
题目: 题解: class Solution { public:Node* cloneGraph(Node* node) {if (node nullptr) {return node;}unordered_map<Node*, Node*> visited;// 将题目给定的节点添加到队列queue<Node*> Q;Q.push(node);// 克隆第一个节点并存储到哈希…...
yangwebrtc x86_64环境搭建
版本:5.0.099 sudo apt-get install libxext-dev sudo apt-get install x11proto-xext-dev sudo apt-get install libxi-dev sudo apt install libasound2-dev sudo apt install libgl1-mesa-dev sudo apt-get install libxtst-dev 用qt打开以下两个项目的.pro met…...
前端面试题日常练-day53 【面试题】
题目 希望这些选择题能够帮助您进行前端面试的准备,答案在文末 1. 在PHP中,以下哪个函数可以用于从一个数组的末尾删除一个元素并返回被删除的元素? a) array_pop() b) array_push() c) array_shift() d) array_unshift() 2. 在PHP中&…...
空间不够用了怎么办
空间告急啊哥们 整理一下清理空间有用的一些blog吧。 【linux】公共服务器如何清理过多的.cache缓存 linux根目录空间不足,追加空间到根目录下 【linux】linux磁盘空间 目录查看清理 和 文件查看清理...
pytorch数学操作
文章目录 1.torch.bitwise_not()2.torch.bitwise_and()3.torch.ceil()3.torch.clamp()4.torch.torch.floor() 1.torch.bitwise_not() 在 PyTorch 中,torch.bitwise_not() 是一个函数,用于执行逐元素的位非(bitwise NOT)操作。 t…...
如何做好电子内窥镜的网络安全管理?
电子内窥镜作为一种常用的医疗器械,其网络安全管理对于保护患者隐私和医疗数据的安全至关重要。以下是一些基本原则和步骤,用于确保电子内窥镜的网络安全: 1. 数据加密 为了防止数据泄露,电子内窥镜在传输患者图像数据时应采取有…...
Spring Boot项目中,如何在yml配置文件中读取maven pom.xml文件中的properties标签下的属性值
一、前言 在最近的项目开发过程中,有一个需求,需要在Spring Boot项目的yml配置文件中读取到mave的 pom.xml文件中的properties标签下的属性值,这个要怎么实现呢? 二、技术实践 pom.xml文件中增加测试属性 <properties><…...
C++:模板进阶
✨✨✨学习的道路很枯燥,希望我们能并肩走下来! 文章目录 文章目录 前言 一 非类型模板参数 二 模板的特化 2.1 概念 2.2 函数模板特化 函数模板的易错点 2.3 类模板特化 2.3.1 全特化 2.3.2 偏特化 部分特化 参数更进一步的限制 2.3.3 类模板特化应用示例…...
Linux 磁盘分区步骤
1.lsblk用于查看磁盘分区情况,lsblk -f用于查看uuid字符串以及挂载点。 以下是虚拟机部分添加磁盘的步骤。 其余没展示的都按照默认设置进入下一步即可。 2.添加完成后使用reboot重新进入后再使用lsblk就会发现磁盘sdb已经有了,但是没有分区。现在添加分…...
【TB作品】 51单片机8x8点阵显示滚动汉字仿真
功能 题目5基于51单片机LED8x8点阵显示 流水灯 直接滚动显示HELLO 直接滚动显示老师好 代码 void main( void ) {/** 移位后,右边的是第一个595,接收0X02,显示出0X02* 移位后,左边的是第2个595,接收0Xfe,…...
c++简略实现共享智能指针Shared_Ptr<T>
重点: 1.引用计数在堆上(原本应为原子变量) 2.引用计数增加减少需要加锁保证线程安全。 3.内部实现Release函数用于释放资源 4.未实现,增加自定义删除器可以将Release修改为模板函数,传入可调用参数。对于shared_p…...
2024会声会影全新旗舰版,下载体验!
在当今数字时代,视频内容已成为最受欢迎的媒介之一。无论是个人娱乐、教育还是商业推广,优秀的视频制作都是吸引观众的关键。为了满足广大用户对高质量视频制作软件的需求,我们隆重推出了会声会影2024最新旗舰版。这款软件不仅集成了最先进的…...
