GAN的入门理解
这一篇主要是关于生成对抗网络的模型笔记,有一些简单的证明和原理,是根据李宏毅老师的课程整理的,下面有链接。本篇文章主要就是梳理基础的概念和训练过程,如果有什么问题的话也可以指出的。
李宏毅老师的课程链接
1.概述
GAN是Generative Adversarial Networks的缩写,也就是生成对抗网络,最核心在于训练两个网络分别是generator和discriminator,generator主要是输入一个向量,输出要生成的目标,discriminator接受一个输出的目标,然后输出为真的概率(来说就是打分)。
假设任务是生成一组图片,现在输入是一组图片数据集,一开始随便生成乱七八糟的数据,训练共有两个核心的步骤:
- 更新discriminator,将真实数据标记为1,生成的数据标记为0,然后进行训练,那么discrimator就可以辨别生成图片。
- 更新generator,更新生成网络的参数,让生成网络生成的图片能让discriminator输出尽可能大(打分尽可能高,也就是骗过discriminator)。
- 回到1,重复这个过程。
下面是最原始的论文提出的伪代码:
可以看到第一个阶段是在更新discriminator,D(x)表示对输入图像x的判别,损失函数是两项累加,前面的 x i x^i xi表示真实输入,这些应该输出1,后面的 x ~ i \widetilde{x}^i x i表示生成数据,这些应该给低分(接近0),两项的目标都是越大越好,所以 V ~ \widetilde{V} V 越大越好,因此 θ d \theta_d θd是梯度上升优化。
第二阶段在更新generator, G ( z i ) G(z^i) G(zi)就是对一个向量生成一个目标,然后进行打分,也是越大越好,因此梯度上升优化,这一部分的目标就是让生成的图片尽量得高分。
循环多次迭代就可以得到预期网络。
当然目前我还有一些疑问:
-
generator输出的图片是如何保证风格和数据集类似的?
应该是必须要像原风格一样的才能得到高分。
-
输入的向量是随机的,如何可控输入向量和输出特征的关系?如何解释每个输入的数字?(比如我想生成蓝色的头发,那么这个是可控的吗)
这个可能要看了一些具体的代码才能理解。
2.原理简单分析
生成一个图片或者一个语音本质是映射到一个高维点的问题,比如32×32的黑白图片就是 2 32 × 32 2^{32\times 32} 232×32空间中的一个点。下面都以图片生成任务为例,假设真实分布是 P d a t a P_{data} Pdata,生成的分布是 P G P_{G} PG,只有生成的点(图片)到了真实的分布中,才有极大可能是看上去真实的,因此目标就是让生成的分布 P G P_G PG尽可能接近真实的分布 P d a t a P_{data} Pdata,方法就是KL散度或者JS散度,因此一个理想的生成器应该是这样的:
G ∗ = a r g min G D i v ( P G , P d a t a ) G^*=arg\min_G Div(P_G,P_{data}) G∗=argGminDiv(PG,Pdata)其中Div衡量两个分布的差异,而 G ∗ G^* G∗就是所有生成器 G G G中有着最小差异的那个,也就是最优的。
然而,实际情况中,真实的分布和实际的分布都是未知的,一些传统的算法可能假设高斯分布,但是很多时候可能不正确。
虽然不能直接得到分布,但是可以进行采样(Sample),在GAN中,discriminator就扮演了计算两个分布差异的角色,给出下式:
V ( G , D ) = E x ∼ P d a t a l o g ( D ( x ) ) + E x ∼ P G l o g ( 1 − D ( x ) ) V(G,D)=E_{x\sim P_{data}}log(D(x))+E_{x\sim P_{G}}log(1-D(x)) V(G,D)=Ex∼Pdatalog(D(x))+Ex∼PGlog(1−D(x))其中 D ( x ) D(x) D(x)表示一个discriminator对一个generator生成的结果进行打分,介于 [ 0 , 1 ] [0,1] [0,1],下面证明这个式子本质上也是JS散度或者KL散度:
证明:
