探索微软新VLM Phi-3 Vision模型:详细分析与代码示例
引言
在最近的微软Build大会上,微软宣布了许多新内容,其中包括新款Copilot+ PC和围绕Copilot生态系统的一系列功能。其中最引人注目的是发布了一些新的Phi模型,特别是Phi-3 Vision模型。本文将详细探讨Phi-3 Vision模型的特性,并提供相关Python代码示例,帮助您了解该模型的使用方法和潜力。
Phi-3 Vision模型介绍
模型参数和特点
Phi-3 Vision是Phi-3模型家族中的一员,具有4.2亿参数。微软对这些模型进行了优化,使其能够在边缘设备上运行,并支持多模态输入,即文本和图像。Phi-3 Vision模型特别适合处理图像理解和视觉问答任务。
训练与数据
该模型在5,000亿个视觉和文本tokens上进行了训练,使用了512个H100 GPU进行了1.5天的训练。模型的训练方法包括预训练、监督微调和对齐调整等步骤,使用了合成数据以提高训练效果。
代码示例与分析
下面是使用Phi-3 Vision模型的Python代码示例,该代码展示了如何加载模型并执行图像理解和视觉问答任务。
环境配置
首先,需要安装必要的Python库。建议使用Hugging Face的Transformers库来加载和运行模型。
pip install transformers
pip install torch
pip install datasets
加载模型和处理器
接下来,我们将加载Phi-3 Vision模型和处理器。
from transformers import AutoProcessor, AutoModelForVision2Seq
import torch# 加载处理器和模型
processor = AutoProcessor.from_pretrained("microsoft/phi-3-vision")
model = AutoModelForVision2Seq.from_pretrained("microsoft/phi-3-vision")# 设定设备
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
定义输入图像和文本
我们需要准备输入的图像和文本,并将它们进行处理。
from PIL import Image
import requests# 加载示例图像
url = "https://example.com/sample_image.jpg"
image = Image.open(requests.get(url, stream=True).raw)# 定义文本输入
text = "What is shown in this image?"
预处理输入并生成输出
使用处理器预处理图像和文本,然后生成模型的输出。
# 预处理输入
inputs = processor(images=image, text=text, return_tensors="pt").to(device)# 生成输出
outputs = model.generate(**inputs)# 解码输出
decoded_output = processor.batch_decode(outputs, skip_special_tokens=True)[0]
print("Model Output:", decoded_output)
示例运行结果
假设输入图像是一张包含花朵的图片,模型的输出可能如下:
Model Output: The image shows a variety of flowers, including large pink flowers with a bee on it.
代码详解
模型加载与处理器初始化
代码首先加载了处理器和模型,并设定了计算设备。这里使用了Hugging Face的Transformers库来加载预训练的Phi-3 Vision模型。
processor = AutoProcessor.from_pretrained("microsoft/phi-3-vision")
model = AutoModelForVision2Seq.from_pretrained("microsoft/phi-3-vision")
图像和文本的预处理
处理器将图像和文本转换为模型可接受的输入格式,并将其移动到指定的设备上。
inputs = processor(images=image, text=text, return_tensors="pt").to(device)
输出生成与解码
模型生成的输出为token序列,需要使用处理器将其解码为可读文本。
outputs = model.generate(**inputs)
decoded_output = processor.batch_decode(outputs, skip_special_tokens=True)[0]
总结
通过本文的介绍和代码示例,我们详细了解了微软新发布的Phi-3 Vision模型及其在多模态任务中的应用。该模型在图像理解和视觉问答等任务中表现出色,具有广泛的应用前景。希望本文能够帮助您更好地理解和使用Phi-3 Vision模型。
如果您对该模型有任何问题或想法,欢迎在评论区留言。如果您觉得本文有帮助,请点赞并关注我们的频道,我们将在未来带来更多精彩内容。
相关文章:
探索微软新VLM Phi-3 Vision模型:详细分析与代码示例
引言 在最近的微软Build大会上,微软宣布了许多新内容,其中包括新款Copilot PC和围绕Copilot生态系统的一系列功能。其中最引人注目的是发布了一些新的Phi模型,特别是Phi-3 Vision模型。本文将详细探讨Phi-3 Vision模型的特性,并提…...
