当前位置: 首页 > news >正文

支持向量机(SVM): 从理论到实践的指南(1)

支持向量机(SVM)被誉为数据科学领域的重量级算法,是机器学习中不可或缺的工具之一。SVM以其优秀的泛化能力和对高维数据的管理而备受推崇。本文旨在梳理SVM的核心概念以及其在实际场景中的应用。

SVM的核心理念

SVM专注于为二分类问题找到最佳决策边界,即超平面,该平面能最大化两类数据之间的空隙或间隔。线性SVM假设用一个直线(或高维空间中的超平面)足以有效地分隔数据。当遇到重叠或杂乱无章散布的数据时,软间隔SVM允许某些点位于错误的边界一侧,这通过引入松弛变量与罚项系数C来实现,从而提供一个稳健的平衡方案。

算法实现

SVM通过转化优化问题为其对偶形式并使用拉格朗日乘子法来解决。这不仅简化了求解过程,还能自然地加入核技巧(Kernel trick)来处理非线性可分的数据集。
详细算法描述>>>>

一个经典案例

为了具体说明SVM的应用,我们考虑了一个著名的数据集。

  1. 鸢尾花分类:鸢尾花数据集由三个品种的鸢尾花构成,每一种都有50个样本和4个特征。对于二分类任务,我们专注于将Setosa从Versicolour中区分出来。

实践应用

利用MindOpt APL,一种强大的代数建模语言和求解器,我们可以更高效地构建和解决SVM优化问题。在训练阶段,算法学习数据的模式,并找到分隔不同类别的最优决策边界。一旦模型确定,我们便可用其做出预测并评估其在未见数据上的性能。

clear model;####################################################
#
#   Vectorization Modeling Example
#   Linear SVM
#
####################################################option modelname svm_02; #定义存储文件名# ----------建模--------Start----
# svm_02.mapl# 1.读取iris的用于构建SVM模型的训练数据
param data_dir = "./data/iris_data-train.csv";
param X = read_csv( data_dir, use_col="0,1,2,3",skip=1);
param y = read_csv( data_dir, use_col=4,skip=1);
param dataNum = X.row;
param dataDim = X.col;
print "总共有{}个数据,每个数据有{}维"%dataNum,dataDim;# 2.LinearSVM问题建模
param C_rho = 0.2;
print "Param C is :{}"%C_rho;print "Start modeling-------";var w(dataDim) >= -1 <= 1; # Bounded Model Parameter
var b; #
var eps(dataNum) >= 0;minimize 1/2 * w' * w + C_rho * sum(eps); #'是转置,目标函数subto constraint:eps >= 1 - (X*w +b).*y; #注意是向量化建模,因此相当于多条维度的约束# 3.调用求解器求解
print "Start solving-------";
option solver mindopt;
solve;# 4. 超平面的w取值
print "- Optimal w is:";
print w;
print "- Optimal b is:";
print b;
print "- eps is:";
forall { i in 0..dataNum-1 with eps[i] > 0.001}print "  - eps[{}] = {} "%i,eps[i];param obj_total_loss =  1/2 * w' * w + C_rho * sum(eps); #'是转置
print "- obj of total loss is : {}"%obj_total_loss;# 5.验证并分析结果print "";
print "验证结果:-----";param correctNum = sum{i in 0..dataNum-1} if((sum{j in 0..dataDim-1}w[j]*X[i, j]) +b )* y[i] > 0 then 1 else 0 end;
param precision = correctNum / dataNum;
print "- Precision for train data is : {:.2f}" % precision;#
print "";
print "导入测试数据验证效果:-----";param data_dir_test = "./data/iris_data-test.csv";
param X_test = read_csv( data_dir_test, use_col="0,1,2,3",skip=1);
param y_test = read_csv( data_dir_test, use_col=4,skip=1);
param dataNum_test = X_test.row;
param dataDim_test = X_test.col;
print "- 总共有{}个数据,每个数据有{}维"%dataNum_test,dataDim_test;print "|测试数据ID|实际标签|SVM预测标签是|";
print "|--|--|--|";
forall {i in 0..dataNum_test-1}
print "|{}|{}|{}|"%i,y_test[i], if((sum{j in 0..dataDim_test-1}w[j]*X_test[i, j]) +b ) > 0 then 1 else -1 end;

