Python在股票交易分析中的应用:布林带与K线图的实战回测
引言
在股票交易的世界中,技术分析是投资者们用来预测市场动向的重要工具。布林带(Bollinger Bands)作为一种动态波动范围指标,因其直观性和实用性而广受欢迎。本文将通过Python代码,展示如何使用布林带结合K线图来分析股票价格走势,并寻找可能的交易信号。
布林带指标简介
布林带由三部分组成:中轨(移动平均线),上轨(中轨加上两倍标准差),以及下轨(中轨减去两倍标准差)。它们可以帮助交易者识别股票的超买或超卖状态,从而发现潜在的买卖机会。
Python代码实现
以下是使用Python进行布林带计算和K线图绘制的完整示例代码:
1. 导入必要的库
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
2. 定义布林带计算函数
def bollinger_bands(close_prices, window=20, num_std=2):rolling_mean = close_prices.rolling(window=window).mean()rolling_std = close_prices.rolling(window=window).std()upper_band = rolling_mean + (rolling_std * num_std)lower_band = rolling_mean - (rolling_std * num_std)return upper_band, lower_band
3. 生成模拟数据示例数据
np.random.seed(0)
dates = pd.date_range(start='2022-01-01', end='2024-01-01', freq='D')
prices = np.random.normal(loc=100, scale=2, size=len(dates)) + np.sin(np.arange(len(dates)) * 0.05) * 10
opens = prices * np.random.uniform(0.98, 1.02, len(prices))
closes = prices * np.random.uniform(0.98, 1.02, len(prices))
df = pd.DataFrame({'Open': opens, 'Close': closes}).set_index(dates)
4. 计算涨跌幅和布林带
df['Color'] = np.where(df['Close'] > df['Open'], 'red', 'cyan')
upper_band, lower_band = bollinger_bands(df['Close'])
5. 标记买卖信号
buy_signals = df[df['Close'] < lower_band]
sell_signals = df[df['Close'] > upper_band]
6. 计算累计盈利
profit = 0
profits = []
for i in range(1, len(df)):if df['Close'][i] > df['Close'][i-1]:profit += df['Close'][i] - df['Close'][i-1]else:profit -= df['Close'][i] - df['Close'][i-1]profits.append(profit)
df['Cumulative_Profit'] = profits
7. 绘制K线图、布林带和累计盈利图
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10, 10), sharex=True)
8.绘制K线图
for i in range(len(df)):color = df['Color'][i]ax1.plot(df.index[i:i+1], df['Open'][i:i+1], color=color, linewidth=1)ax1.plot(df.index[i:i+1], df['Close'][i:i+1], color=color, linewidth=1)
9.绘制布林带
ax1.plot(upper_band, color='red', linestyle='--', label='Upper Band')
ax1.plot(lower_band, color='green', linestyle='--', label='Lower Band')
9. 标记买卖信号
ax1.scatter(buy_signals.index, buy_signals['Close'], marker='^', color='blue', label='Buy Signal')
ax1.scatter(sell_signals.index, sell_signals['Close'], marker='v', color='red', label='Sell Signal')
9. 绘制累计盈利图
ax2.plot(df.index[1:], df['Cumulative_Profit'], color='blue', label='Cumulative Profit')
9.设置图表标题和标签
ax1.set_title('Stock Price with Bollinger Bands and Signals')
ax1.set_ylabel('Price')
ax2.set_title('Cumulative Profit Over Time')
ax2.set_ylabel('Profit')
9. 显示图例
ax1.legend()
ax2.legend()
9.显示图表
plt.tight_layout()
plt.show()
完整代码
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt# 计算布林带指标
def bollinger_bands(close_prices, window=20, num_std=2):rolling_mean = close_prices.rolling(window=window).mean()rolling_std = close_prices.rolling(window=window).std()upper_band = rolling_mean + (rolling_std * num_std)lower_band = rolling_mean - (rolling_std * num_std)return upper_band, lower_band# 生成示例数据
np.random.seed(0)
dates = pd.date_range(start='2022-01-01', end='2024-01-01', freq='D')
prices = np.random.normal(loc=100, scale=2, size=len(dates)) + np.sin(np.arange(len(dates)) * 0.05) * 10