如何使用GPT-4o函数调用构建一个实时应用程序?
本教程介绍了如何使用OpenAI最新的LLM GPT-4o通过函数调用将实时数据引入LLM。 我们在LLM函数调用指南(详见https://thenewstack.io/a-comprehensive-guide-to-function-calling-in-llms/)中讨论了如何将实时数据引入聊天机器人和代理。现在,我们将通过将来自Fligh…...
[Vue-常见错误]浏览器显示Uncaught runtime errors
文章目录 错误描述正确写法具体如下 错误描述 当前端代码发生错误时,浏览器中出现以下错误提示。 正确写法 显然这不是我们所期望的,在vue.config.js中配置如下设置关闭Uncaught runtime errors显示 devServer: {client: {overlay: false}具体如下 …...
html常见的表单元素有哪些,html表单元素有哪些?
HTML中常用的表单元素包括:文本区域(TEXTAREA),列表框(SELECT),文本输入框(INPUT typetext),密码输入框(INPUT typepassword),单选输入框(INPUT typeradio),复选输入框(INPUT typecheckbox),重置…...
spring boot sso
代码:https://gitee.com/forgot940629/ssov2 授权服务 登录成功后,session中会存储UsernamePasswordAuthenticationToken,之后每次请求code时都会用UsernamePasswordAuthenticationToken生成OAuth2Authentication,并将OAuth2Aut…...
Keras深度学习框架实战(5):KerasNLP使用GPT2进行文本生成
1、KerasNLP与GPT2概述 KerasNLP的GPT2进行文本生成是一个基于深度学习的自然语言处理任务,它利用GPT-2模型来生成自然流畅的文本。以下是关于KerasNLP的GPT2进行文本生成的概述: GPT-2模型介绍: GPT-2(Generative Pre-trained …...
速盾:网站重生之我开了高防cdn
在互联网的广袤海洋中,网站就如同一个个独立的岛屿,面临着各种风雨和挑战。而作为一名专业程序员,我深知网站安全和性能的重要性。当我的网站遭遇频繁的攻击和访问压力时,我毅然决定开启高防 CDN,开启了一场网站的重生…...
【spark】spark列转行操作(json格式)
前言:一般我们列转行都是使用concat_ws函数或者concat函数,但是concat一般都是用于字符串的拼接,后续处理数据时并不方便。 需求:将两列数据按照设备id进行分组,每个设备有多个时间点位和对应值,将其一一对…...
记录一次Linux启动kafka后并配置了本地服务连接远程kafka的地址后依旧连接localhost的问题
问题的原因 我是使用docker来安装并启动kafka 的,所以在启动过程中并没有太多需要配置的地方,基本都是从网上照搬照抄,没动什么脑子,所以看着启动起来了觉得就没事了,但是运行项目的时候发现,我明明已经配…...
MacOS中Latex提示没有相关字体怎么办
在使用mactex编译中文的时候,遇到有些中文字体识别不到的情况,例如遇到识别不到Songti.ttc。其实这个时候字体是在系统里面的,但是只不过是latex没有找到正确的字体路径。 本文只针对于系统已经安装了字体库并且能够用find命令搜到࿰…...
物资材料管理系统建设方案(Word)—实际项目方案
二、 项目概述 2.1 项目背景 2.2 现状分析 2.2.1 业务现状 2.2.2 系统现状 三、 总体需求 3.1 系统范围 3.2 系统功能 3.3 用户分析 3.4 假设与依赖关系 四、 功能需求 4.4.11.7 非功能性需求 五、 非功能性需求 5.1 用户界面需求 5.2 软硬件环境需求 5.3 产品质量需求 5.4 接口…...
!力扣102. 二叉树的层序遍历
给你二叉树的根节点 root ,返回其节点值的 层序遍历 。 (即逐层地,从左到右访问所有节点)。 示例 1: 输入:root [3,9,20,null,null,15,7] 输出:[[3],[9,20],[15,7]] /*** Definition for…...
