当前位置: 首页 > news >正文

C++ 贪心算法——跳跃游戏、划分字母区间

在这里插入图片描述

   一:跳跃游戏

   55. 跳跃游戏

   题目描述:给你一个非负整数数组 nums ,你最初位于数组的 第一个下标 。数组中的每个元素代表你在该位置可以跳跃的最大长度。判断你是否能够到达最后一个下标,如果可以,返回 true ;否则,返回 false 。

   示例 1:

输入:nums = [2,3,1,1,4]
输出:true
解释:可以先跳 1 步,从下标 0 到达下标 1,然后从下标 13 步到达最后一个下标。

   示例 2:

输入:nums = [3,2,1,0,4]
输出:false
解释:无论你怎么跳,总会到达下标为 3 的位置。但该下标的最大跳跃长度是 0 ,所以永远不可能到达最后一个下标。

   提示:

* 1 <= nums.length <= 10* 0 <= nums[i] <= 10

   解题思路:

   这道题最关键的地方就是不要去想在当前位置,我应该跳到哪里去,而是只需要记录当前能到达的最远位置,就可以了,遍历一遍给定的数组,若发现遍历到的当前位置i大于最远可达距离,则说明无法到达,直接返回false,若数组遍历完了,没有返回false,说明遍历到每一个i处时,均小于当时的最远距离,即均可达,返回true。

   参考程序:

class Solution {
public:bool canJump(vector<int>& nums) {int k = 0;for (int i = 0; i < nums.size(); i++) {if (i > k) return false;k = max(k, i + nums[i]);}return true;}
};

在这里插入图片描述

   二:跳跃游戏 II

   45. 跳跃游戏 II

   题目描述:给定一个长度为 n 的 0 索引整数数组 nums ,初始位置为 nums[0] 。每个元素 nums[i] 表示从索引 i 向前跳转的最大长度。换句话说,如果你在 nums[i] 处,你可以跳转到任意 nums[i + j] 处:

0 <= j <= nums[i]i + j < n

   返回到达 nums[n - 1] 的最小跳跃次数。生成的测试用例可以到达 nums[n - 1] 。

   示例 1:

输入:nums = [2,3,1,1,4]
输出:2
解释:跳到最后一个位置的最小跳跃次数是 2。
从下标为 0 跳跃下标为 1 的位置,跳 1 步,然后再跳 3 步到达数组的最后一个位置。

   示例 2:

输入:nums = [2,3,0,1,4]
输出:2

   提示:

* 1 <= nums.length <= 10* 0 <= nums[i] <= 1000
* 题目保证可以到达 nums[n-1]

   解题思路:

   这道题最关键的地方同样是不要去想在当前位置,我应该跳到哪里去。而且根据每次跳跃所能到达的最远距离,将给定数组划分为很多区间,遍历当前区间中所有值,得到的最远距离,作为下一个区间的右界限,划分的区间数-1即为所需的最少跳跃次数。这么说可能有点懵,下面举一个例子,大家就明白了

   例如,对于[2,3,1,1,4,2,1,1,3],起始的时候,只能从索引为0的2处起跳,

   则[2,3,1,1,4,2,1,1,3] 划分为 [2] [3,1,1,4,2,1,1,3]

   从索引为0的2处起跳,其最远可以到达的索引为2的1处,按最远可到达的区域,划分数组

   [2] [3,1,1,4,2,1,1,3] 划分为 [2] [3,1] [1,4,2,1,1,3]

   遍历新得到的区间[3,1],记录最远距离,若从3处起跳,最远可到达索引为4的4处,若从1处起跳,则只能到达4前面索引为3的1处,所以当前区间[3,1]起跳,最远可到达索引为4的4处,因此

   [2] [3,1] [1,4,2,1,1,3] 划分为 [2] [3,1] [1,4] [2,1,1,3]

   同理,遍历新得到的区间[1,4],记录最远距离,若从1处起跳,最远可到达索引为4的4处,若从4处起跳,则最远可以到达后面索引为8的3处,所以当前区间[3,1]起跳,最远可到达索引为8的3处,因此