max E x ∼ P d a t a l o g ( D ( x ) ) + E x ∼ P G l o g ( 1 − D ( x ) ) = max ∫ x p d a t a ( x ) l o g ( D ( x ) ) + ∫ x p G ( x ) l o g ( 1 − D ( x ) ) = max ∫ x p d a t a ( x ) l o g ( D ( x ) ) + p G ( x ) l o g ( 1 − D ( x ) ) \max E_{x\sim P_{data}}log(D(x))+E_{x\sim P_{G}}log(1-D(x))\\ =\max \int_xp_{data}(x)log(D(x))+\int_xp_{G}(x)log(1-D(x))\\ =\max \int_xp_{data}(x)log(D(x))+p_{G}(x)log(1-D(x)) maxEx∼Pdatalog(D(x))+Ex∼PGlog(1−D(x))=max∫xpdata(x)log(D(x))+∫xpG(x)log(1−D(x))=max∫xpdata(x)log(D(x))+pG(x)log(1−D(x))
这里假设D(x)可以拟合任何函数,那么对于任意一个x取值 x ∗ x^* x∗, D ( x ∗ ) D(x^*) D(x∗)都可以对应任何数值,这就意味着可以对每个x都计算最大值,然后求和得到最大值。
设 a = p d a t a ( x ) , b = p G ( x ) , D ( x ) = t a=p_{data}(x),b=p_G(x),D(x)=t a=pdata(x),b=pG(x),D(x)=t,那么可以得到下式:
f ( t ) = a l o g ( t ) + b l o g ( 1 − t ) f(t)=alog(t)+blog(1-t) f(t)=alog(t)+blog(1−t)求导计算最小值对应的t:(直接假设e为底了)
f ′ ( t ) = a x − b 1 − x f'(t)=\frac{a}{x}-\frac{b}{1-x} f′(t)=xa−1−xb
令 f ′ ( t ) = 0 f'(t)=0 f′(t)=0,得到 t = a a + b t=\frac{a}{a+b} t=a+ba,代入 a , b , t a,b,t a,b,t,假设这个值为最优值 D ∗ ( x ) D^*(x) D∗(x):
D ∗ ( x ) = p d a t a ( x ) p d a t a ( x ) + p G ( x ) D^*(x)=\frac{p_{data}(x)}{p_{data}(x)+p_G(x)} D∗(x)=pdata(x)+pG(x)pdata(x)此时每个x都有对应的 D ∗ ( x ) D^*(x) D∗(x),代入得到:
max ∫ x p d a t a ( x ) l o g ( D ( x ) ) + p G ( x ) l o g ( 1 − D ( x ) ) = ∫ x p d a t a ( x ) l o g ( D ∗ ( x ) ) + p G ( x ) l o g ( 1 − D ∗ ( x ) ) = ∫ x p d a t a ( x ) l o g ( p d a t a ( x ) p d a t a ( x ) + p G ( x ) ) + p G ( x ) l o g ( p G ( x ) p d a t a ( x ) + p G ( x ) ) = − 2 l o g 2 + ∫ x p d a t a ( x ) l o g ( p d a t a ( x ) ( p d a t a ( x ) + p G ( x ) ) / 2 ) + p G ( x ) l o g ( p G ( x ) ( p d a t a ( x ) + p G ( x ) ) / 2 ) = − 2 l o g 2 + K L ( P d a t a ∣ ∣ P d a t a + P G 2 ) + K L ( P G ∣ ∣ P d a t a + P G 2 ) = − 2 l o g 2 + J S D ( P d a t a ∣ ∣ P G ) \max\int_xp_{data}(x)log(D(x))+p_{G}(x)log(1-D(x))\\ =\int_xp_{data}(x)log(D^*(x))+p_{G}(x)log(1-D^*(x))\\ =\int_xp_{data}(x)log(\frac{p_{data}(x)}{p_{data}(x)+p_G(x)})+p_{G}(x)log(\frac{p_{G}(x)}{p_{data}(x)+p_G(x)})\\ =-2log2+\int_xp_{data}(x)log(\frac{p_{data}(x)}{(p_{data}(x)+p_G(x))/2})+p_{G}(x)log(\frac{p_{G}(x)}{(p_{data}(x)+p_G(x))/2})\\ =-2log2+KL(P_{data}||\frac{P_{data}+P_G}{2})+KL(P_{G}||\frac{P_{data}+P_G}{2})\\ =-2log2+JSD(P_{data}||P_G) max∫xpdata(x)log(D(x))+pG(x)log(1−D(x))=∫xpdata(x)log(D∗(x))+pG(x)log(1−D∗(x))=∫xpdata(x)log(pdata(x)+pG(x)pdata(x))+pG(x)log(pdata(x)+pG(x)pG(x))=−2log2+∫xpdata(x)log((pdata(x)+pG(x))/2pdata(x))+pG(x)log((pdata(x)+pG(x))/2pG(x))=−2log2+KL(Pdata∣∣2Pdata+PG)+KL(PG∣∣2Pdata+PG)=−2log2+JSD(Pdata∣∣PG)
后面的几步其实不是很理解,不过到第三步,跟交叉熵形式很像,所以都是类似的衡量两个分布的差异。
训练一个discriminator,实际上就是为了更好区分真实和生成的样本,那么自然要让这个差异越大越好,此时这个discriminator可以最大程度区分生成和真实。 D ∗ D^* D∗给的打分实际上可以看做生成分布和实际分布的差异。
D ∗ = a r g max D V ( G , D ) D^*=arg\max_D V(G,D) D∗=argDmaxV(G,D)而训练generator的过程就是为了让discriminator不容易区分真实和生成样本,因此要减少这个差异:
D ∗ = a r g min G V ( G , D ∗ ) = a r g min G max D V ( G , D ) D^*=arg\min_G V(G,D^*) =arg\min_G \max_D V(G,D) D∗=argGminV(G,D∗)=argGminDmaxV(G,D)
也就是现在有一个最优的discriminator D ∗ D^* D∗,要优化generator使得 D ∗ D^* D∗打分尽量高,也就是:
θ g = θ g − η ∂ V ( G , D ∗ ) θ g \theta_g=\theta_g-\eta \frac{\partial V(G,D^*)}{\theta_g} θg=θg−ηθg∂V(G,D∗)这里实际上是对 θ G \theta_G θG也就是生成网络的参数求导,实际的网络架构是: v e c t o r → θ G → o u t → θ D → s c o r e vector\rightarrow \theta_G \rightarrow out \rightarrow \theta_D \rightarrow score vector→θG→out→θD→score,这里更新的时候,不更新 θ D \theta_D θD,这也就是固定discriminator的思想。
注意点:每次更新的时候,对discriminator的更新要彻底,对generator的更新次数不能多,如下图:
比如现在训练了一个discriminator是 D 0 ∗ D^*_0 D0∗,现在要让G变得更强,也就是让 D 0 ∗ D^*_0 D0∗对G生成的图辨别能力降低,直观体现就是 V ( G , D ) V(G,D) V(G,D)变小,但是因为更新参数对生成分布的影响是全局的,那么就可能导致生成图片和实际分布差异变得更大,因为变小的只有 D 0 ∗ D^*_0 D0∗的得分,可能这时候 D 0 ∗ D^*_0 D0∗已经不是最好的discriminator,而更好的discriminator可以将生成的和实际的分的更开,就像图二的最大值必原来的还大,那么对应于更高的 D ∗ D^* D∗计算得到的差异比原来还大。(有点绕这里)