opens = prices * np.random.uniform(0.98, 1.02, len(prices))
closes = prices * np.random.uniform(0.98, 1.02, len(prices))
df = pd.DataFrame({'Date': dates, 'Open': opens, 'Close': closes}).set_index('Date')# 计算涨跌幅
df['Color'] = np.where(df['Close'] > df['Open'], 'red', 'cyan')# 计算布林带
upper_band, lower_band = bollinger_bands(df['Close'])# 标记买卖信号
buy_signals = df[df['Close'] < lower_band]
sell_signals = df[df['Close'] > upper_band]# 计算累计盈利
profit = 0
profits = []
for i in range(1, len(df)):if df['Close'][i] > df['Close'][i-1]:profit += df['Close'][i] - df['Close'][i-1]else:profit -= df['Close'][i] - df['Close'][i-1]profits.append(profit)# 绘制K线图和信号图以及累计盈利图
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10, 10), sharex=True)# 绘制K线图
for i in range(len(df)):if df['Close'][i] > df['Open'][i]:ax1.plot([df.index[i], df.index[i]], [df['Open'][i], df['Close'][i]], color='red', linewidth=1)else:ax1.plot([df.index[i], df.index[i]], [df['Open'][i], df['Close'][i]], color='cyan', linewidth=1)ax1.set_title('Candlestick Chart and Signals')
ax1.set_ylabel('Price')
ax1.grid(True)# 绘制布林带
ax1.plot(upper_band.index, upper_band, label='Upper Bollinger Band', color='red', linestyle='--')
ax1.plot(lower_band.index, lower_band, label='Lower Bollinger Band', color='green', linestyle='--')# 标记买卖信号
ax1.scatter(buy_signals.index, buy_signals['Close'], marker='^', color='blue', label='Buy Signal')
ax1.scatter(sell_signals.index, sell_signals['Close'], marker='v', color='red', label='Sell Signal')# 绘制累计盈利图
ax2.plot(df.index[1:], profits, label='Cumulative Profit', color='blue')
ax2.set_title('Cumulative Profit')
ax2.set_xlabel('Date')
ax2.set_ylabel('Profit')
ax2.legend()
ax2.grid(True)plt.tight_layout()
plt.show()
效果展示
相关文章:
Python在股票交易分析中的应用:布林带与K线图的实战回测
引言 在股票交易的世界中,技术分析是投资者们用来预测市场动向的重要工具。布林带(Bollinger Bands)作为一种动态波动范围指标,因其直观性和实用性而广受欢迎。本文将通过Python代码,展示如何使用布林带结合K线图来分…...
现代密码学-认证、消息认证码
什么是单向散列函数 单向散列函数(one way hash function):一个输入:消息(message),一个固定长度的输出(散列值,hash value),根据散列值检查消息完整性(integrity) 单向散列函数也称为消息摘要…...
在Java中为什么对a赋值为10,在进行a++时还是等于10呢
首先我们看这样一组代码 public class demo1 {public static void main(String[] args) {int a10;aa;System.out.println(a);} } 结果:10不是在第二步有a操作吗?为什么还是10呢? a的执行步骤如下: 保存当前a的值(即10…...
免费数据库同步软件
在信息化日益发展的今天,数据同步成为了企业和个人用户不可或缺的一部分。数据库同步软件作为数据同步的重要工具,能够帮助我们实现不同数据库系统之间的数据复制和同步,确保数据的一致性和完整性。本文将介绍几款免费数据库同步软件…...
如何轻松修改Windows远程连接的端口号
为了增强远程连接的安全性,最好修改默认的远程桌面协议(RDP)端口号。以下步骤将指导您如何修改Windows注册表中的端口设置,并相应地更新防火墙规则。 一、修改注册表中的端口号 打开注册表编辑器: 按下Win R键&#…...
Leetcode 54. 螺旋矩阵(二维数组移动坐标)
54. 螺旋矩阵 使用vis数组记录该位置是否已经被访问 定义一个int型dir来记录方向,0123分别代表右下左上 当越界或碰壁已访问的位置后,修改dir并计算下一个位置 否则根据原dir计算下一个位置 class Solution {public List<Integer> spiralOrder(i…...
深度图的方法实现加雾,Synscapes数据集以及D455相机拍摄为例
前言 在次之前,我们已经做了图像加雾的一些研究,这里我们将从深度图的方法实现加雾展开细讲 图像加雾算法的研究与应用_图像加雾 算法-CSDN博客 接下来将要介绍如何使用深度图像生成雾效图像的方法。利用Synscapes数据集,通过读取EXR格式的…...
QT: 读写ini配置文件(实现qml界面登录,修改)
目录 一.功能介绍 二.暴露属性 三.指定INI文件的路径和格式。 四.登录操作 1.检查INI文件中是否含有登录信息; 2.读取存储的ID; 3.读取存储的密码; 4.成功返回1;失败返回2; 五.修改账号 1.检查INI文件中是否含有登录信…...
DevOps 安全集成:从开发到部署,全生命周期安全守护
目录 一、DevOps 安全集成:为什么要做? 二、DevOps 安全集成:如何做? 三、DevOps 安全集成的优势 四、DevOps 安全集成:一些最佳实践 五、DevOps 安全集成:未来展望 六、思考与建议 七、总结 DevOps…...