Vue3 + TS + Antd + Pinia 从零搭建后台系统(一) 脚手架搭建 + 入口配置
简易后台系统搭建开启,分几篇文章更新,本篇主要先搭架子,配置入口文件等目录 效果图一、搭建脚手架:二、处理package.json基础需要的依赖及运行脚本三、创建环境运行文件四、填充vue.config.ts配置文件五、配置vite-env.d.ts使项目…...
中国同胞进来看看,很多外国人想通过CSDN坑咱们中国人
地址:【诈骗离你我很近】中国同胞进来看看国外诈骗新套路。-CSDN博客...
Web前端电话咨询:深度解析与实用指南
Web前端电话咨询:深度解析与实用指南 在数字化时代,Web前端技术日新月异,对于许多企业和个人而言,通过电话咨询了解前端技术的最新动态和解决方案已成为一种高效且便捷的方式。本文将从四个方面、五个方面、六个方面和七个方面&a…...
使用python绘制季节图
使用python绘制季节图 季节图效果代码 季节图 季节图(Seasonal Plot)是一种数据可视化图表,用于展示时间序列数据的季节性变化。它通过将每个时间段(如每个月、每个季度)的数据绘制在同一张图表上,使得不同…...
VS2019专业版 C#和MFC安装
1. VS2019专业版下载地址 https://learn.microsoft.com/en-us/visualstudio/releases/2019/history 2.安装 C# 部分 MFC部分...
spring入门aop和ioc
文章目录 spring分层架构表现层服务层(业务层)持久层 spring核心ioc(控制反转)1)**接下来是代码示例:**2)**ioc容器的使用过程**3)ioc中的bean管理4)实例化bean的三种方式 aop(面向切面开发) 定…...
使用Python创建Word文档
使用Python创建Word文档 安装python-docx库创建Word文档代码效果 在这篇文章中,我们将介绍如何使用 Python创建一个Word文档。首先,我们需要安装python-docx库,然后通过一段简单的代码示例展示如何创建和编辑Word文档。 安装python-docx库 …...
【设计模式】装饰器模式(结构型)⭐⭐
文章目录 1.概念1.1 什么是装饰器模式1.2 优点与缺点 2.实现方式3. Java 哪些地方用到了装饰器模式4. Spring 哪些地方用到了装饰器模式 1.概念 1.1 什么是装饰器模式 它允许用户在不修改现有对象的代码的情况下向对象添加新的功能;这种模式是通过创建一个包含该对…...
计算机网络--应用层
计算机网络–计算机网络概念 计算机网络–物理层 计算机网络–数据链路层 计算机网络–网络层 计算机网络–传输层 计算机网络–应用层 1. 概述 因为不同的网络应用之间需要有一个确定的通信规则。 1.1 两种常用的网络应用模型 1.1.1 客户/服务器模型(Client/Se…...
计算机网络 —— 网络层(IP数据报)
计算机网络 —— 网络层(IP数据报) 网络层要满足的功能IP数据报IP数据报格式IP数据报首部格式数据部分 IP数据报分片 我们今天进入网络层的学习。 网络层要满足的功能 网络层作为OSI模型中的第三层,是计算机网络体系结构的关键组成部分&…...
Clo3D导出服装动画,使用Unity3D展示
1.前言 Clo3D是一款应用于时装行业的3D服装设计软件,其强大的布料模拟算法可在3D空间中实现设计、制版、试衣和走秀,大幅提升数字作品逼真度和制作效率。为了让服装动画效果展示在Unity3D上模拟效果,需要Clo3D模拟出逼着的衣服动画。总体流程为Clo3D - Mixamo -Blen…...
LSTM 词语模型上的动态量化
原文链接 (beta) Dynamic Quantization on an LSTM Word Language Model — PyTorch Tutorials 2.3.0cu121 documentation 引言 量化涉及将模型的权重和激活值从浮点数转换为整数,这样可以缩小模型大小,加快推理速度,但对准确性的影响很小…...