所以有一个简单的假设,就是generator更新后的图形基本和原来保持一致,那么此时优化最大值让最大值变小,那么就相当于生成分布和实际分布差异更小,要达到这样的目的,那么不能更新generator太多;而对于discriminator,因为要找到最大值,应该要更新彻底。
3.实际操作
上面都是理论上的分析,下面讲一讲在实际的操作中是怎么做的。
3.1.训练discriminator
一个discriminator其实就是一个二分分类器,输入一个生成的数据,给出为真的概率,所以训练的过程也是和训练分类器是一样的,上面提到了 V ( G , D ) V(G,D) V(G,D)优化目标,里面有期望,期望一般会被转化为求多个样本的均值来获得。对于一个确定的生成器G,假设抽样取得m个真实样本X,生成了m个生成样本X’,那么期望可以转化为:
V ( D ) = E x ∼ P d a t a l o g ( D ( x ) ) + E x ∼ P G l o g ( 1 − D ( x ) ) = > V ~ = 1 m ∑ i = 1 m l o g ( D ( x i ) ) + 1 m ∑ i = 1 m l o g ( 1 − D ( x i ′ ) ) V(D)=E_{x\sim P_{data}}log(D(x))+E_{x\sim P_{G}}log(1-D(x))\\ =>\widetilde{V}=\frac{1}{m}\sum_{i=1}^{m}log(D(x_i))+\frac{1}{m}\sum_{i=1}^{m}log(1-D(x'_i)) V(D)=Ex∼Pdatalog(D(x))+Ex∼PGlog(1−D(x))=>V =m1i=1∑mlog(D(xi))+m1i=1∑mlog(1−D(xi′))
一般会采用梯度上升法:(因为要求最大值)
θ d = θ d + η ▽ θ d V ~ ( θ d ) \theta_d=\theta_d+\eta ▽_{\theta_d}\widetilde{V}(\theta_d) θd=θd+η▽θdV (θd)
3.2.训练generator
训练generator实际上是为了减少 V ( G , D ∗ ) V(G,D^*) V(G,D∗),也就是让目前最好的分类器分不清,还是抽样,生成n个样本X’,那么目标如下:
V ( D ) = 1 m ∑ i = 1 m l o g ( 1 − D ( G ( x i ′ ) ) ) V(D)=\frac{1}{m}\sum_{i=1}^{m}log(1-D(G(x'_i))) V(D)=m1i=1∑mlog(1−D(G(xi′)))此时在变的是gegenerator的参数 θ g \theta_g θg,要通过改变生成参数让最好的discriminator得分降低,一般是梯度下降:
θ g = θ g − η ▽ θ g V ~ ( θ g ) \theta_g=\theta_g-\eta ▽_{\theta_g}\widetilde{V}(\theta_g) θg=θg−η▽θgV (θg)要注意,不能训练次数太多(一般一次就可以)。
具体的代码实现我还没有去看过,就不进一步展开了,这一篇主要还是记录一些简单的原理。
相关文章:
GAN的入门理解
这一篇主要是关于生成对抗网络的模型笔记,有一些简单的证明和原理,是根据李宏毅老师的课程整理的,下面有链接。本篇文章主要就是梳理基础的概念和训练过程,如果有什么问题的话也可以指出的。 李宏毅老师的课程链接 1.概述 GAN是…...
43【PS 作图】颜色速途
1 通过PS让画面细节模糊,避免被过多的颜色干扰 2 分析画面的颜色 3 作图 参考网站: 色感不好要怎么提升呢?分享一下我是怎么练习色感的!_哔哩哔哩_bilibili https://www.bilibili.com/video/BV1h1421Z76p/?spm_id_from333.1007.…...
定个小目标之刷LeetCode热题(13)
今天来看看这道题,介绍两种解法 第一种动态规划,代码如下 class Solution {public int maxSubArray(int[] nums) {int pre 0, maxAns nums[0];for (int x : nums) {// 计算当前最大前缀和pre Math.max(pre x, x);// 更新最大前缀和maxAns Math.ma…...
