当前位置: 首页 > news >正文

Flink从入门到精通系列(一)

1、Flink概述

Apache Flink 是一个框架和分布式处理引擎,用于在, 无边界和有边界数据流上进行有状态的计算 ,Flink 能在所有常见集群环境中运行,并能以内存速度和任意规模进行计算。

Apache Flink 功能强大,支持开发和运行多种不同种类的应用程序。它的主要特性包括: 批流一体化、精密的状态管理、事件时间支持以及精确一次的状态一致性保障等

Flink 不仅可以运行在包括 YARN、 Mesos、Kubernetes 在内的多种资源管理框架上,还支持在裸机集群上独立部署。在启用高可用选项的情况下,它不存在单点失效问题,适用于大规模数据处理和实时数据分析。

1.1、Flink 的源起和设计理念

Flink 起源于一个叫作 Stratosphere 的项目,它是由 3 所地处柏林的大学和欧洲其他一些大
学在 2010~2014 年共同进行的研究项目,由柏林理工大学的教授沃克尔·马尔科(Volker Markl)
领衔开发。2014 年 4 月,Stratosphere 的代码被复制并捐赠给了 Apache 软件基金会,Flink 就
是在此基础上被重新设计出来的。

在德语中,“flink”一词表示“快速、灵巧”。项目的 logo 是一只彩色的松鼠,当然了,
这不仅是因为 Apache 大数据项目对动物的喜好(是否联想到了 Hadoop、Hive?),更是因为
松鼠这种小动物完美地体现了“快速、灵巧”的特点。

关于 logo 的颜色,还一个有趣的缘由:柏林当地的松鼠非常漂亮,颜色是迷人的红棕色;而 Apache 软件基金会的 logo,刚好也是一根以红棕色为主的渐变色羽毛。于是,Flink 的松鼠 Logo 就设计成了红棕色,而且拥有一个漂亮的渐变色尾巴,尾巴的配色与 Apache 软件基金会的 logo 一致。这只松鼠色彩炫目,既呼应了 Apache 的风格,似乎也预示着 Flink 未来将要大放异彩。
在这里插入图片描述
从命名上,我们也可以看出 Flink 项目对于自身特点的定位,那就是对于大数据处理,要
做到快速和灵活。

  • 2014 年 8 月,Flink 第一个版本 0.6 正式发布(至于 0.5 之前的版本,那就是在
    Stratosphere 名下的了)。与此同时 Fink 的几位核心开发者创办了 Data Artisans 公司,
    主要做 Fink 的商业应用,帮助企业部署大规模数据处理解决方案。
  • 2014 年 12 月,Flink 项目完成了孵化,一跃成为 Apache 软件基金会的顶级项目。
  • 2015 年 4 月,Flink 发布了里程碑式的重要版本 0.9.0,很多国内外大公司也正是从这
    时开始关注、并参与到 Flink 社区建设的。
  • 2019 年 1 月,长期对 Flink 投入研发的阿里巴巴,以 9000 万欧元的价格收购了 Data
    Artisans 公司;之后又将自己的内部版本 Blink 开源,继而与 8 月份发布的 Flink 1.9.0版本进行了合并。自此之后,Flink 被越来越多的人所熟知,成为当前最火的新一代大数据处理框架。

并且Flink 就拥有一个非常活跃的社区,而且一直在快速成长。到目前为止,Flink的代码贡献者(Contributors)已经超过 800 人,并且 Flink 已经发展成为最复杂的开源流处理引擎之一,得到了广泛的应用。
根据 Apache 软件基金会发布的 2020 年度报告,Flink 项目的社区参与和贡献依旧非常活跃,在 Apache 旗下的众多项目中保持着多项领先。

Flink 的官网主页地址:

在 Flink 官网主页的顶部可以看到,项目的核心目标,是“数据流上的有状态计算”(Stateful
Computations over Data Streams)。
具体定位是: Apache Flink 是一个框架和分布式处理引擎,用于对无界和有界数据流进行有状态计算。Flink 被设计在所有常见的集群环境中运行,以内存执行速度和任意规模来执行计算。

在这里插入图片描述

1.2、Flink 的应用

Flink 是一个大数据流处理引擎,它可以为不同的行业提供大数据实时处理的解决方案。随着 Flink 的快速发展完善,如今在世界范围许多公司都可以见到 Flink 的身影。

Flink 在国内热度尤其高,一方面是因为阿里的贡献和带头效应,另一方面也跟中国的应用场景密切相关。中国的人口规模与互联网使用普及程度,决定了对大数据处理的速度要求越来越高,也迫使中国的互联网企业去追逐更高的数据处理效率。

1.2.1、Flink 在企业中的应用

使用Flink的公司主要有以下知名企业用户等
在这里插入图片描述

1.2.2、Flink 主要的应用场景

Flink 本身的定位,它是一个大数据流式处理引擎,处理的是流式数据,也就是“数据流”(Data Flow)。顾名思义,数据流的含义是,数据并不是收集好的,而是像水流一样,是一组有序的数据序列,逐个到来、逐个处理。由于数据来到之后就会被即刻处理,所以流处理的一大特点就是“快速”,也就是良好的实时性。Flink 适合的场景,其实也就是需要实时处理数据流的场景。

1.2.2.1、电商和市场营销

举例:实时数据报表、广告投放、实时推荐在电商行业中,网站点击量是统计 PV、UV 的重要来源,也是如今“流量经济”的最主要数据指标。

很多公司的营销策略,比如广告的投放,也是基于点击量来决定的。另外,在网站上提供给用户的实时推荐,往往也是基于当前用户的点击行为做出的。网站获得的点击数据可能是连续且不均匀的,还可能在同一时间大量产生,这是典型的数据流。

如果我们希望把它们全部收集起来,再去分析处理,就会面临很多问题:

  • 首先,我们需要很大的空间来存储数据;
  • 其次,收集数据的过程耗去了大量时间,统计分析结果的实时性就大大降低了;
  • 另外,分布式处理无法保证数据的顺序,如果我们只以数据进入系统的时间为准,可能导致最终结果计算错误。

我们需要的是直接处理数据流,而 Flink 就可以做到这一点。

1.2.2.2、物联网(IOT)

举例:传感器实时数据采集和显示、实时报警,交通运输业物联网是流数据被普遍应用的领域。各种传感器不停获得测量数据,并将它们以流的形式传输至数据中心。而数据中心会将数据处理分析之后,得到运行状态或者报警信息,实时地显示在监控屏幕上。所以在物联网中,低延迟的数据传输和处理,以及准确的数据分析通常很关键。

交通运输业也体现了流处理的重要性。比如说,如今高铁运行主要就是依靠传感器检测数据,测量数据包括列车的速度和位置,以及轨道周边的状况。这些数据会从轨道传给列车,再从列车传到沿途的其他传感器;与此同时,数据报告也被发送回控制中心。因为列车处于高速行驶状态,因此数据处理的实时性要求是极高的。如果流数据没有被及时正确处理,调整意见和警告就不能相应产生,后果可能会非常严重。