R语言数据分析15-xgboost模型预测
XGBoost模型预测的主要大致思路: 1. 数据准备 首先,需要准备数据。这包括数据的读取、预处理和分割。数据应该包括特征和目标变量。 步骤: 读取数据:从CSV文件或其他数据源读取数据。数据清理:处理缺失值、异常值等…...
重构大学数学基础_week04_从点积理解傅里叶变换
这周我们来看一下傅里叶变换。傅里叶变换是一种在数学和许多科学领域中广泛应用的分析方法,它允许我们将信号或函数从其原始域(通常是时间域或空间域)转换到频域表示。在频域中,信号被表示为其组成频率的幅度和相位,这…...
Shell以及Shell编程
Shell的任务 ①分析命令; ②处理通配符、变量替换、命令替换、重定向、管道和作业控制; ③搜索命令并执行。 内部命令:内嵌在Shell中。 外部命令:存在于磁盘上的独立可执行文件。 #!/bin/bash #! 称为一个幻数&…...
从记忆到想象:探索AI的智能未来
引言 人工智能(AI)在信息处理、数据分析和任务自动化等方面展现了强大的能力。然而,在人类独有的记忆和想象力领域,AI仍然有很长的路要走。加利福尼亚大学戴维斯分校的心理学和神经科学教授查兰兰加纳特(Charan Ranga…...
“安全生产月”专题报道:AI智能监控技术如何助力安全生产
今年6月是第23个全国“安全生产月”,6月16日为全国“安全宣传咨询日”。今年全国“安全生产月”活动主题为“人人讲安全、个个会应急——畅通生命通道”。近日,国务院安委会办公室、应急管理部对开展好2024年全国“安全生产月”活动作出安排部署。 随着科…...
【转】ES, 广告索引
思考: 1)直接把别名切换到上一个版本索引 --解决问题 2)广告层级索引如何解决? -routing、join 3)查询的过程:query and fetch, 优化掉fetch 4)segment合并策略 5)全量写入时副…...
Unity学习要点
前言 学习Unity作为游戏开发的强大工具,对于初学者来说,掌握一些基础而实用的技巧是非常重要的。这不仅能帮助你更快地上手,还能在项目开发过程中提高效率。以下是一些Unity初学者的使用技巧,希望能为你的学习之旅提供帮助。 ##…...
简单使用phpqrcode 生成二维码图片
$path ROOT_PATH; //tp项目根路径 require_once $path.vendor/phpqrcode/phpqrcode.php; //加载phpqrcode库 $url http://.$_SERVER[HTTP_HOST]./home/index/detail?id.$param[id]; $value $url; //二维码内容 $errorCorrectionLevel L; //容错级别 $mat…...
软考架构-计算机网络考点
会超纲,3-5分 网络分类 按分布范围划分 局域网 LAN 10m-1000m左右 房间、楼宇、校园 传输速率高 城域网 MAN 10km 城市 广域网 WAN 100km以上 国家或全球(英特网) 按拓扑结构划分 总线型:利用率低、干…...
渗透测试之内核安全系列课程:Rootkit技术初探(三)
今天,我们来讲一下内核安全! 本文章仅提供学习,切勿将其用于不法手段! 目前,在渗透测试领域,主要分为了两个发展方向,分别为Web攻防领域和PWN(二进制安全)攻防领域。在…...
大模型日报2024-06-08
大模型日报 2024-06-08 大模型资讯 AI研究:通过消除矩阵乘法实现高效的大语言模型 摘要: 该AI研究探讨了通过消除矩阵乘法来实现高效且可扩展的大语言模型(LLMs)。此方法旨在提升模型性能,提供更快速和高效的计算方案。 AWS大力投…...
leetcode 1631.最小体力消耗路径
思路:BFS二分 这道题和洛谷上的那个“汽车拉力赛”那道题很相似,但是这道题相较于洛谷那个来说会简单一些。 这里作者一开始写的时候思路堵在了怎么在BFS中用二分,先入为主的以为需要先写出来搜索函数然后再去处理二分的事,但是…...
【ARM64 常见汇编指令学习 19.2 -- ARM64 地址加载指令 ADR 详细介绍】
文章目录 地址加载指令 ADRADR 指令使用场景例子注意事项 地址加载指令 ADR ARMv8 架构引入了一系列的改进和扩展,包括对汇编指令集的更新。在这之中,ADR 指令是一个重要的组成部分,它用于计算并加载一个地址到寄存器。 ADR 指令 ADR 指令…...
vscode输出控制台中文显示乱码最有效解决办法
当VSCode的输出控制台中文显示乱码时,一个有效的解决办法是通过设置环境变量来确保编码的正确性。以下是解决方式: 首先,设置环境变量以修正乱码问题: 如果上述方法没有解决乱码问题,请继续以下步骤: 右键…...
springboot + Vue前后端项目(第十五记)
项目实战第十五记 写在前面1.后端接口实现1.1 用户表添加角色字段1.2 角色表增加唯一标识字段1.3 UserDTO1.4 UserServiceImpl1.5 MenuServiceImpl 2. 前端实现2.1 User.vue2.2 动态菜单设计2.2.1 Login.vue2.2.2 Aside.vue 2.3 动态路由设计2.3.1 菜单表新增字段page_path2.3.…...