【AI大模型】Prompt Engineering
目录 什么是提示工程(Prompt Engineering) Prompt 调优 Prompt 的典型构成 「定义角色」为什么有效? 防止 Prompt 攻击 攻击方式 1:著名的「奶奶漏洞」 攻击方式 2:Prompt 注入 防范措施 1:Prompt 注…...
centos安装vscode的教程
centos安装vscode的教程 步骤一:打开vscode官网找到历史版本 历史版本链接 步骤二:找到文件下载的位置 在命令行中输入(稍等片刻即可打开): /usr/share/code/bin/code关闭vscode后,可在应用程序----编程…...
面试题------>MySQL!!!
一、连接查询 ①:左连接left join (小表在左,大表在右) ②:右连接right join(小表在右,大表在左) 二、聚合函数 SQL 中提供的聚合函数可以用来统计、求和、求最值等等 COUNT&…...
英伟达:史上最牛一笔天使投资
200万美元的天使投资,让刚成立就面临倒闭风险的英伟达由危转安,并由此缔造了一个2.8万亿美元的市值神话。 这是全球风投史上浓墨重彩的一笔。 前不久,黄仁勋在母校斯坦福大学的演讲中,提到了人生中的第一笔融资——1993年&#x…...
PDF分页处理:技术与实践
引言 在数字化办公和学习中,PDF文件因其便携性和格式稳定性而广受欢迎。然而,处理大型PDF文件时,我们经常需要将其拆分成单独的页面,以便于管理和分享。本文将探讨如何使用Python编程语言和一些流行的库来实现PDF文件的分页处理。…...
数据可视化——pyecharts库绘图
目录 官方文档 使用说明: 点击基本图表 可以点击你想要的图表 安装: 一些例图: 柱状图: 效果: 折线图: 效果: 环形图: 效果: 南丁格尔图(玫瑰图&am…...
Python的return和yield,哪个是你的菜?
目录 1、return基础介绍 📚 1.1 return用途:数据返回 1.2 return执行:函数终止 1.3 return深入:无返回值情况 2、yield核心概念 🍇 2.1 yield与迭代器 2.2 生成器函数构建 2.3 yield的暂停与续行特性 3、retur…...
持续总结中!2024年面试必问 20 道分布式、微服务面试题(七)
上一篇地址:持续总结中!2024年面试必问 20 道分布式、微服务面试题(六)-CSDN博客 十三、请解释什么是服务网格(Service Mesh)? 服务网格(Service Mesh)是一种用于处理服…...
AJAX 跨域
这里写目录标题 同源策略JSONPJSONP 是怎么工作的JSONP 的使用原生JSONP实践CORS 同源策略 同源: 协议、域名、端口号 必须完全相同、 当然网页的URL和AJAX请求的目标资源的URL两者之间的协议、域名、端口号必须完全相同。 AJAX是默认遵循同源策略的,不…...
3 数据类型、运算符与表达式-3.1 C语言的数据类型和3.2 常量与变量
数据类型 基本类型 整型字符型实型(浮点型) 单精度型双精度型 枚举类型 构造类型 数组类型结构体类型共用体类型 指针类型空类型 #include <stdio.h> #include <string.h> #include <stdbool.h> // 包含布尔类型定义 // 常量和符号常量 #define PRICE 30//…...
NSSCTF-Web题目5
目录 [SWPUCTF 2021 新生赛]error 1、题目 2、知识点 3、思路 [LitCTF 2023]作业管理系统 1、题目 2、知识点 3、思路 [HUBUCTF 2022 新生赛]checkin 1、题目 2、知识点 3、思路 [SWPUCTF 2021 新生赛]error 1、题目 2、知识点 数据库注入、报错注入 3、思路 首先…...
cnvd_2015_07557-redis未授权访问rce漏洞复现-vulfocus复现
1.复现环境与工具 环境是在vulfocus上面 工具:GitHub - vulhub/redis-rogue-getshell: redis 4.x/5.x master/slave getshell module 参考攻击使用方式与原理:https://vulhub.org/#/environments/redis/4-unacc/ 2.复现 需要一个外网的服务器做&…...