1.2.2.3、物流配送和服务业

举例:订单状态实时更新、通知信息推送在很多服务型应用中,都会涉及订单状态的更新和通知的推送。这些信息基于事件触发,不均匀地连续不断生成,处理之后需要及时传递给用户。这也是非常典型的数据流的处理。

1.2.2.4、银行和金融业

举例:实时结算和通知推送,实时检测异常行为银行和金融业是另一个典型的应用行业。

用户的交易行为是连续大量发生的,银行面对的是海量的流式数据。由于要处理的交易数据量太大,以前的银行是按天结算的,汇款一般都要隔天才能到账。所以有一个说法叫作“银行家工作时间”,说的就是银行家不仅不需要 996,甚至下午早早就下班了:因为银行需要早点关门进行结算,这样才能保证第二天营业之前算出准确的账。

这显然不能满足我们快速交易的需求。在全球化经济中,能够提供 24 小时服务变得越来越重要。现在交易和报表都会快速准确地生成,我们跨行转账也可以做到瞬间到账,还可以接到实时的推送通知。这就需要我们能够实时处理数据流。

另外,信用卡欺诈的检测也需要及时的监控和报警。一些金融交易市场,对异常交易行为的及时检测可以更好地进行风险控制;还可以对异常登录进行检测,从而发现钓鱼式攻击,从而避免巨大的损失。

1.3、流式数据处理的发展和演变

1.3.1、流处理和批处理

数据处理有不同的方式。

  • 对于具体应用来说,有些场景数据是一个一个来的,是一组有序的数据序列,我们把它叫作“数据流”;
  • 而有些场景的数据,本身就是一批同时到来,是一个有限的数据集,这就是批量数据(有时也直接叫数据集)。

处理数据流,当然应该“来一个就处理一个”,这种数据处理模式就叫作流处理,因为这种处理是即时的,所以也叫实时处理。

与之对应,处理批量数据自然就应该一批读入、一起计算,这种方式就叫作批处理,也叫作离线处理。

1.3.2、传统事务处理

IT 互联网公司往往会用不同的应用程序来处理各种业务。比如内部使用的企业资源规划(ERP)系统、客户关系管理(CRM)系统,还有面向客户的 Web 应用程序。

这些系统一般都会进行分层设计:“计算层”就是应用程序本身,用于数据计算和处理;而“存储层”往往是传统的关系型数据库,用于数据存储。

在这里插入图片描述

这里的应用程序在处理数据的模式上有共同之处:接收的数据是持续生成的事件,比如用户的点击行为,客户下的订单,或者操作人员发出的请求。处理事件时,应用程序需要先读取远程数据库的状态,然后按照处理逻辑得到结果,将响应返回给用户,并更新数据库状态。一般来说,一个数据库系统可以服务于多个应用程序,它们有时会访问相同的数据库或表。这就是传统的“事务处理”架构,系统所处理的连续不断的事件,其实就是一个数据流,而对于每一个事件,系统都在收到之后进行相应的处理,这也是符合流处理的原则的。

所以可以说,传统的事务处理,就是最基本的流处理架构。对于各种事件请求,事务处理的方式能够保证实时响应,好处是一目了然的。但是我们知道,这样的架构对表和数据库的设计要求很高;当数据规模越来越庞大、系统越来越复杂时,可能需要对表进行重构,而且一次联表查询也会花费大量的时间,甚至不能及时得到返回结果。

1.3.3、有状态的流处理

不难想到,如果我们对于事件流的处理非常简单,例如收到一条请求就返回一个“收到”,那就可以省去数据库的查询和更新了,但是这样的处理是没什么实际意义的。

在现实的应用中,往往需要还其他一些额外数据。我们可以把需要的额外数据保存成一个“状态”,然后针对这条数据进行处理,并且更新状态。在传统架构中,这个状态就是保存在数据库里的。这就是所谓的“有状态的流处理”。

为了加快访问速度,我们可以直接将状态保存在本地内存,如下图所示,当应用收到一个新事件时,它可以从状态中读取数据,也可以更新状态。而当状态是从内存中读写的时候,这就和访问本地变量没什么区别了,实时性可以得到极大的提升。另外,数据规模增大时,我们也不需要做重构,只需要构建分布式集群,各自在本地计算就可以了,可扩展性也变得更好。

因为采用的是一个分布式系统,所以还需要保护本地状态,防止在故障时数据丢失。我们可以定期地将应用状态的一致性检查点(checkpoint)存盘,写入远程的持久化存储,遇到故障时再去读取进行恢复,这样就保证了更好的容错性。

在这里插入图片描述
有状态的流处理是一种通用而且灵活的设计架构,可用于许多不同的场景。具体来说,有
以下几种典型应用。

1.3.3.1、事件驱动型(Event-Driven)应用

在这里插入图片描述
事件驱动型应用是一类具有状态的应用,它从一个或多个事件流提取数据,并根据到来的事件触发计算、状态更新或其他外部动作。比较典型的就是以 Kafka 为代表的消息队列几乎都是事件驱动型应用。

这其实跟传统事务处理本质上是一样的,区别在于基于有状态流处理的事件驱动应用,不再需要查询远程数据库,而是在本地访问它们的数据,如上图所示,这样在吞吐量和延迟方面就可以有更好的性能。

另外远程持久性存储的检查点保证了应用可以从故障中恢复。检查点可以异步和增量地完成,因此对正常计算的影响非常小。

1.3.3.2、数据分析(Data Analysis)型应用

在这里插入图片描述
所谓的数据分析,就是从原始数据中提取信息和发掘规律。传统上,数据分析一般是先将数据复制到数据仓库(Data Warehouse),然后进行批量查询。如果数据有了更新,必须将最新数据添加到要分析的数据集中,然后重新运行查询或应用程序。

如今,Apache Hadoop 生态系统的组件,已经是许多企业大数据架构中不可或缺的组成部分。现在的做法一般是将大量数据(如日志文件)写入 Hadoop 的分布式文件系统(HDFS)、S3 或 HBase 等批量存储数据库,以较低的成本进行大容量存储。然后可以通过 SQL-on-Hadoop类的引擎查询和处理数据,比如大家熟悉的 Hive。这种处理方式,是典型的批处理,特点是可以处理海量数据,但实时性较差,所以也叫离线分析。

如果我们有了一个复杂的流处理引擎,数据分析其实也可以实时执行。流式查询或应用程序不是读取有限的数据集,而是接收实时事件流,不断生成和更新结果。结果要么写入外部数据库,要么作为内部状态进行维护。

Apache Flink 同事支持流式与批处理的数据分析应用,如上图所示。与批处理分析相比,流处理分析最大的优势就是低延迟,真正实现了实时。另外,流处理不需要去单独考虑新数据的导入和处理,实时更新本来就是流处理的基本模式。当前企业对流式数据处理的一个热点应用就是实时数仓,很多公司正是基于 Flink 来实现的。