   已经超过或恰好到达最后一个元素,不需要继续划分了,即

   起始位置: [2]

   第一次跳跃,新的可达区域 [3,1]

   第二次跳跃,新的可达区域 [1,4]

   第三次跳跃,新的可达区域 [2,1,1,3]

   上面过程中遍历当前区间,记录从当前区间起跳可到达的最远距离的过程对应下面程序中的

   maxPos = max(nums[i] + i, maxPos);

   上面每个区间的右界限,即对应下面程序中的end变量,当遍历完当前区间后,遍历当前区间时得到的最远可达距离maxPos,即为下一个区间的右界限,即end = maxPos;

   参考程序:

class Solution {
public:int jump(vector<int>& nums){int ans = 0,end = 0,maxPos = 0;for (int i = 0; i < nums.size() - 1; i++){maxPos = max(nums[i] + i, maxPos);if (i == end){ end = maxPos; ans++;}   }return ans;}};

在这里插入图片描述

   三、划分字母区间

   763. 划分字母区间

   题目描述:给你一个字符串 s。我们要把这个字符串划分为尽可能多的片段,同一字母最多出现在一个片段中。注意,划分结果需要满足:将所有划分结果按顺序连接,得到的字符串仍然是 s。返回一个表示每个字符片段长度的数组。

   示例1:

  • 输入:s = "ababcbacadefegdehijhklij"
  • 输出:[9,7,8]
  • 解释:
    划分结果为 "ababcbaca", "defegde", "hijhklij"
    每个字母最多出现在一个片段中。
    像 “ababcbacadefegde”, “hijhklij” 这样的划分是错误的,因为划分的片段数较少。

   示例2:

  • 输入:s = "eccbbdbec"
  • 输出:[10]

   注意:

  • 1 <= s.length <= 500
  • s 仅由小写英文字母组成

   解决思路一:

   ①、首先,遍历一遍给定的字符串s,记录每个字母出现的次数,存放在变量int zm[26]中。

   ②、然后,进行第二遍遍历,在每轮迭代中,将当前字符放入map中, map的键选取为字母映射编号(0~25),值选取为当前出现次数。并进行判断,若map中当前字符出现的次数与第一次遍历时存放在数组zm中的次数相等,说明该字符已经全部出现了,将其从map表中删除。若map表为空,则说明,遍历到当前位置处,前面出现的所有字符,后面均不再出现,可以在此处进行切割,将个数累计变量进行存储(也就是我们所要输出的长度),然后将累计量清零,继续进行下一轮迭代,直至第二遍遍历结束。

   上述思路的参考程序如下:

class Solution {
public:vector<int> partitionLabels(string s) {int zm[26]={0}; unordered_map<int,int> map; vector<int> ans; int iter=0;for(int i=0;i<s.size();i++){ zm[s[i]-'a']++;}  //第一遍遍历,统计各个字母出现次数for(int i=0;i<s.size();i++) //第二遍遍历,统计切割段数{ map[s[i]-'a']++; // 键选取为字母映射编号(0~25),值选取为当前出现次数auto it = map.begin();while (it != map.end()) {if (it->second == zm[it->first]) it = map.erase(it);     else break;}iter++;if(map.empty()) {ans.push_back(iter); iter=0;}  //当map为空时,说明当前已经出现过的元素,已经全部出现了}return ans;}
};

在这里插入图片描述

   上述方案的时间复杂度较低,属于时间最优的算法之一,但由于使用了额外的map表,空间复杂度比较高,下面介绍一种改进方案,不再需要使用额外的map表,从而降低空间复杂度。


   解决思路二:

   ①、首先,同样是遍历一遍给定的字符串s,所不同的是,记录的是每个字符最后出现的位置,存放在int hash[27]中。

   ②、然后,进行第二遍遍历,最远边界right初始化为0,左边界left初始化为0,在每轮迭代中,对最远边界进行更新,若当前字符i的最远边界大于right,则对right进行更新。在每轮迭代中,会进行判断,若当前字符i处于最远边界right处,则说明,到达了前面出现的所有字符的最远边界处,前面出现的所有字符,后面均不再出现,可以在此处进行切割。right-left+1,即为当前片段的长度,压入结果队列中。并将left更新为i + 1。继续进行下一轮迭代,直至第二遍遍历结束。

   上述思路的参考程序如下:

class Solution {
public:vector<int> partitionLabels(string S) {int hash[27] = {0}; // i为字符,hash[i]为字符出现的最后位置for (int i = 0; i < S.size(); i++) { // 统计每一个字符最后出现的位置hash[S[i] - 'a'] = i;}vector<int> result;int left = 0;int right = 0;for (int i = 0; i < S.size(); i++) {right = max(right, hash[S[i] - 'a']); // 找到字符出现的最远边界if (i == right) {result.push_back(right - left + 1);left = i + 1;}}return result;}
}

在这里插入图片描述

   上述方案的时间复杂度同样较低,属于时间最优的算法之一,且无需使用额外的map表,空间复杂度也得到了有效降低。


在这里插入图片描述

相关文章:

C++ 贪心算法——跳跃游戏、划分字母区间

一&#xff1a;跳跃游戏 55. 跳跃游戏 题目描述&#xff1a;给你一个非负整数数组 nums &#xff0c;你最初位于数组的 第一个下标 。数组中的每个元素代表你在该位置可以跳跃的最大长度。判断你是否能够到达最后一个下标&#xff0c;如果可以&#xff0c;返回 true &#xff1…...

汽车数据应用构想(三)

上期说的&#xff0c;用数据去拟合停车信息的应用&#xff0c;那么类似的POI信息相关的场景其实都可以实现。今天讲讲用户使用频率也很高的加油/充电场景。 实际应用中&#xff0c;在加油场景中用户关心的通常还是价格。无论是导航还是各种加油APP/小程序&#xff0c;都已经很…...

体素技术在AI绘画中的革新作用

随着人工智能技术的不断进步&#xff0c;AI绘画已经成为艺术创作和视觉设计领域的一大趋势。在众多推动AI绘画发展的技术中&#xff0c;体素技术以其独特的优势&#xff0c;正在逐渐改变着我们对计算机生成图像的认识。本文旨在探讨体素技术在AI绘画中的应用与影响&#xff0c;…...

Leetcode.866 回文质数

题目链接 Leetcode.866 回文质数 rating : 1938 题目描述 给你一个整数 n n n &#xff0c;返回大于或等于 n n n 的最小 回文质数。 一个整数如果恰好有两个除数&#xff1a; 1 1 1 和它本身&#xff0c;那么它是 质数 。注意&#xff0c; 1 1 1 不是质数。 例如&#xf…...

【论文阅读】Point2RBox (CVPR’2024)

paper:https://arxiv.org/abs/2311.14758 code:https://github.com/yuyi1005/point2rbox-mmrotate...

深度学习的点云分割

深度学习的点云分割 点云分割是计算机视觉中的一个重要任务&#xff0c;特别是在三维数据处理和分析中。点云数据是由大量三维点构成的集合&#xff0c;每个点包含空间坐标&#xff08;x, y, z&#xff09;&#xff0c;有时还包含其他信息如颜色和法向量。点云分割的目标是将点…...

【知识点】c++模板特化

在 C 中&#xff0c;模板特化分为全特化&#xff08;full specialization&#xff09;和偏特化&#xff08;partial specialization&#xff09;。它们允许程序员为特定类型或类型模式提供不同的实现&#xff0c;以覆盖通用模板的默认行为。 模板全特化 模板全特化是指为某个…...

算法家族之一——二分法

目录 算法算法的打印效果如果算法里的整型“i”为1如果算法里的整型“i”为11 算法的流程图算法的实际应用总结 大家好&#xff0c;我叫 这是我58&#xff0c;现在&#xff0c;请看下面的算法。 算法 #define _CRT_SECURE_NO_WARNINGS 1//<--预处理指令 #include <stdi…...