使用 Node.js 和 Azure Function App 自动更新 Elasticsearch 索引
作者:来自 Elastic Jessica Garson 维护最新数据至关重要,尤其是在处理频繁变化的动态数据集时。这篇博文将指导你使用 Node.js 加载数据,并通过定期更新确保数据保持最新。我们将利用 Azure Function Apps 的功能来自动执行这些更新…...
UE4_Ben_图形52_水下效果处理
学习笔记,不喜勿喷,欢迎指正,侵权立删!祝愿生活越来越好! 在这个后期处理的效果中,我们可以看到有很多不同的,这里有浓雾,波纹扭曲,镜头扭曲和边缘模糊,在第4…...
RabbitMQ小结
MQ分类 Acitvemq kafka 优点:性能好,吞吐量高百万级,分布式,消息有序 缺点:单机超过64分区,cpu会飙高,消费失败不支持重试 , Rocket 阿里的mq产品 优点:单机吞吐量也…...
中国自动气象站:现代气象观测的中流砥柱
引言 气象观测是人类认识和预报天气的重要手段。在现代科技的推动下,自动气象站成为气象观测的重要工具,为天气预报、防灾减灾和气候研究提供了宝贵的数据支持。本文将介绍中国自动气象站的发展历程、技术特点及其在气象观测中的重要作用。 中国自动气象…...
【微信小程序】连接蓝牙设备
1、检查小程序是否授权蓝牙功能 initBluetooth() {const that thiswx.getSetting({success: (res) > {if (res.authSetting.hasOwnProperty(scope.bluetooth)) {//scope.bluetooth属性存在,且为falseif (!res.authSetting[scope.bluetooth]) {wx.showModal({tit…...
基于大模型的 UI 自动化系统
基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...
ubuntu搭建nfs服务centos挂载访问
在Ubuntu上设置NFS服务器 在Ubuntu上,你可以使用apt包管理器来安装NFS服务器。打开终端并运行: sudo apt update sudo apt install nfs-kernel-server创建共享目录 创建一个目录用于共享,例如/shared: sudo mkdir /shared sud…...
Spring Boot 实现流式响应(兼容 2.7.x)
在实际开发中,我们可能会遇到一些流式数据处理的场景,比如接收来自上游接口的 Server-Sent Events(SSE) 或 流式 JSON 内容,并将其原样中转给前端页面或客户端。这种情况下,传统的 RestTemplate 缓存机制会…...
将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?
Otsu 是一种自动阈值化方法,用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理,能够自动确定一个阈值,将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...
[Java恶补day16] 238.除自身以外数组的乘积
给你一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法,且在 O(n) 时间复杂度…...
安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)
船舶制造装配管理现状:装配工作依赖人工经验,装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书,但在实际执行中,工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...
协议转换利器,profinet转ethercat网关的两大派系,各有千秋
随着工业以太网的发展,其高效、便捷、协议开放、易于冗余等诸多优点,被越来越多的工业现场所采用。西门子SIMATIC S7-1200/1500系列PLC集成有Profinet接口,具有实时性、开放性,使用TCP/IP和IT标准,符合基于工业以太网的…...
十九、【用户管理与权限 - 篇一】后端基础:用户列表与角色模型的初步构建
【用户管理与权限 - 篇一】后端基础:用户列表与角色模型的初步构建 前言准备工作第一部分:回顾 Django 内置的 `User` 模型第二部分:设计并创建 `Role` 和 `UserProfile` 模型第三部分:创建 Serializers第四部分:创建 ViewSets第五部分:注册 API 路由第六部分:后端初步测…...
华为OD最新机试真题-数组组成的最小数字-OD统一考试(B卷)
题目描述 给定一个整型数组,请从该数组中选择3个元素 组成最小数字并输出 (如果数组长度小于3,则选择数组中所有元素来组成最小数字)。 输入描述 行用半角逗号分割的字符串记录的整型数组,0<数组长度<= 100,0<整数的取值范围<= 10000。 输出描述 由3个元素组成…...
使用SSE解决获取状态不一致问题
使用SSE解决获取状态不一致问题 1. 问题描述2. SSE介绍2.1 SSE 的工作原理2.2 SSE 的事件格式规范2.3 SSE与其他技术对比2.4 SSE 的优缺点 3. 实战代码 1. 问题描述 目前做的一个功能是上传多个文件,这个上传文件是整体功能的一部分,文件在上传的过程中…...