1.3.3.3、数据管道(Data Pipeline)型应用

在这里插入图片描述
ETL 也就是数据的提取、转换、加载,是在存储系统之间转换和移动数据的常用方法。在数据分析的应用中,通常会定期触发 ETL 任务,将数据从事务数据库系统复制到分析数据库或数据仓库。

所谓数据管道的作用与 ETL 类似。它们可以转换和扩展数据,也可以在存储系统之间移动数据。不过如果我们用流处理架构来搭建数据管道,这些工作就可以连续运行,而不需要再去周期性触发了。比如,数据管道可以用来监控文件系统目录中的新文件,将数据写入事件日志。连续数据管道的明显优势是减少了将数据移动到目的地的延迟,而且更加通用,可以用于更多的场景。

有状态的流处理架构上其实并不复杂,很多用户基于这种思想开发出了自己的流处理系统,这就是第一代流处理器。Apache Storm 就是其中的代表。Storm 可以说是开源流处理的先锋,最早是由 Nathan Marz 和创业公司 BackType 的一个团队开发的,后来才成为 Apache 软件基金会下属的项目。Storm 提供了低延迟的流处理,但是它也为实时性付出了代价:很难实现高吞吐,而且无法保证结果的正确性。用更专业的话说,它并不能保证“精确一次”(exactly-once);即便是它能够保证的一致性级别,开销也相当大。

1.3.3.4、Lambda 架构

对于有状态的流处理,当数据越来越多时,我们必须用分布式的集群架构来获取更大的吞吐量。但是分布式架构会带来另一个问题: 怎样保证数据处理的顺序是正确的呢?

对于批处理来说,这并不是一个问题。因为所有数据都已收集完毕,我们可以根据需要选择、排列数据,得到想要的结果。

可如果我们采用“来一个处理一个”的流处理,就可能出现“乱序”的现象:本来先发生的事件,因为分布处理的原因滞后了,怎么解决这个问题呢?以 Storm 为代表的第一代分布式开源流处理器,主要专注于具有毫秒延迟的事件处理,特点就是一个字“快”;而对于准确性和结果的一致性,是不提供内置支持的,因为结果有可能取决于到达事件的时间和顺序。另外,第一代流处理器通过检查点来保证容错性,但是故障恢复的时候,即使事件不会丢失,也有可能被重复处理——所以无法保证 exactly-once。

与批处理器相比,可以说第一代流处理器牺牲了结果的准确性,用来换取更低的延迟。而批处理器恰好反过来,牺牲了实时性,换取了结果的准确。如果可以让二者做个结合,不就可以同时提供快速和准确的结果了吗?正是基于这样的思想,Lambda 架构被设计出来,如下图所示。我们可以认为这是第二代流处理架构,但事实上,它只是第一代流处理器和批处理器的简单合并。
在这里插入图片描述

Lambda 架构主体是传统批处理架构的增强。它的“批处理层”(Batch Layer)就是由传统的批处理器和存储组成,而“实时层”(Speed Layer)则由低延迟的流处理器实现。数据到达之后,两层处理双管齐下,一方面由流处理器进行实时处理,另一方面写入批处理存储空间,等待批处理器批量计算。流处理器快速计算出一个近似结果,并将它们写入“流处理表”中。而批处理器会定期处理存储中的数据,将准确的结果写入批处理表,并从快速表中删除不准确的结果。最终,应用程序会合并快速表和批处理表中的结果,并展示出来。

Lambda 架构现在已经不再是最先进的,但仍在许多地方使用。它的优点非常明显,就是兼具了批处理器和第一代流处理器的特点,同时保证了低延迟和结果的准确性。

而它的缺点同样非常明显。首先,Lambda 架构本身就很难建立和维护;而且,它需要我们对一个应用程序,做出两套语义上等效的逻辑实现,因为批处理和流处理是两套完全独立的系统,它们的 API也完全不同。为了实现一个应用,付出了双倍的工作量,这对程序员显然不够友好。

1.3.3.5、新一代流处理器

之前的分布式流处理架构,都有明显的缺陷,人们也一直没有放弃对流处理器的改进和完善。终于,在原有流处理器的基础上,新一代分布式开源流处理器诞生了。为了与之前的系统区分,我们一般称之为第三代流处理器,代表当然就是 Flink。

第三代流处理器通过巧妙的设计,完美解决了乱序数据对结果正确性的影响。这一代系统还做到了精确一次(exactly-once)的一致性保障,是第一个具有一致性和准确结果的开源流处理器。另外,先前的流处理器仅能在高吞吐和低延迟中二选一,而新一代系统能够同时提供这两个特性。所以可以说,这一代流处理器仅凭一套系统就完成了 Lambda 架构两套系统的工作,它的出现使得 Lambda 架构黯然失色。

除了低延迟、容错和结果准确性之外,新一代流处理器还在不断添加新的功能,例如高可用的设置,以及与资源管理器(如 YARN 或 Kubernetes)的紧密集成等等。

1.4、 Flink 的特性总结

1.4.1、 Flink 的核心特性

Flink 区别与传统数据处理框架的特性如下。

  • 高吞吐和低延迟。每秒处理数百万个事件,毫秒级延迟。
  • 结果的准确性。Flink 提供了事件时间(event-time)和处理时间(processing-time)语义。对于乱序事件流,事件时间语义仍然能提供一致且准确的结果。
  • 精确一次(exactly-once)的状态一致性保证。
  • 可以连接到最常用的存储系统,如 Apache Kafka、Apache Cassandra、Elasticsearch、JDBC、Kinesis 和(分布式)文件系统,如 HDFS 和 S3。
  • 高可用。本身高可用的设置,加上与 K8s,YARN 和 Mesos 的紧密集成,再加上从故障中快速恢复和动态扩展任务的能力,Flink 能做到以极少的停机时间 7×24 全天候运行。
  • 能够更新应用程序代码并将作业(jobs)迁移到不同的 Flink 集群,而不会丢失应用程序的状态。

1.4.2、 分层 API

除了上述这些特性之外,Flink 还是一个非常易于开发的框架,因为它拥有易于使用的分
层 API,整体 API 分层如下图所示。
在这里插入图片描述

最底层级的抽象仅仅提供了有状态流,它将处理函数(Process Function)嵌入到了DataStream API 中。底层处理函数(Process Function)与 DataStream API 相集成,可以对某些操作进行抽象,它允许用户可以使用自定义状态处理来自一个或多个数据流的事件,且状态具有一致性和容错保证。除此之外,用户可以注册事件时间并处理时间回调,从而使程序可以处理复杂的计算。

实际上,大多数应用并不需要上述的底层抽象,而是直接针对核心 API(Core APIs) 进行编程,比如 DataStream API(用于处理有界或无界流数据)以及 DataSet API(用于处理有界数据集)。这些 API 为数据处理提供了通用的构建模块,比如由用户定义的多种形式的转换(transformations)、连接(joins)、聚合(aggregations)、窗口(windows)操作等。