运行上述代码结果如下:

总共有80个数据,每个数据有4维
Param C is :0.2
Start modeling-------
Start solving-------
Running mindoptampl
wantsol=1
MindOpt Version 1.2.1 (Build date: 20240428)
Copyright (c) 2020-2024 Alibaba Cloud.Start license validation (current time : 29-APR-2024 17:51:11).
License validation terminated. Time : 0.007sModel summary.- Num. variables     : 85- Num. constraints   : 80- Num. nonzeros      : 480- Bound range        : [1.0e+00,1.0e+00]- Quad. bound range  : [1.0e+00,1.0e+00]- Objective range    : [2.0e-01,2.0e-01]- Quad. obj. range   : [1.0e+00,1.0e+00]- Matrix range       : [1.0e-01,7.0e+00]Presolver started.
Presolver terminated. Time : 0.000sInterior point method started.Iter         PrimObj         DualObj PrimFea DualFea  GapFea      Mu   Time0 +1.56581101e+01 -1.06624290e+01 2.0e-01 2.6e-01 2.5e+00 6.2e-01   0.02s1 +8.56566249e+00 -7.16779185e-01 5.4e-04 7.6e-03 9.3e+00 6.5e-02   0.04s2 +9.75513434e-01 +2.94267093e-01 2.7e-05 1.4e-03 6.8e-01 4.1e-03   0.05s3 +5.98630319e-01 +4.50898225e-01 4.2e-06 1.5e-04 1.5e-01 8.9e-04   0.05s4 +5.12227038e-01 +4.88329845e-01 1.1e-08 1.2e-03 2.5e-02 1.5e-04   0.05s5 +5.04653750e-01 +5.01437631e-01 9.7e-10 2.0e-04 3.2e-03 1.9e-05   0.06s6 +5.02835294e-01 +5.02808740e-01 2.7e-12 5.4e-07 2.7e-05 1.6e-07   0.06s7 +5.02821164e-01 +5.02821090e-01 7.1e-15 1.5e-09 7.3e-08 4.4e-10   0.06s8 +5.02821125e-01 +5.02821124e-01 1.9e-16 4.1e-12 2.0e-10 1.2e-12   0.06s
Terminated.- Method             : Interior point method.- Primal objective   : 5.0282112458779E-01- Dual objective     : 5.0282112438583E-01- Num. threads       : 4- Num. iterations    : 8- Solver details     : Solver terminated with a primal/dual optimal status.Interior point method terminated. Time : 0.046sOPTIMAL; objective 0.50
0 simplex iterationsCompleted.
- Optimal w is:
[[-0.16610],[ 0.35465],[-0.75422],[-0.32403]]
- Optimal b is:
2.038087831121987
- eps is:- eps[23] = 0.08284647160625058 - eps[24] = 0.05118542249112839 - eps[47] = 0.26241815907236044 - eps[69] = 0.04962685713002854 
- obj of total loss is : 0.5028211245877855验证结果:-----
- Precision for train data is : 1.00导入测试数据验证效果:-----
- 总共有20个数据,每个数据有4|测试数据ID|实际标签|SVM预测标签是|
|--|--|--|
|0|1|1|
|1|1|1|
|2|1|1|
|3|1|1|
|4|1|1|
|5|1|1|
|6|1|1|
|7|1|1|
|8|1|1|
|9|1|1|
|10|-1|-1|
|11|-1|-1|
|12|-1|-1|
|13|-1|-1|
|14|-1|-1|
|15|-1|-1|
|16|-1|-1|
|17|-1|-1|
|18|-1|-1|
|19|-1|-1|