如何在Windows 11中恢复丢失的快速访问菜单?这里提供解决办法
序言 在电脑的“快速访问”菜单中找不到固定的项目?或者,整个菜单对你来说已经消失了吗?无论哪种方式,你都可以强制你的电脑恢复菜单并显示其中的所有项目。以下是如何在你的Windows 11电脑上做到这一点。 将文件资源管理器设置为打开到主页 当你在文件资源管理器的左侧…...
变声器软件免费版有哪些?国内外12大热门变声器大盘点!(新)
变声软件是一种人工智能AI音频处理工具,允许用户实时修改自己的声音或改变预先录制的音频。这些软件解决方案可提供不同的效果,如改变声音的音调或速度,或将我们的声音转换成其他人或其他东西的声音,如名人、卡通人物、机器人或不…...
计算机网络 —— 数据链路层(无线局域网)
计算机网络 —— 数据链路层(无线局域网) 什么是无线局域网IEEE 802.11主要标准及其特点: 802.11的MAC帧样式 我们来看看无线局域网: 什么是无线局域网 无线局域网(Wireless Local Area Network,简称WLAN…...
SpringBoot图书管理系统【附:资料➕文档】
前言:我是源码分享交流Coding,专注JavaVue领域,专业提供程序设计开发、源码分享、 技术指导讲解、各类项目免费分享,定制和毕业设计服务! 免费获取方式--->>文章末尾处! 项目介绍048: 图…...
shell简介
一、Shell 概念定义 Shell 是用 C 语言编写的程序,是用户使用 Linux 的桥梁,既是命令语言又是程序设计语言。 shell 脚本为 Shell 编写的脚本程序,常说的 shell 通常指 shell 脚本。 包含一系列命令的文本文件,这些命令按照特定…...
使用 Scapy 库编写 ICMP 不可达攻击脚本
一、介绍 ICMP不可达攻击是一种利用ICMP(Internet Control Message Protocol)不可达消息来干扰或中断目标系统的网络通信的攻击类型。通过发送伪造的ICMP不可达消息,攻击者可以诱使目标系统认为某些网络路径或主机不可达,从而导致…...
美国做调查的网站/短视频seo系统
据国外媒体报道,惠普公司8月23日宣布,计划以16亿美元竞购虚拟存储制造商3PAR。而在一周前,戴尔公司曾出价11.5亿美元收购此公司。 惠普是在给3PAR的董事长和CEO的信中透露其收购价格的。惠普执行副总裁兼首席战略和技术官谢恩罗宾逊ÿ…...
哪个网站名片做的号/网站seo方案
随机生成姓名 public function getChar($num2) // $num为生成汉字的数量{$first array(赵,钱,孙,李,周,吴,郑,王,冯,陈,褚,卫,蒋,沈,韩,杨,朱,秦,尤,许,何,吕,施,张,孔,曹,严,华,金,魏,陶,姜,戚,谢,邹,喻,柏,水,窦,章,云,苏,潘,葛,奚,范,彭,郎,鲁,韦,昌,马,苗,凤,花,方,任,袁…...
有什么网站可以兼职做翻译/上海百度分公司电话
一、初始化 1,直接调用 [java] view plaincopyprint?ThreadPoolTaskExecutor poolTaskExecutor new ThreadPoolTaskExecutor(); //线程池所使用的缓冲队列 poolTaskExecutor.setQueueCapacity(200); //线程池维护线程的最少数量 poolTaskExecutor.setCorePoo…...
域名不用了需要注销吗/企业网站排名优化
为了使reids配置更优,在使用redis的时候需要注意一些规范,首先要注意,redis和任何cache都不适合写操作比较多的场景,只时候读多写少的场景。 定义key的时候,加上前缀,防止不同业务的key冲突 trade:order:…...
app开发方式/宁波seo网络推广推荐
希望自己能够通过对本课程的学习,对C语言能有进一步的了解,能够学会自主运用,学习到经验技术和知识,也希望老师能够在学习新知识时多讲解多运用,反复练习,以增加学生对新知识的熟练度和理解度。转载于:http…...
不用开源程序怎么做网站/域名站长工具
一:select模型 二:WSAAsyncSelect模型 三:WSAEventSelect模型 四:Overlapped I/O 事件通知模型 五:Overlapped I/O 完成例程模型 六:IOCP模型 本文简单介绍了当前Windows支持的各种Socket I/O模型&#x…...