DataSet API 为有界数据集提供了额外的支持,例如循环与迭代。这些 API 处理的数据类型以类(classes)的形式由各自的编程语言所表示。

Table API 是以表为中心的声明式编程,其中表在表达流数据时会动态变化。Table API 遵循关系模型:表有二维数据结构(schema)(类似于关系数据库中的表),同时 API 提供可比较的操作,例如 select、join、group-by、aggregate 等。尽管 Table API 可以通过多种类型的用户自定义函数(UDF)进行扩展,仍不如核心 API更具表达能力,但是使用起来代码量更少,更加简洁。除此之外,Table API 程序在执行之前会使用内置优化器进行优化。

我们可以在表与 DataStream/DataSet 之间无缝切换,以允许程序将 Table API 与DataStream 以及 DataSet 混合使用。

Flink 提供的最高层级的抽象是 SQL。这一层抽象在语法与表达能力上与 Table API 类似,但是是以 SQL 查询表达式的形式表现程序。SQL 抽象与 Table API 交互密切,同时 SQL 查询可以直接在 Table API 定义的表上执行。目前 Flink SQL 和 Table API 还在开发完善的过程中,很多大厂都会二次开发符合自己需要的工具包。

而 DataSet 作为批处理 API 实际应用较少,2020 年 12 月 8 日发布的新版本 1.12.0, 已经完全实现了真正的流批一体,DataSet API 已处于软性弃用(soft deprecated)的状态。用Data Stream API 写好的一套代码, 即可以处理流数据, 也可以处理批数据,只需要设置不同的执行模式。这与之前版本处理有界流的方式是不一样的,Flink 已专门对批处理数据做了优化处理。

1.5、 Flink vs Spark

Apache Spark 是一个通用大规模数据分析引擎。它提出的内存计算概念让大家耳目一新,得以从 Hadoop 繁重的 MapReduce 程序中解脱出来,可以说是划时代的大数据处理框架。除了计算速度快、可扩展性强,Spark 还为批处理(SparkSQL)、流处理(Spark Streaming)、机器学习(Spark MLlib)、图计算(Spark GraphX)提供了统一的分布式数据处理平台,整个生态经过多年的蓬勃发展已经非常完善。

1.5.1、 Flink vs Spark

数据处理的基本方式,可以分为 批处理和流处理 两种。

  • 批处理针对的是有界数据集,非常适合需要访问海量的全部数据才能完成的计算工作,一般用于离线统计。
  • 流处理主要针对的是数据流,特点是无界、实时, 对系统传输的每个数据依次执行操作,一般用于实时统计。

从根本上说,Spark 和 Flink 采用了完全不同的数据处理方式。可以说,两者的世界观是截然相反的。
Spark 以批处理为根本,并尝试在批处理之上支持流计算;在 Spark 的世界观中,万物皆批次,离线数据是一个大批次,而实时数据则是由一个一个无限的小批次组成的。所以对于流处理框架 Spark Streaming 而言,其实并不是真正意义上的“流”处理,而是“微批次”(micro-batching)处理,如下图所示。
在这里插入图片描述
而 Flink 则认为,流处理才是最基本的操作,批处理也可以统一为流处理。在 Flink 的世界观中,万物皆流,实时数据是标准的、没有界限的流,而离线数据则是有界限的流。如下图所示,就是所谓的无界流和有界流。

在这里插入图片描述

  1. 无界数据流(Unbounded Data Stream)
    所谓无界数据流,就是有头没尾,数据的生成和传递会开始但永远不会结束,如上图所示。我们无法等待所有数据都到达,因为输入是无界的,永无止境,数据没有“都到达”的时候。所以对于无界数据流,必须连续处理,也就是说必须在获取数据后立即处理。在处理无界流时,为了保证结果的正确性,我们必须能够做到按照顺序处理数据。
  2. 有界数据流(Bounded Data Stream)
    有界数据流有明确定义的开始和结束,如上图所示,所以我们可以通过获取所有数据来处理有界流。处理有界流就不需要严格保证数据的顺序了,因为总可以对有界数据集进行排序。有界流的处理也就是批处理。

正因为这种架构上的不同,Spark 和 Flink 在不同的应用领域上表现会有差别。一般来说,Spark 基于微批处理的方式做同步总有一个“攒批”的过程,所以会有额外开销,因此无法在流处理的低延迟上做到极致。在低延迟流处理场景,Flink 已经有明显的优势。而在海量数据的批处理领域,Spark 能够处理的吞吐量更大,加上其完善的生态和成熟易用的 API,目前同样优势比较明显。

1.5.2、 数据模型和运行架构

Spark 和 Flink 在底层实现最主要的差别就在于数据模型不同。

  • Spark 底层数据模型是弹性分布式数据集(RDD),Spark Streaming 进行微批处理的底层接口 DStream,实际上处理的也是一组组小批数据 RDD 的集合。可以看出,Spark 在设计上本身就是以批量的数据集作为基准的,更加适合批处理的场景。

  • Flink 的基本数据模型是数据流(DataFlow),以及事件(Event)序列。Flink 基本上是完全按照 Google 的 DataFlow 模型实现的,所以从底层数据模型上看,Flink 是以处理流式数据作为设计目标的,更加适合流处理的场景。

数据模型不同,对应在运行处理的流程上,自然也会有不同的架构。

  • Spark 做批计算,需要将任务对应的 DAG 划分阶段(Stage),一个完成后经过 shuffle 再进行下一阶段的计算。
  • Flink 是标准的流式执行模式,一个事件在一个节点处理完后可以直接发往下一个节点进行处理。

1.5.3、 Spark 还是 Flink

如果在工作中需要从 Spark 和 Flink 这两个主流框架中选择一个来进行实时流处理,我们更加推荐使用 Flink,主要的原因有:

  • Flink 的延迟是毫秒级别,而 Spark Streaming 的延迟是秒级延迟。
  • Flink 提供了严格的精确一次性语义保证。
  • Flink 的窗口 API 更加灵活、语义更丰富。
  • Flink 提供事件时间语义,可以正确处理延迟数据。
  • Flink 提供了更加灵活的对状态编程的 API。

2、Flink 快速上手

2.1、环境准备

  • 系统环境为 Windows 10。
  • 需提前安装 Java 8。
  • 集成开发环境(IDE)使用 IntelliJ IDEA。
  • Maven 和 Git,Maven 用来管理项目依赖;通过 Git 可以轻松获取我们的示例代码,并进行本地代码的版本控制。