结果

上面的程序运行结果如下:
其中,小数后几位是精度影响,每次会有变化,不影响结果。


总共有80个数据,每个数据有4维
Param C is :0.2
……

  • Optimal w is: [[-0.16610], [ 0.35465], [-0.75422], [-0.32403]]
  • Optimal b is: 2.038087831122001
  • eps is:
    • eps[23] = 0.08284647160625147
    • eps[24] = 0.051185422491125426
    • eps[47] = 0.26241815907236443
    • eps[69] = 0.049626857130028075
  • obj of total loss is : 0.5028211245877853

验证结果:-----

  • Precision for train data is : 1.00

导入测试数据验证效果:-----

  • 总共有20个数据,每个数据有4维
  • 测试数据ID实际标签SVM预测标签是
    011
    111
    211
    311
    411
    511
    611
    711
    811
    911
    10-1-1
    11-1-1
    12-1-1
    13-1-1
    14-1-1
    15-1-1
    16-1-1
    17-1-1
    18-1-1
    19-1-1

可以看到,对于这份数据,计算的超平面能很好地进行二分类,在测试集合上也有100%的正确率,证实了SVM在实际问题中的有效性。

相关文章:

支持向量机(SVM): 从理论到实践的指南(1)

支持向量机&#xff08;SVM&#xff09;被誉为数据科学领域的重量级算法&#xff0c;是机器学习中不可或缺的工具之一。SVM以其优秀的泛化能力和对高维数据的管理而备受推崇。本文旨在梳理SVM的核心概念以及其在实际场景中的应用。 SVM的核心理念 SVM专注于为二分类问题找到最…...

万字长文|OpenAI模型规范(全文)

本文是继《OpenAI模型规范概览》之后对OpenAI Model Spec的详细描述&#xff0c;希望能对各位从事大模型及RLHF研究的朋友有帮助。万字长文&#xff0c;建议收藏后阅读。 一、概述 在AI的世界里&#xff0c;确保技术的行为符合我们的期望至关重要。OpenAI最近发布了一份名为Mo…...

微服务架构-正向治理与治理效果

目录 一、正向治理 1.1 概述 1.2 效率治理 1.2.1 概述 1.2.2 基于流量录制和回放的测试 1.2.3 基于仿真环境的测试 1.3 稳定性治理 1.3.1 概述 1.3.2 稳定性治理模型 1.3.3 基于容器化的稳定性治理 1.3.3.1 概述 1.3.3.2 测试 1.3.3.3 部署 1.3.3.3.1 概述 1.3.3…...

normalizing flows vs 直方图规定化

normalizing flows名字的由来 The base density P ( z ) P(z) P(z) is usually defined as a multivariate standard normal (i.e., with mean zero and identity covariance). Hence, the effect of each subsequent inverse layer is to gradually move or “flow” the da…...

vite打包优化常用的技巧及思路

面试题&#xff1a;vitevue项目如何进行优化&#xff1f; 什么情况下会去做打包优化&#xff1f;一种是在搭建项目的时候就根据自己的经验把vite相关配置给处理好&#xff0c;另外一种是开发的过程中发现打包出来的静态资源越来越大&#xff0c;导致用户访问的时候资源加载慢&a…...

k8s学习--kubernetes服务自动伸缩之水平收缩(pod副本收缩)HPA详细解释与案例应用

文章目录 前言HPA简介简单理解详细解释HPA 的工作原理监控系统负载模式HPA 的优势使用 HPA 的注意事项应用类型 应用环境1.metircs-server部署2.HPA演示示例&#xff08;1&#xff09;部署一个服务&#xff08;2&#xff09;创建HPA对象&#xff08;3&#xff09;执行压测 前言…...

台式机ubuntu22.04安装nvidia驱动

总结一个极简易的安装方法 正常安装ubuntu 22.04正常更新软件 sudo apt update sudo apt upgrade -y参考ubuntu官方网站的说明https://ubuntu.com/server/docs/nvidia-drivers-installation#/ # 首先检查系统支持驱动的版本号 sudo ubuntu-drivers list我显示的内容如下&…...

C++ 11 【线程库】【包装器】

&#x1f493;博主CSDN主页:麻辣韭菜&#x1f493;   ⏩专栏分类&#xff1a;C修炼之路⏪   &#x1f69a;代码仓库:C高阶&#x1f69a;   &#x1f339;关注我&#x1faf5;带你学习更多C知识   &#x1f51d;&#x1f51d; 目录 前言 一、thread类的简单介绍 get_id…...