【深度学习】PuLID: Pure and Lightning ID Customization via Contrastive Alignment

论文&#xff1a;https://arxiv.org/abs/2404.16022 代码&#xff1a;https://github.com/ToTheBeginning/PuLID 文章目录 AbstractIntroductionRelated WorkMethods Abstract 我们提出了一种新颖的、无需调整的文本生成图像ID定制方法——Pure and Lightning ID customizatio…...

Elastic 8.14:用于简化分析的 Elasticsearch 查询语言 (ES|QL) 正式发布

作者&#xff1a;来自 Elastic Brian Bergholm 今天&#xff0c;我们很高兴地宣布 Elastic 8.14 正式发布。 什么是新的&#xff1f; 8.14 版本最重要的标题是 ES|QL 的正式发布(GA)&#xff0c;它是从头开始设计和专门构建的&#xff0c;可大大简化数据调查。在新的查询引擎的…...

C语言指针与数组的区别

在C语言中&#xff0c;指针和数组虽然在很多情况下可以互换使用&#xff0c;但它们在概念上和行为上存在一些区别。下面详细解释这些区别&#xff1a; ### 数组 1. **固定大小**&#xff1a;数组在声明时必须指定大小&#xff0c;这个大小在编译时确定&#xff0c;之后不能改…...

springboot3一些听课笔记

文章目录 一、错误处理机制1.1 默认1.2 自定义 二、嵌入式容器 一、错误处理机制 1.1 默认 错误处理的自动配置都在ErrorMvcAutoConfiguration中&#xff0c;两大核心机制&#xff1a; ● 1. SpringBoot 会自适应处理错误&#xff0c;响应页面或JSON数据 ● 2. SpringMVC的错…...

【小沐学Python】Python实现Web服务器(CentOS下打包Flask)

文章目录 1、简介2、下载Python3、编译Python4、安装PyInstaller5、打包PyInstaller6、相关问题6.1 ImportError: urllib3 v2 only supports OpenSSL 1.1.1, currently the ssl module is compiled with OpenSSL 1.0.2k-fips 26 Jan 2017. See: https://github.com/urllib3/url…...

Cesium开发环境搭建(一)

1.下载安装Node.js 进入官网地址下载安装包 Node.js — Download Node.js https://cdn.npmmirror.com/binaries/node/ 选择对应你系统的Node.js版本&#xff0c;这里我选择的是Windows系统、64位 安装完成后&#xff0c;WINR&#xff0c;输入node --version&#xff0c;显示…...

视频、图片、音频资源抓取(支持视频号),免安装,可批量,双端可用!

今天分享一款比较好用资源嗅探软件&#xff0c;这个嗅探工具可以下载视频号&#xff0c;界面干净&#xff0c;可以内容预览和批量下载&#xff0c;看到这里你是不是想用它爬很多不得了的东西。这款软件无需安装&#xff0c;打开即用。同时他支持windows系统和Mac系统,是一款不可…...

FreeRTOS实时系统 在任务中增加数组等相关操作 导致单片机起不来或者挂掉

在调试串口任务中增加如下代码&#xff0c;发现可以用keil进行仿真&#xff0c;但是烧录程序后&#xff0c;调试串口没有打印&#xff0c;状态灯也不闪烁&#xff0c;单片机完全起不来 博主就纳了闷了&#xff0c;究竟是什么原因&#xff0c;这段代码可是公司永流传的老代码了&…...

CentOS 7基础操作08_Linux查找目录和文件

1、which命令——查找用户所执行的命令文件存放的目录 which命令用于查找Linux命令程序并显示所在的具体位置.其搜索范围主要由用户的环境变量PATH决定(可以执行言echo sPATH”命令查看),这个范围也是Linux操作系统在执行命令或程序时的默认搜索路径。 which命令使用要查找的命…...