2.2、WordCount编写

2.2.1、环境准备

  1. pom
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"><modelVersion>4.0.0</modelVersion><groupId>org.song</groupId><artifactId>flink_demo</artifactId><version>1.0-SNAPSHOT</version><properties><flink.version>1.13.0</flink.version><java.version>1.8</java.version><scala.binary.version>2.12</scala.binary.version><slf4j.version>1.7.30</slf4j.version></properties><dependencies><!-- 引入 Flink 相关依赖--><dependency><groupId>org.apache.flink</groupId><artifactId>flink-java</artifactId><version>${flink.version}</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-streaming-java_${scala.binary.version}</artifactId><version>${flink.version}</version></dependency><dependency><groupId>org.apache.flink</groupId><artifactId>flink-clients_${scala.binary.version}</artifactId><version>${flink.version}</version></dependency><!-- 引入日志管理相关依赖--><dependency><groupId>org.slf4j</groupId><artifactId>slf4j-api</artifactId><version>${slf4j.version}</version></dependency><dependency><groupId>org.slf4j</groupId><artifactId>slf4j-log4j12</artifactId><version>${slf4j.version}</version></dependency><dependency><groupId>org.apache.logging.log4j</groupId><artifactId>log4j-to-slf4j</artifactId><version>2.14.0</version></dependency></dependencies>
</project>
  1. 日志
log4j.rootLogger=error, stdout
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%-4r [%t] %-5p %c %x - %m%n

2.2.2、批处理的方式运行WordCount

  1. 代码实现
package com.song.wc;import org.apache.flink.api.common.typeinfo.Types;
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.api.java.operators.AggregateOperator;
import org.apache.flink.api.java.operators.DataSource;
import org.apache.flink.api.java.operators.FlatMapOperator;
import org.apache.flink.api.java.operators.UnsortedGrouping;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.util.Collector;/*** 批处理的方式运行WordCount*/
public class BatchWordCount {public static void main(String[] args) throws Exception {// 1. 创建执行环境ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();// 2. 从文件读取数据 按行读取(存储的元素就是每行的文本)DataSource<String> lineDS = env.readTextFile("input/words.txt");// 3. 转换数据格式FlatMapOperator<String, Tuple2<String, Long>> wordAndOne = lineDS.flatMap((String line, Collector<Tuple2<String, Long>> out) -> {String[] words = line.split(" ");for (String word : words) {out.collect(Tuple2.of(word, 1L));}}).returns(Types.TUPLE(Types.STRING, Types.LONG));//当 Lambda 表达式使用 Java 泛型的时候, 由于泛型擦除的存在, 需要显示的声明类型信息// 4. 按照 word 进行分组UnsortedGrouping<Tuple2<String, Long>> wordAndOneUG = wordAndOne.groupBy(0);// 5. 分组内聚合统计AggregateOperator<Tuple2<String, Long>> sum = wordAndOneUG.sum(1);// 6. 打印结果sum.print();}
}
  1. 运行结果
(flink,1)
(world,1)
(java,1)
(hello,3)
  1. 代码说明和注意事项:
  • Flink 在执行应用程序前应该获取执行环境对象,也就是运行时上下文环境。ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
  • 直接调用执行环境的 readTextFile 方法,可以从文件中读取数据。
  • 我们的目标是将每个单词对应的个数统计出来,所以调用 flatmap 方法可以对一行文字进行分词转换。将文件中每一行文字拆分成单词后,要转换成(word,count)形式的二元组,初始 count 都为 1。returns 方法指定的返回数据类型 Tuple2,就是 Flink 自带的二元组数据类型。
  • 在分组时调用了 groupBy 方法,它不能使用分组选择器,只能采用位置索引或属性名称进行分组。
// 使用索引定位
dataStream.groupBy(0)
// 使用类属性名称
dataStream.groupBy("id")
  • 在分组之后调用 sum 方法进行聚合,同样只能指定聚合字段的位置索引或属性名称。

这种代码的实现方式,是基于 DataSet API 的,也就是我们对数据的处理转换,是看作数据集来进行操作的。事实上 Flink 本身是流批统一的处理架构,批量的数据集本质上也是流,没有必要用两套不同的 API 来实现。所以从 Flink 1.12 开始,官方推荐的做法是直接使用 DataStream API,在提交任务时通过将执行模式设为 BATCH 来进行批处理,并且DataSet API 就已经处于“软弃用”(soft deprecated)的状态,在实际应用中我们只要维护一套 DataStream API 就可以了。

2.2.3、有界流的方式运行WordCount

  1. 代码实现
package com.song.wc;import org.apache.flink.api.common.typeinfo.Types;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;import java.util.Arrays;/*** 有界流的方式运行WordCount*/
public class BoundedStreamWordCount {public static void main(String[] args) throws Exception {// 1. 创建流式执行环境StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();// 2. 读取文件DataStreamSource<String> lineDSS = env.readTextFile("input/words.txt");// 3. 转换数据格式SingleOutputStreamOperator<Tuple2<String, Long>> wordAndOne = lineDSS.flatMap((String line, Collector<String> words) -> Arrays.stream(line.split(" ")).forEach(words::collect)).returns(Types.STRING).map(word -> Tuple2.of(word, 1L)).returns(Types.TUPLE(Types.STRING, Types.LONG));// 4. 分组KeyedStream<Tuple2<String, Long>, String> wordAndOneKS = wordAndOne.keyBy(t -> t.f0);// 5. 求和SingleOutputStreamOperator<Tuple2<String, Long>> result = wordAndOneKS.sum(1);// 6. 打印result.print();// 7. 执行env.execute();}
}
  1. 运行结果
4> (java,1)
6> (hello,1)
16> (flink,1)
6> (hello,2)
11> (world,1)
6> (hello,3)

与批处理的结果是完全不同的。

  • 批处理针对每个单词,只会输出一个最终的统计个数;
  • 在流处理的打印结果中,“hello”这个单词每出现一次,都会有一个频次统计数据输出。这就是流处理的特点,数据逐个处理,每来一条数据就会处理输出一次。

在开发环境里,会通过多线程来模拟 Flink 集群运行。所以这里结果前的数字,其实就指示了本地执行的不同线程,对应着 Flink 运行时不同的并行资源。

另外需要说明,这里显示的编号为 1~16,是由于运行电脑的 CPU 是 16 核,所以默认模拟的并行线程有 16 个。这段代码不同的运行环境,得到的结果会是不同的。

2.2.4、无界流的方式运行WordCount

  1. 代码实现
package com.song.wc;import org.apache.flink.api.common.typeinfo.Types;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;import java.util.Arrays;/*** 无界流的方式运行WordCount*/
public class StreamWordCount {public static void main(String[] args) throws Exception {// 1. 创建流式执行环境StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();// 2. 读取文本流DataStreamSource<String> lineDSS = env.socketTextStream("hadoop100",7777);// 3. 转换数据格式SingleOutputStreamOperator<Tuple2<String, Long>> wordAndOne = lineDSS.flatMap((String line, Collector<String> words) -> {Arrays.stream(line.split(" ")).forEach(words::collect);}).returns(Types.STRING).map(word -> Tuple2.of(word, 1L)).returns(Types.TUPLE(Types.STRING, Types.LONG));// 4. 分组KeyedStream<Tuple2<String, Long>, String> wordAndOneKS = wordAndOne.keyBy(t -> t.f0);// 5. 求和SingleOutputStreamOperator<Tuple2<String, Long>> result = wordAndOneKS.sum(1);// 6. 打印result.print();// 7. 执行env.execute();}
}
  1. 运行结果