STM32 proteus + STM32Cubemx仿真教程(第一课LED教程)
文章目录 前言一、STM32点亮LED灯的原理1.1GPIO是什么1.2点亮LED灯的原理 二、STM32Cubemx创建工程三、proteus仿真电路图四、程序代码编写1.LED灯操作函数介绍HAL_GPIO_WritePin函数原型参数说明示例代码 HAL_GPIO_TogglePin函数原型参数说明示例代码 2.代码编写3.烧写程序 总…...
享元模式
前言 享元模式:运用共享技术有效地支持大量细粒度的对象。 在享元对象内部并且不会随环境改变而改变的共享部分,可以称为是享元对象的内部状态,而随环境改变而改变的、不可以共享的状态就是外部状态了。事实上,享元模式可以避免大…...
R语言数据分析16-针对芬兰污染指数的分析与考察
1. 研究背景及意义 近年来,随着我国科技和经济高速发展,人们生活质量也随之显著提高。但是, 环境污染问题也日趋严重,给人们的生活质量和社会生产的各个方面都造成了许多不 利的影响。空气污染作为环境污染主要方面,更…...
Search用法Python:深入探索搜索功能的应用与技巧
Search用法Python:深入探索搜索功能的应用与技巧 在Python编程中,搜索功能是一项至关重要的技能,它能够帮助我们快速定位并处理数据。然而,对于初学者来说,如何高效地使用搜索功能可能会带来一些困惑。本文将从四个方…...
STM32的FreeRtos的学习
首先就是去官网下载一个源文件:FreeRtos官网 下载下来的是一个zip文件,解压缩了。 然后再工程文件夹中创建个文件夹: 在这个文件夹中创建3个文件夹: 然后开始把下载下来的文件夹中的文件挑选出来放到我们的工程文件夹中࿱…...
从零入手人工智能(2)——搭建开发环境
1.前言 作为一名单片机工程师,想要转型到人工智能开发领域的道路确实充满了挑战与未知。记得当我刚开始这段旅程时,心中充满了迷茫和困惑。面对全新的领域,我既不清楚如何入手,也不知道能用人工智能干什么。正是这些迷茫和困惑&a…...
辽宁工程建设信息网站/识图搜索在线 照片识别
独享还是共享,你选择哪一种锁 前言 今天博主将为大家分享独享还是共享,你选择哪一种锁?(独享锁/共享锁),不喜勿喷,如有异议欢迎讨论! 有一个强大的地基才能写出健壮的程序…...
网站现在如何做推广/google 推广优化
Node,节点,一切的基础。 由OGRE的学习中最大的收获是在自写引擎时形成了一个设计框架,即由NODE形成的一种设计模式。 一个Node, 有关系属性:父,子,兄节点 有变化属性:位置࿰…...
深圳网站建设哪些/今日刚刚发生新闻事件
文章目录 1)、为什么要自定义UITabBarController2)、重复代码的抽取3)、统一所有控制器导航栏左上角和右上角的内容4)、"duplicate symbol _OBJC_METACLASS_$_类名 in:"错误的解决方案5)、创建UIBarButtonItem的代码为什么放在UIBarButtonItem分类中最合适?6)iOS开…...
外贸建站wordpress/病毒式营销
Vue3自定义指令 除了默认设置的核心指令(v-model和v-show),Vue也允许注册自定义指令。 下面我们注册一个全局指令v-focus,该指令的功能是在页面加载时,元素获得焦点: <!--* Author: RealRoad10834252…...
dw做网站基础/seo外链平台热狗
阅读目录 一、概念描述二、带有IN谓词的子查询三、带有比较运算符的子查询四、带有ANY(SOME)或ALL谓词的子查询五、带有 EXISTS 谓词的子查询六、总结回到顶部 一、概念描述 在SQL语言中,一个 SELECT-FROM-WHERE 语句称为一个查询块。将一个查…...
去哪里找做网站的/百姓网
在网页开发中经常会碰到获取同种类型的 标签 的值得问题,比如下面的两种情况. 当需要批量获取同种标签的指定值时,新人就会碰上一点小麻烦. 比如 idproblem1的demo var list1$("#problem1").children();//获取到problem1指定的对象数组 console.log(list1);//打印到…...