免费,C++蓝桥杯等级考试真题--第7级(含答案解析和代码)
C蓝桥杯等级考试真题--第7级 答案:D 解析:步骤如下: 首先,--a 操作会使 a 的值减1,因此 a 变为 3。判断 a > b 即 3 > 3,此时表达式为假,因为 --a 后 a 并不大于 b。因此,程…...
python为什么要字符串格式化
Python2.6 开始,新增了一种格式化字符串的函数 str.format(),它增强了字符串格式化的功能。相对于老版的%格式方法,它有很多优点。 1.在%方法中%s只能替代字符串类型,而在format中不需要理会数据类型; 2.单个参数可以…...
go语言后端开发学习(三)——基于validator包实现接口校验
前言 在我们开发模块的时候,有一个问题是我们必须要去考虑的,它就是如何进行入参校验,在gin框架的博客中我就介绍过一些常见的参数校验,大家可以参考gin框架学习笔记(四) ——参数绑定与参数验证,而这个其实也不是能够完全应对我…...
系统架构设计师【补充知识】: 应用数学 (核心总结)
一、 图论之最小生成树 (1)定义: 在连通的带权图的所有生成树中,权值和最小的那棵生成树(包含图中所有顶点的树),称作最小生成树。 (2)针对问题: 带权图的最短路径问题。 (3)最小生成树的解法有普里姆(Prim)算法和克鲁斯卡尔(Kruskal)算法,我…...
【ArcGIS微课1000例】0118:一文讲清楚tif(geotiff)栅格数据格式
文章目录 一、Tiff概述二、GeoTiff概述1. ovr文件2. tfw文件3. xml文件4. dbf文件一、Tiff概述 TIFF(Tagged Image File Format)是一种常见的图像文件格式,它被广泛用于存储和传输各种类型的图像数据。下面是对TIFF格式数据的介绍: 图像存储:TIFF格式可以存储多通道的位…...
调用第三方API --------------Python篇
在项目开发过程中,可能需要调用第三方的一些API或者公司提供的数据接口来得到相应的数据或者实现对应的功能。 因此API的调用和数据接口的访问都是做数据分析的一个常用操作,如何快速实现API和数据接口的调用,网上一般提供很多语言版本&#…...
Web自动化测试-掌握selenium工具用法,使用WebDriver测试Chrome/FireFox网页(Java
目录 一、在Eclipse中构建Maven项目 1.全局配置Maven 2.配置JDK路径 3.创建Maven项目 4.引入selenium-java依赖 二、Chrome自动化脚本编写 1.创建一个ChromeTest类 2.测试ChromeDriver 3.下载chromedriver驱动 4.在脚本中通过System.setProperty方法指定chromedriver的…...
maven多模块项目搭建
文章目录 创建方式创建父项目创建子模块 目录结构示例父模块模块A模块B(并在模块B中引入模块A) 注意事项 创建方式 创建父项目 #创建文件夹后,进入目录,执行以下命令 PS D:\demo> mvn archetype:generate #将输出很多模板&am…...
PostgreSQL的视图pg_tables
PostgreSQL的视图pg_tables pg_tables 是 PostgreSQL 中的一个系统视图,用于显示当前数据库中所有用户定义的表的信息。这个视图提供了关于表的名称、所属模式(schema)、所有者以及表类型等详细信息。 pg_tables 视图的主要列 列名类型描述…...
Stable diffusion采样器详解
在我们使用SD web UI的过程中,有很多采样器可以选择,那么什么是采样器?它们是如何工作的?它们之间有什么区别?你应该使用哪一个?这篇文章将会给你想要的答案。 什么是采样? Stable Diffusion模…...