输入数据
在这里插入图片描述

输出结果

6> (hello,1)
11> (world,1)
19> (heelo,1)
6> (hello,2)
16> (flink,1)
16> (flink,2)
  1. 代码说明
    代码说明和注意事项:
  • socket 文本流的读取需要配置两个参数:发送端主机名和端口号。这里代码中指定了主机“hadoop100”的 7777 端口作为发送数据的 socket 端口,读者可以根据测试环境自行配置。
  • 在实际项目应用中,主机名和端口号这类信息往往可以通过配置文件,或者传入程序运行参数的方式来指定。
  • socket文本流数据的发送,可以通过Linux系统自带的netcat工具进行模拟。

相关文章:

Flink从入门到精通系列(一)

1、Flink概述 Apache Flink 是一个框架和分布式处理引擎&#xff0c;用于在&#xff0c; 无边界和有边界数据流上进行有状态的计算 &#xff0c;Flink 能在所有常见集群环境中运行&#xff0c;并能以内存速度和任意规模进行计算。 Apache Flink 功能强大&#xff0c;支持开发…...

云原生应用风险介绍

本博客地址&#xff1a;https://security.blog.csdn.net/article/details/129303616 一、传统风险 传统风险主要是注入、敏感数据泄露、跨站脚本、配置错误等等&#xff0c;这些传统的安全风险在云原生应用中也是存在的&#xff0c;这里就不具体展开说了。 二、云原生应用架…...

什么是测试用例设计?

前言 想要进行测试自动化的团队都会遇到这个问题&#xff1a;自动化的成功和编码能力有多大的关联&#xff1f;现在更多的招聘信息越来越偏重于对测试人员的编程能力的要求&#xff0c;似乎这个问题的答案是极大的正关联性。 测试人员可以将编码能力用于与测试相关的各种目的…...

数据分析:基于K-近邻(KNN)对Pima人糖尿病预测分析

数据分析&#xff1a;基于K-近邻(KNN)对Pima人糖尿病预测分析 作者&#xff1a;AOAIYI 作者简介&#xff1a;Python领域新星作者、多项比赛获奖者&#xff1a;AOAIYI首页 &#x1f60a;&#x1f60a;&#x1f60a;如果觉得文章不错或能帮助到你学习&#xff0c;可以点赞&#x…...

Kettle体系结构及源码解析

介绍 ETL是数据抽取&#xff08;Extract&#xff09;、转换&#xff08;Transform&#xff09;、装载&#xff08;Load&#xff09;的过程。Kettle是一款国外开源的ETL工具&#xff0c;有两种脚本文件transformation和job&#xff0c;transformation完成针对数据的基础转换&…...

大数据 | (二)SSH连接报错Permission denied

大数据 | &#xff08;三&#xff09;centos7图形界面无法执行yum命令&#xff1a;centos7图形界面无法执行yum命令 哈喽&#xff01;各位CSDN的朋友们大家好&#xff01; 今天在执行Hadoop伪分布式安装时&#xff0c;遇到了一个问题&#xff0c;在此跟大家分享&#xff0c; …...

前端——6.文本格式化标签和<div>和<span>标签

这篇文章&#xff0c;我们来讲一下HTML中的文本格式化标签 目录 1.文本格式化标签 1.1介绍 1.2代码演示 1.3小拓展 2.div和span标签 2.1介绍 2.2代码演示 2.3解释 3.小结 1.文本格式化标签 在网页中&#xff0c;有时需要为文字设置粗体、斜体和下划线等效果&#xf…...

浅谈Xpath注入漏洞

目录 知识简介 攻击简介 基础语法 语法演示 漏洞简介 漏洞原理 漏洞复现 Xpath盲注 知识简介 攻击简介 XPath注入攻击是指利用XPath 解析器的松散输入和容错特性&#xff0c;能够在 URL、表单或其它信息上附带恶意的XPath 查询代码&#xff0c;以获得权限信息的访问权…...

Oracle LogMiner分析归档日志

目录&#xff1a;Oracle LogMiner分析归档日志一、准备测试环境1、开启数据库归档日志2、打开数据库最小附加日志3、设置当前session时间日期格式二、创建测试数据1、创建数据2、数据落盘三、日志发掘测试挖掘在上次归档的Redo Log File1.确定最近归档的Redo Log File2.指定要分…...

趣味三角——第15章——傅里叶定理

第15章 傅里叶定理(Fourier’s Theorem) Fourier, not being noble, could not enter the artillery, although he was a second Newton. (傅立叶出生并不高贵&#xff0c;因此按当时的惯例进不了炮兵部队&#xff0c;虽然他是第二个牛顿。) —Franois Jean Dominique Arag…...

市场营销的核心是什么?

之所以写下「市场营销的核心是什么&#xff1f;」这篇文章&#xff0c;是因为这几天刚读完了《经理人参阅&#xff1a;市场营销》这本书。作为一个有着近十年工作经验的市场营销从业人员&#xff0c;看完这本书也产生了很多新的想法&#xff0c;也想记录一下&#xff0c;遂成此…...

c/cpp - 多线程/进程 多进程

c/cpp - 多线程/进程 多进程多进程创建多进程进程等待多进程 宏观上 两个进程完全并发的 父子进程具有互相独立的进程空间 父进程结束&#xff0c;不影响子进程的执行 创建多进程 #include <sys/types.h> #include <unistd.h> #include <stdio.h>int main()…...

MySQL必知必会 | 存储过程、游标、触发器

使用存储过程 存储过程 简单来说就是为了以后的使用而保存的一条或多条MySQL语句的集合。 我觉得就是封装了一组sql语句 为什么需要存储过程&#xff08;简单来说就是&#xff0c;简单、安全、高性能 通过把处理封装在容易使用的单元中&#xff0c;简化复杂操作所有开发人员…...

优化Facebook广告ROI的数据驱动方法:从投放到运营

“投放广告并不是最终的目的&#xff0c;关键在于如何最大程度地利用数据驱动的方法来提高广告投放的回报率&#xff08;ROI&#xff09;”Facebook广告是现代数字营销中最为常见和重要的广告形式之一。但是&#xff0c;要让Facebook广告真正发挥作用&#xff0c;需要通过数据驱…...

动态规划入门经典问题讲解

最近开始接触动态规划问题&#xff0c;以下浅谈&#xff08;或回顾&#xff09;一下这些问题的求解过程。解题思路对于动态规划问题&#xff0c;由于最终问题的求解需要以同类子问题作为基础&#xff0c;故需要定义一个dp数组&#xff08;一维或二维&#xff09;来记录问题求解…...

快速入门深度学习1(用时1h)

速通《动手学深度学习》1写在最前面0.内容与结构1.深度学习简介1.1 问题引入1.2 思路&#xff1a;逆向思考1.3 跳过1.4 特点1.5 小结2.预备知识&#xff08;MXNet版本&#xff0c;学错了。。。。&#xff09;2.1 获取和运行本书的代码2.2 数据操作2.2.1 略过2.2.2 小结2.3 自动…...