可视化数据科学平台在信贷领域应用系列四:决策树策略挖掘

信贷行业的风控策略挖掘是一个综合过程&#xff0c;需要综合考虑风控规则分析结果、效果评估、线上实时监测和业务管理需求等多个方面&#xff0c;以发现和制定有效的信贷风险管理策略。这些策略可能涉及贷款审批标准的调整、贷款利率的制定、贷款额度的设定等&#xff0c;在贷…...

数据查询深分页优化方案

大家好&#xff0c;我是冰河~~ 最近不少小伙伴在实际工作过程中&#xff0c;遇到了单表大数据量分页的问题&#xff0c;问我怎么优化分页查询。其实&#xff0c;这就是典型的深分页问题。今天趁着周末&#xff0c;给大家整理一些在深分页场景的简单处理方案。 一、普通分页查…...

Redis的主从复制

Redis主从复制是 Redis 内置的⼀种数据冗余和备份⽅式&#xff0c;同时也是分发读查询负载的⼀种⽅法。通过主从复制&#xff0c;可以有多个从服务器&#xff08;Slave &#xff09;复制⼀个主服务器&#xff08;Master &#xff09;的数据。在这个系统中&#xff0c;数据的复制…...

网络安全实战基础——实战工具与攻防环境介绍

一、实战集成工具 1. 虚拟机 VMware Workstation&#xff1a;大家熟知的虚拟机 Virtual Box&#xff1a;开源免费、轻量级 2. Kali Linux 工具集 信息收集 Nmap&#xff1a;免费开放的网络扫描和嗅探包&#xff0c;可探测主机是否在线&#xff0c;扫描主机端口和嗅探网络…...

vue2组件封装实战系列之tag组件

作为本系列的第一篇文章&#xff0c;不会过于的繁杂&#xff0c;并且前期的组件都会是比较简单的基础组件&#xff01;但是不要忽视这些基础组件&#xff0c;因为纵观elementui、elementplus还是其他的流行组件库&#xff0c;组件库的封装都是套娃式的&#xff0c;很多复杂组件…...

VBA实战(Excel)(4):实用功能整理

1.后台打开Excel 用于查数据&#xff0c;工作中要打开多个表获取数据再关闭的场景&#xff0c;利用此函数可以将excel表格作为后台数据库查询&#xff0c;快速实现客户要求&#xff0c;缺点是运行效率不够高。 Sub openexcel(exl_name As String)If Dir(addr, 16) Empty Then…...

nginx mirror流量镜像详细介绍以及实战示例

nginx mirror流量镜像详细介绍以及实战示例 1.nginx mirror作用2.nginx安装3.修改配置3.1.nginx.conf3.2.conf.d目录下添加default.conf配置文件3.3.nginx配置注意事项3.3.nginx重启 4.测试 1.nginx mirror作用 为了便于排查问题&#xff0c;可能希望线上的请求能够同步到测试…...

Android14 WMS-窗口添加流程(二)-Server端

Android14 WMS-窗口添加流程(一)-Client端-CSDN博客 本文接着上文"Android14 WMS-窗口添加流程(一)-Client端"往下讲。也就是WindowManagerService#addWindow流程。 目录 一. WindowManagerService#addWindow 标志1&#xff1a;mPolicy.checkAddPermission 标志…...

【传知代码】DETR[端到端目标检测](论文复现)

前言&#xff1a;想象一下&#xff0c;当自动驾驶汽车行驶在繁忙的街道上&#xff0c;DETR能够实时识别出道路上的行人、车辆、交通标志等目标&#xff0c;并准确预测出它们的位置和轨迹。这对于提高自动驾驶的安全性、减少交通事故具有重要意义。同样&#xff0c;在安防监控、…...

Edge浏览器十大常见问题,一次性解决!