为什么要进行渗透测试?
渗透测试的重要性 渗透测试是一种安全评估技术,旨在模拟黑客攻击,发现和利用系统漏洞,以评估企业信息系统的安全性。以下是进行渗透测试的几个主要原因: 1.发现潜在的漏洞和安全风险:渗透测试可以模拟真实的攻击行为…...
后方碰撞预警系统技术规范(简化版)
后方碰撞预警系统技术规范(简化版) 1 系统概述2 预警区域3 预警目标4 功能需求功能条件5 显示需求6 指标需求1 系统概述 后方碰撞预警系统RCW(Rear Collision Warning)是在后方车辆即将与自车发生碰撞之前,激活危险警告灯以较高频率闪烁,从而吸引后方驾驶员的注意力,避免…...
Position定位
Position定位 CSS中position属性是比较常用的元素定位方案,position常用的取值有static、relative、absolute、fixed、sticky、inherit。 static static属性是HTML元素的默认值,即没有定位,遵循正常的文档流对象,对于top、bott…...
npm install 的原理
1. 执行命令发生了什么 ? 执行命令后,会将安装相关的依赖,依赖会存放在根目录的node_modules下,默认采用扁平化的方式安装,排序规则为:bin文件夹为第一个,然后是开头系列的文件夹,后…...
基于I2C协议的OLED显示(利用U82G库)
目录 一、I2C协议 1、了解I2C协议的基本原理和时序协议 基本原理 时序协议 2、掌握0.96寸OLED屏的工作原理,汉字点阵显示原理 OLED 工作原理 汉字点阵显示原理 3、掌握开源GUI库U82G在stm32上的移植编译方法,以及图形界面可视化技术。 二、具体…...
附近网站建设公司/百度seo收费
我正在尝试使用TABLE_PER_CLASS策略创建继承,但我想为每个表创建不同的主键是否可能?我有一个类Register,它有数百万个实例,其中一些实例是“特殊的”,并且对于它们的列和额外的列有不同的规则.MappedSuperclasspublic abstract class Register {IdColumn(nullable …...
wordpress 注册会员默认权限/重庆seo小z博客
有这么一个Bug,仅在AIX平台上,Oracle Database 11.2.0.4的版本中出现,在12.1中被修复,之前和之后都不存在,所以简直是为这一版本定制的。 之前一些客户零星的遇到这个问题,而在2017年最近的几个月ÿ…...
静态网页做的网站怎么发到网上/现在什么网络推广好
题目描述 一天,CC买了N个容量可以认为是无限大的瓶子,开始时每个瓶子里有1升水。接着~~CC发现瓶子实在太多了,于是他决定保留不超过K个瓶子。每次他选择两个当前含水量相同的瓶子,把一个瓶子的水全部倒进另一个里,然后…...
网站建设一般报价/企业关键词优化最新报价
作者:闲鱼技术-君爱 1. 前言 闲鱼技术团队在2018年引入Flutter后,越来越多的业务场景在Flutter上使用。Flutter的亚秒级热重载一直是开发者的神兵利器,提供给开发者快速修改UI,增加功能,修复bug,不需要重新…...
网站建设服务兴田德润/优化网站标题名词解释
SET QUOTED_IDENTIFIER ON GO 是什么意思? 语法 SET QUOTED_IDENTIFIER { ON | OFF } 注释 当 SET QUOTED_IDENTIFIER 为 ON 时,标识符可以由双引号分隔,而文字必须由单引号分隔。当 SET QUOTED_IDENTIFIER 为 OFF 时,标识符不可加…...
青岛网站建设推广/新疆今日头条新闻
南京整站网站优化哪个公司好热电咨询,SEO推广并不像看上去那么简单,这不仅包含了SEO的关键技术,也是优化思维中重要的部分。只有在思维上敢于突破,不断创新,还要掌握SEO优化技术,在推广策略上敢于做“吃螃蟹的人”&…...