PaddleOCR关键信息抽取(KIE)的训练(SER训练和RE训练)错误汇总

1.SER训练报错: SystemError: (Fatal) Blocking queue is killed because the data reader raises an exception 1.1.问题描述 在执行训练任务的时候报错 单卡训练 python3 tools/train.py -c train_data/my_data/ser_vi_layoutxlm_xfund_zh.yml错误信息如下&#xff1a; T…...

信息收集之搜索引擎

Google Hacking 也可以用百度&#xff0c;不过谷歌的搜索引擎更强大 site 功能&#xff1a;搜索指定域名的网页内容&#xff0c;可以用来搜索子域名、跟此域名相关的内容 示例&#xff1a; site:zhihu.com 搜索跟zhihu.com相关的网页“web安全” site:zhihu.com 搜索zhihu…...

Flutter(四)布局类组件

目录布局类组件简介布局原理与约束线性布局&#xff08;Row和Column&#xff09;弹性布局流式布局&#xff08;Wrap、Flow&#xff09;层叠布局&#xff08;Stack、Positioned&#xff09;对齐与相对定位&#xff08;Align&#xff09;Align和Stack对比Center组件LayoutBuilder…...

【黑马】Java基础从入门到起飞目录合集

视频链接&#xff1a; Java入门到起飞&#xff08;上部&#xff09;&#xff1a;BV17F411T7AoJava入门到起飞&#xff08;下部&#xff09;&#xff1a;BV1yW4y1Y7Ms 学习时间&#xff1a; 2023/02/01 —— 2023/03/09断断续续的学习&#xff0c;历时大概37天&#xff0c;完结撒…...

PMP考前冲刺3.10 | 2023新征程,一举拿证

题目1-2&#xff1a;1.在最近的一次耗时四周的迭代中&#xff0c;赫克托尔所在的敏捷团队刚完成了10 个用户故事点的开发、测试和发布&#xff0c;那么团队的速度是&#xff1f;A. 10B. 4C. 5D.402.产品负责人奥佩&#xff0c;倾向于在短周期内看到工作产品的新版本&#xff0c…...

JavaScript Math常用方法

math是JavaScript的一个内置对象&#xff0c;它提供了一些数学属性和方法&#xff0c;可以对数字进行计算&#xff08;用于Number类型&#xff09;。 math和其他全局对象不同&#xff0c;它不是一个构造器&#xff0c;math的所有方法和属性都是静态的&#xff0c;直接使用并传入…...

【C++】模板进阶

文章目录一、非类型模板参数1、非类型模板参数2、C11 中的 array 类二、模板的特化1、模板特化的概念2、函数模板特化3、类模板特化3.1 全特化3.2 偏特化三、模板的分离编译四、模板总结一、非类型模板参数 1、非类型模板参数 模板参数分为类型形参与非类型形参&#xff0c;类…...

三板斧解决leetcode的链表题

在《波奇学单链表》中我们提到单链表的两个特点单向性。头节点尾节点的特殊性导致分类讨论的情况。如何看单链表&#xff1f;让我们简化成下图cur表示当前节点&#xff0c;下图表示cur移动&#xff0c;圆圈表示值用哨兵卫节点(新的头节点)和把尾节点看成NULL来把头尾节点一般化…...

全生命周期的云原生安全框架

本博客地址&#xff1a;https://security.blog.csdn.net/article/details/129423036 一、全生命周期的云原生安全框架 如图所示&#xff1a; 二、框架说明 在上图中&#xff0c;我们从两个维度描述各个安全机制&#xff0c;横轴是开发和运营阶段&#xff0c;细分为编码、测试…...

【本地网站上线】ubuntu搭建web站点,并内网穿透发布公网访问

【本地网站上线】ubuntu搭建web站点&#xff0c;并内网穿透发布公网访问前言1. 本地环境服务搭建2. 局域网测试访问3. 内网穿透3.1 ubuntu本地安装cpolar3.2 创建隧道3.3 测试公网访问4. 配置固定二级子域名4.1 保留一个二级子域名4.2 配置二级子域名4.3 测试访问公网固定二级子…...

电脑怎么重装系统?教你轻松掌握这些方法

重新安装计算机系统有两种原因&#xff1a;一种是计算机系统可以正常使用&#xff0c;但是电脑比较卡&#xff0c;为了提高它的运行速度&#xff0c;所以想要通过重新安装系统来解决这个问题;另一种原因是计算机系统文件丢失&#xff0c;系统出现蓝屏&#xff0c;或者黑屏的情况…...

leetcode-每日一题-2379(简单,字符串)

久违的简单题......给你一个长度为 n 下标从 0 开始的字符串 blocks &#xff0c;blocks[i] 要么是 W 要么是 B &#xff0c;表示第 i 块的颜色。字符 W 和 B 分别表示白色和黑色。给你一个整数 k &#xff0c;表示想要 连续 黑色块的数目。每一次操作中&#xff0c;你可以选择…...

SLF4J日志框架在项目中使用

介绍 SLF4J全称“Simple Logging Facade for Java”&#xff0c;作为各种日志框架的简单门面。例如&#xff1a; java.util.logging、logback 、 reload4j等。只需要切换日志框架的jar包依赖就可以切换日志框架。 SLF4J支持的日志框架包含如下&#xff1a; log4j&#xff1a…...

Spark MLlib 模型训练

Spark MLlib 模型训练决策树随机森林GBDTSpark MLlib 开发框架下 : 监督学习 : 回归 (Regression) , 分类 (Classification) , 协同过滤 (Collaborative Filtering)非监督学习 : 聚类 (Clustering) 、频繁项集 (Frequency Patterns) 例子分类 : 算法分类 : 算法分类算法子分类…...

Python中变量的作用域精讲

文章目录前言一、局部变量二、全局变量前言 变量的作用域是指程序代码能够访问该变量的区域&#xff0c;如果超出该区域&#xff0c;再访问时就会出现错误。在程序中&#xff0c;一般会根据变量的 “有效范围” 将变量分为 “全局变量” 和 “局部变量”。 一、局部变量 局部变…...

数据仓库工程师的工作职责的相关介绍

1. BI 开发工程师的工作内容是什么&#xff1f; BI开发工程师&#xff08;Business Intelligence Developer&#xff09;是负责设计和开发企业级BI系统的专业人员。他们的主要工作是从多个数据源中提取、转换、加载和分析数据&#xff0c;以支持企业决策。以下是BI开发工程师的…...

ESP UART 介绍

1 UART 介绍 UART 是一种以字符为导向的通用数据链&#xff0c;可以实现设备间的通信。异步传输的意思是不需要在发送数据上添加时钟信息。这也要求发送端和接收端的速率、停止位、奇偶校验位等都要相同&#xff0c;通信才能成功。 1.1 UART 通信协议 一个典型的 UART 帧开始…...