CI/CD实战面试宝典:从构建到高可用性的全面解析

实战部署与配置 请描述你设计和实现的一个CI/CD pipeline的完整流程&#xff0c;包括构建、测试、部署各个阶段。 我设计的CI/CD pipeline通常包括以下几个阶段&#xff1a; 代码提交&#xff1a;开发人员将代码提交到Git仓库&#xff0c;触发CI/CD流程。代码检查&#xff1…...

NLP实战入门——文本分类任务(TextRNN,TextCNN,TextRNN_Att,TextRCNN,FastText,DPCNN,BERT,ERNIE)

本文参考自https://github.com/649453932/Chinese-Text-Classification-Pytorch?tabreadme-ov-file&#xff0c;https://github.com/leerumor/nlp_tutorial?tabreadme-ov-file&#xff0c;https://zhuanlan.zhihu.com/p/73176084&#xff0c;是为了进行NLP的一些典型模型的总…...

MySQL: 表的增删改查(基础)

文章目录 1. 注释2. 新增(Create)3. 查询(Retrieve)3.1 全列查询3.2 指定列查询3.3 查询字段为表达式3.4 别名3.5 去重: distinct3.6 排序: order by3.7条件查询3.8 分页查询 4. 修改 (update)5. 删除(delete)6. 内容重点总结 1. 注释 注释&#xff1a;在SQL中可以使用“–空格…...

龙虎榜——20250610

上证指数放量收阴线&#xff0c;个股多数下跌&#xff0c;盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型&#xff0c;指数短线有调整的需求&#xff0c;大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的&#xff1a;御银股份、雄帝科技 驱动…...

iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘

美国西海岸的夏天&#xff0c;再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至&#xff0c;这不仅是开发者的盛宴&#xff0c;更是全球数亿苹果用户翘首以盼的科技春晚。今年&#xff0c;苹果依旧为我们带来了全家桶式的系统更新&#xff0c;包括 iOS 26、iPadOS 26…...

从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路

进入2025年以来&#xff0c;尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断&#xff0c;但全球市场热度依然高涨&#xff0c;入局者持续增加。 以国内市场为例&#xff0c;天眼查专业版数据显示&#xff0c;截至5月底&#xff0c;我国现存在业、存续状态的机器人相关企…...

基于Docker Compose部署Java微服务项目

一. 创建根项目 根项目&#xff08;父项目&#xff09;主要用于依赖管理 一些需要注意的点&#xff1a; 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件&#xff0c;否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...

《基于Apache Flink的流处理》笔记

思维导图 1-3 章 4-7章 8-11 章 参考资料 源码&#xff1a; https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...

Java面试专项一-准备篇

一、企业简历筛选规则 一般企业的简历筛选流程&#xff1a;首先由HR先筛选一部分简历后&#xff0c;在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如&#xff1a;Boss直聘&#xff08;招聘方平台&#xff09; 直接按照条件进行筛选 例如&#xff1a…...

C++ Visual Studio 2017厂商给的源码没有.sln文件 易兆微芯片下载工具加开机动画下载。

1.先用Visual Studio 2017打开Yichip YC31xx loader.vcxproj&#xff0c;再用Visual Studio 2022打开。再保侟就有.sln文件了。 易兆微芯片下载工具加开机动画下载 ExtraDownloadFile1Info.\logo.bin|0|0|10D2000|0 MFC应用兼容CMD 在BOOL CYichipYC31xxloaderDlg::OnIni…...

有限自动机到正规文法转换器v1.0

1 项目简介 这是一个功能强大的有限自动机&#xff08;Finite Automaton, FA&#xff09;到正规文法&#xff08;Regular Grammar&#xff09;转换器&#xff0c;它配备了一个直观且完整的图形用户界面&#xff0c;使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...

佰力博科技与您探讨热释电测量的几种方法

热释电的测量主要涉及热释电系数的测定&#xff0c;这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中&#xff0c;积分电荷法最为常用&#xff0c;其原理是通过测量在电容器上积累的热释电电荷&#xff0c;从而确定热释电系数…...

A2A JS SDK 完整教程:快速入门指南

目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库&#xff…...