Edge曾被称为最好用的浏览器&#xff0c;拳打Chrome脚踢firefox, 可如今却隐藏着像是播放卡顿、下载缓慢、广告繁多等诸多问题&#xff0c;不知道各位还在用吗&#xff1f; 今天小编收集整理了Edge浏览器十大烦人问题&#xff0c;并提供简单有效的解决办法&#xff0c;让你的E…...

lubuntu / ubuntu 配置静态ip

一、查看原始网络配置信息 1、获取网卡名称 ifconfig 2、查询网关IP route -n 二、编辑配置文件 去/etc/netplan目录找到配置文件&#xff0c;配置文件名一般为01-network-manager-all.yaml sudo vim /etc/netplan/01-network-manager-all.yaml文件打开后内容如下 # This …...

15、matlab绘图汇总(图例、标题、坐标轴、线条格式、颜色和散点格式设置)

1、plot()函数默认格式画图 代码&#xff1a; x0:0.1:20;%绘图默认格式 ysin(x); plot(x,y) 2、X轴和Y轴显示范围/axis()函数 代码&#xff1a; x0:0.1:20;%绘图默认格式 ysin(x); plot(x,y) axis([0 21 -1.1 1.1])%设置范围 3、网格显示/grid on函数 代码&#xff1a; …...

XCTF-web-easyupload

试了试php&#xff0c;php7&#xff0c;pht&#xff0c;phtml等&#xff0c;都没有用 尝试.user.ini 抓包修改将.user.ini修改为jpg图片 在上传一个123.jpg 用蚁剑连接&#xff0c;得到flag...

应用升级/灾备测试时使用guarantee 闪回点迅速回退

1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间&#xff0c; 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点&#xff0c;不需要开启数据库闪回。…...

Qt/C++开发监控GB28181系统/取流协议/同时支持udp/tcp被动/tcp主动

一、前言说明 在2011版本的gb28181协议中&#xff0c;拉取视频流只要求udp方式&#xff0c;从2016开始要求新增支持tcp被动和tcp主动两种方式&#xff0c;udp理论上会丢包的&#xff0c;所以实际使用过程可能会出现画面花屏的情况&#xff0c;而tcp肯定不丢包&#xff0c;起码…...

Admin.Net中的消息通信SignalR解释

定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...

线程与协程

1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指&#xff1a;像函数调用/返回一样轻量地完成任务切换。 举例说明&#xff1a; 当你在程序中写一个函数调用&#xff1a; funcA() 然后 funcA 执行完后返回&…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院查看报告小程序

一、开发环境准备 ​​工具安装​​&#xff1a; 下载安装DevEco Studio 4.0&#xff08;支持HarmonyOS 5&#xff09;配置HarmonyOS SDK 5.0确保Node.js版本≥14 ​​项目初始化​​&#xff1a; ohpm init harmony/hospital-report-app 二、核心功能模块实现 1. 报告列表…...

Neo4j 集群管理:原理、技术与最佳实践深度解析

Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...

佰力博科技与您探讨热释电测量的几种方法

热释电的测量主要涉及热释电系数的测定&#xff0c;这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中&#xff0c;积分电荷法最为常用&#xff0c;其原理是通过测量在电容器上积累的热释电电荷&#xff0c;从而确定热释电系数…...

Chromium 136 编译指南 Windows篇:depot_tools 配置与源码获取(二)

引言 工欲善其事&#xff0c;必先利其器。在完成了 Visual Studio 2022 和 Windows SDK 的安装后&#xff0c;我们即将接触到 Chromium 开发生态中最核心的工具——depot_tools。这个由 Google 精心打造的工具集&#xff0c;就像是连接开发者与 Chromium 庞大代码库的智能桥梁…...

Kafka主题运维全指南:从基础配置到故障处理

#作者&#xff1a;张桐瑞 文章目录 主题日常管理1. 修改主题分区。2. 修改主题级别参数。3. 变更副本数。4. 修改主题限速。5.主题分区迁移。6. 常见主题错误处理常见错误1&#xff1a;主题删除失败。常见错误2&#xff1a;__consumer_offsets占用太多的磁盘。 主题日常管理 …...