第十三届蓝桥杯省赛Python大学B组复盘

目录 一、试题B&#xff1a;寻找整数 1、题目描述 2、我的想法 3、官方题解 4、另解 二、试题E&#xff1a;蜂巢 1、题目描述 2、我的想法 3、官方题解 三、试题F&#xff1a;消除游戏 1、题目描述 2、我的想法&#xff08;AC掉58.3%&#xff0c;剩下全超时&#x…...

linux入门---vim的配置

这里写目录标题预备知识如何配置vimvim一键配置预备知识 在配置vim之前大家首先得知道一件事就是vim的配置是一人一份的&#xff0c;每个用户配置的vim都是自己的vim&#xff0c;不会影响到其他人&#xff0c;比如说用户xbb配置的vim是不会影响到用户wj的&#xff0c;虽然不同…...

Python简写操作(for、if简写、匿名函数)

Python简写操作&#xff08;for、if简写、匿名函数&#xff09;1. for 简写1.1 一层 for 循环1.2 两层 for 循环2. if 简写3. for 与 if 的结合简写4. 匿名函数 lambda1. for 简写 举个例子&#xff1a; y [1, 2, 3, 4, 5, 6] result [(i * 2) for i in y] print(result)# …...

毕业设计常用模块之温湿度模块DHT11模块使用

DHT11是一款可以测量温度数据和湿度数据的传感器 产品特点 暖通空调、除湿器、农业、冷链仓储、测试及检测设备、消费品、汽车、自动控制、数据记录器、气 象站、家电、湿度调节器、医疗、其他相关湿度检测控制 外形尺寸 第3管脚&#xff1a;NC 是没有用的 典型电路 通信方式…...

Cadence Allegro 导出Design Rules Net Shorts Check(DRC)Report报告详解

⏪《上一篇》   🏡《上级目录》   ⏩《下一篇》 目录 1,概述2,Design Rules Net Shorts Check(DRC)Report作用3,Design Rules Net Shorts Check(DRC)Report示例4,Design Rules Net Shorts Check(DRC)Report导出方法4.1,方法14.2,方法2...

第 46 届世界技能大赛浙江省选拔赛“网络安全“项目C模块任务书

第46届世界技能大赛浙江省选拔赛"网络安全"项目C模块&#xff08;夺旗行动&#xff08;CTF&#xff09;挑战&#xff09;第46届世界技能大赛浙江省选拔赛"网络安全"项目C模块第一部分 WEB第二部分 CRYPTO第三部分 REVERSE第四部分 MISC第五部分 PWN第46届世…...

C++:详解C++11 线程(一):MingGW 各版本区别及安装说明

MingGW 各版本区别一&#xff1a;MinGW、MinGW-w64 简介二&#xff1a;MinGW 各版本参数说明三&#xff1a;下载解压一&#xff1a;MinGW、MinGW-w64 简介 MinGW&#xff08;全称为 Minimalist GNU for Windows&#xff09;&#xff0c;它实际上是将经典的开源 C 语言编译器 G…...

第十二章 ArrayList和 LinkedList的区别

ArrayList&#xff1a;基于动态数组&#xff08;自动扩容&#xff09;&#xff0c;连续内存存储&#xff0c;由于底层是数组&#xff0c;适合使用下标进行访问&#xff0c;但扩容一直都是数组的缺点&#xff0c;所以使用尾插法进行扩容可以有效提高扩容效率。还有就是创建Array…...

案例06-复用思想的接口和SQL

目录 一&#xff1a;背景介绍 二&#xff1a;思路&方案 三&#xff1a;过程 1.Controller层接口的复用 2.Mapper层sql语句的复用 四&#xff1a;总结 一&#xff1a;背景介绍 我们在开发项目的过程中非常容易出现的一种现象就是用什么我就直接写什么&#xff0c;就像我…...

【Java学习笔记】17.Java 日期时间(2)

前言 本章继续介绍Java的日期时间。 Calendar类 我们现在已经能够格式化并创建一个日期对象了&#xff0c;但是我们如何才能设置和获取日期数据的特定部分呢&#xff0c;比如说小时&#xff0c;日&#xff0c;或者分钟? 我们又如何在日期的这些部分加上或者减去值呢? 答案…...

【学习Docker(八)】Docker Canal的安装与卸载

座右铭&#xff1a;《坚持有效输出&#xff0c;创造价值无限》 最近想了解下canal&#xff0c;自行搭建并完成数据同步。经过了几天的踩坑之旅&#xff0c;今天终于搭建成功了。 环境&#xff1a;canalv1.1.5、MySQL8.0、JDK1.8 安装MySQL 创建存放目录 mkdir /docker-localm…...

python的django框架从入门到熟练【保姆式教学】第三篇

在前两篇博客中&#xff0c;我们介绍了Django框架的模型层和数据库迁移功能。本篇博客将重点介绍Django的视图层&#xff08;View&#xff09;&#xff0c;并讲解如何创建视图函数和URL路由。 视图层&#xff08;View&#xff09; Django的视图层是Django应用程序的另一个核心…...

Open3D(C++) Ransac拟合球体(详细过程版)

目录 一、算法原理1、计算流程2、参考文献二、代码实现三、结果展示一、算法原理 1、计算流程 空间球方程: ( x − a ) 2 + ( y − b...

Antlr Tool与antlr runtime的版本一致性问题

1. 意外的问题 在学习Antlr4的visitor模式时&#xff0c;使用IDEA的Antlr插件完成了Hello.g4文件的编译&#xff0c;指定的package为com.sunrise.hello 使用visitor模式遍历语法解析树&#xff0c;遍历过程中打印hello语句 public class HelloVisitorImpl extends HelloBaseVi…...

嵌入式中CAN测试自动化方法分析

can的基础知识 CAN是什么? CAN 是 Controller Area Network 的缩写(以下称为 CAN),是 ISO*1 国际标准化的串行通信协议在当前的汽车产业中,出于对安全性、舒适性、方便性、低公害、低成本的要求,各种各样的电子控制系统被开发了出来。由于这些系统之间通信所用的数据类…...

基于c++、opencv、cuda、Visual Studio编程

一、前言 opencv自带的支持的cuda的函数不少,但是不一定够用,而且已经支持的函数有些还不是十分的完善。所以更多的时候还需要编写自己的kernel以进行加速自定义处理。如果基于opencv进行计算机视觉相关开发工作,那么熟悉c++、opencv、cuda编程是避免不了的环节。 二、准备工…...

MATLAB——DFT(离散傅里叶变换)

题目1&#xff1a; 已知有限长序列x(n)为&#xff1a; x(n)[0,1,2,3,4,5,6,7,8,9]&#xff0c;求x(n)的DFT和IDFT。要求 1&#xff09;画出序列傅里叶变换对应的|X(k)|和arg[X(k)]图形。 2&#xff09;画出原信号与傅里叶逆变换IDFT[X(k)]图形进行比较。 知识点&#xff1a; DF…...